• No results found

2 Amino 5 [4 (octylamino)phen­yl]cyclo­hepta 2,4,6 trien 1 one

N/A
N/A
Protected

Academic year: 2020

Share "2 Amino 5 [4 (octylamino)phen­yl]cyclo­hepta 2,4,6 trien 1 one"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2750

Kuboet al. C

21H28N2O doi:10.1107/S1600536805023792 Acta Cryst.(2005). E61, o2750–o2752 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-Amino-5-[4-(octylamino)phenyl]cyclo-hepta-2,4,6-trien-1-one

Kanji Kubo,a* Taisuke Matsumoto,bKouki Katahirac and Akira Morib

aSchool of Dentistry, Health Sciences University

of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan,bInstitute for

Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan, andcGraduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

Correspondence e-mail: kubo-k@hoku-iryo-u.ac.jp

Key indicators

Single-crystal X-ray study

T= 123 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.071

wRfactor = 0.202

Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, also known as 2-amino-5-[4-(octylamino)phenyl]tropone, C21H28N2O, contains two

crys-tallographically independent molecules in the asymmetric unit. The NH2group of the 2-aminotropone unit and the NH

group of the aminobenzene unit participate in intermolecular hydrogen bonding with the O atoms of neighbouring mol-ecules. An intermolecular –interaction is observed in the crystal structure.

Comment

Self-assembled systems are of great significance, particularly for their potential application to nanomaterials such as liquid crystals and gelators (Kubo, Tsuji et al., 2004). Numerous studies have been dedicated to the structural investigation and the determination of the molecular aggregation mechanisms. Troponoids, a remarkable class of non-benzenoid -conju-gated systems, have also been used as a building block of molecular assemblies such as liquid crystals and organogela-tors (Kubo, Mori et al., 2004). Tropone and tropolone frequently play an important role as entities determining the specific properties of molecular assemblies.

Recently, we have prepared liquid crystals with a troponoid core such as tropone itself (Mori & Takeshita, 1995), nitro-tropone (Kubo, Tsurutaet al., 2002), bitropone (Kubo, Sutoh

et al., 2002), and phenyltropone (Mori et al., 2002). The

troponoid cores enhanced formation of smectic phases when compared with the corresponding benzenoids. The crystal structure analyses of some troponoid-core liquid crystals have been carried out (Yamamoto et al., 2001; Kubo et al., 2001,

[image:1.610.216.449.603.724.2]

Received 21 July 2005 Accepted 25 July 2005 Online 30 July 2005

Figure 1

(2)

2005; Kubo, Sutohet al., 2002). These crystal structures involve intermolecular–interactions and intermolecular hydrogen bonds. We now report the crystal structure of 2-amino-5-[4-(octylamino)phenyl]tropone, (I), which was determined in order to elucidate the substituent effect of 5-phenyltropone on the crystal packing.

There are two molecules, (Ia) and (Ib), in the asymmetric unit (Fig. 1). In both, the octyl chain has an all-trans confor-mation, thus forming an almost planar zigzag; the deviations of atoms from the least-squares plane defined by atoms C14–C21 for (Ia) and C34–C42 for (Ib) are all within 0.045 (3) and 0.021 (3) A˚ , respectively. The planarity of the seven-membered ring is fairly good; the deviations of atoms from the least-squares plane defined by atoms C1–C7 for (Ia) and C22– C28 for (Ib) are within 0.013 (3) and 0.007 (3) A˚ . The C—C bond lengths of the seven-membered ring, apart from the C1—C2 and C22—C23 bonds, show no apparent bond alter-nation, in contrast to what has been observed for tropolone (Shimanouchi & Sasada, 1973), but similar to 2-amino-5-hexyloxytropone (Yamamotoet al., 2001). The average value of the C—C bond lengths, apart from the C1—C2 and C22— C23 bonds, is 1.394 A˚ , which agrees with that of tropolone (1.385 A˚ ) and the standard aromatic C—C bond length of 1.392 A˚ (Lide, 1990). The C1—C2 and C22—C23 bonds are significantly longer than all other bonds in the ring. The dihedral angles between the least-squares planes A(defined by atoms C1–C7) and B (defined by C8–C13) of (Ia) and between the least-squares planesC(defined by C22–C28) and

D (defined by C29–C34) of (Ib) are 36.4 (1) and 38.1 (1), respectively, resembling those of 40.6 (2)in

2-methoxy-5-(4-methoxyphenyl)cyclohepta-2,4,6-trien-1-one (Gulbis et al., 1992), and distinct from that (0) in biphenyl (Charbonneau &

Delugeard, 1977).

An intermolecular – interaction between pairs of tropone planes (head-to-tail) is observed for (Ia) (Fig. 2). The distances between the tropone planes are within the range associated with–interactions (3.3–3.8 A˚ ; Proutet al., 1973; Kuboet al., 2001).

There is an intramolecular N—H O hydrogen bond in the 2-aminotropone unit (Table 2). Furthermore the NH2group of

the 2-aminotropone unit of (1b) and the NH group of the

hydrogen bonds. The N O distances are close to the inter-molecular N—H O distance [N O = 2.877 (4) A˚ ] of 2-amino-5-hexyloxytropone (Yamamotoet al., 2001). Thus, the crystal structure of (I) has intermolecular–interactions and intermolecular N—H O hydrogen bonds.

Experimental

A hexamethylphosphoric triamide (3 ml) solution of 2-amino-5-(4-aminophenyl)tropone (40 mg, 0.19 mmol) and NaH (60%, 14 mg, 0.57 mmol) was stirred at 273 K for 1 h. 1-Bromohexane (75 mg, 0.46 mmol) was added and the reaction mixture was stirred at 333 K for 12 h. The mixture was poured into 2MHCl and shaken with ethyl acetate. The organic layer was washed with saturated NaCl solution and dried over MgSO4. The solvent was evaporated and the residue chromatographed on a silica-gel column (hexane–ethyl acetate, 5:1 (v/v) to give (I) (20 mg, 27%). Crystals of (I) were grown from hexane and ethyl acetate solution (1:1v/v) by slow evaporation.

Crystal data

C21H28N2O Mr= 324.46

Triclinic,P1

a= 7.691 (2) A˚

b= 14.882 (4) A˚

c= 16.948 (5) A˚

= 77.200 (14)

= 77.262 (14)

= 80.658 (14) V= 1832.0 (9) A˚3

Z= 4

Dx= 1.176 Mg m

3

MoKradiation Cell parameters from 2903

reflections

= 3.1–27.5

= 0.07 mm1 T= 123.1 K Platelet, yellow 0.120.100.03 mm

Data collection

Rigaku Saturn diffractometer

!scans

Absorption correction: multi-scan (Jacobson, 1998)

Tmin= 0.991,Tmax= 0.998

22067 measured reflections 8302 independent reflections

3759 reflections withI> 2(I)

Rint= 0.064

max= 27.5 h=9!9

k=19!19

l=21!21

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.071

wR(F2) = 0.202 S= 1.00 8285 reflections 508 parameters

H atoms treated by a mixture of

w= 1/[0.0015Fo2+(Fo2)]/(4Fo2)

(/)max< 0.001 max= 0.53 e A˚

3 min=0.49 e A˚ 3

Extinction correction: Larson (1970), equation 22 Extinction coefficient:

[image:2.610.53.489.72.221.2]

2

Figure 2

The–interaction of molecule (Ia). [Symmetry code: (i)1x,y, 2z.]

Figure 3

(3)
[image:3.610.44.298.109.434.2]

Table 1

Selected geometric parameters (A˚ ,).

O1—C1 1.279 (3) O2—C22 1.274 (3) N1—C2 1.345 (3) N2—C11 1.362 (3) N2—C14 1.451 (3) N3—C23 1.352 (3) N4—C32 1.385 (3) N4—C35 1.439 (4) C1—C2 1.472 (3) C1—C7 1.414 (3) C2—C3 1.382 (3) C3—C4 1.390 (3)

C4—C5 1.391 (3) C5—C6 1.418 (3) C5—C8 1.482 (3) C6—C7 1.375 (3) C22—C23 1.473 (4) C22—C28 1.423 (3) C23—C24 1.389 (4) C24—C25 1.382 (3) C25—C26 1.397 (3) C26—C27 1.404 (4) C26—C29 1.486 (3) C27—C28 1.379 (4) C1 C3i

3.570 (4) C1 C4i

3.459 (4) C2 C4i 3.522 (4)

C3 C1i

3.570 (4) C3 C7i

3.591 (4) C7 C3i 3.591 (4) O1—C1—C2 116.0 (2)

O1—C1—C7 120.4 (2) C2—C1—C7 123.6 (2) N1—C2—C1 113.5 (2) N1—C2—C3 120.3 (2) C1—C2—C3 126.2 (2) C2—C3—C4 132.3 (2) C3—C4—C5 130.9 (2) C4—C5—C6 123.3 (2) C5—C6—C7 130.7 (2) C1—C7—C6 132.8 (2)

O2—C22—C23 117.0 (2) O2—C22—C28 120.0 (2) C23—C22—C28 123.0 (2) N3—C23—C22 112.9 (2) N3—C23—C24 120.4 (2) C22—C23—C24 126.7 (2) C23—C24—C25 132.3 (2) C24—C25—C26 130.6 (2) C25—C26—C27 123.6 (2) C26—C27—C28 131.4 (2) C22—C28—C27 132.4 (2) C11—N2—C14—C15 172.2 (2)

C32—N4—C35—C36 169.9 (2) N2—C14—C15—C16 179.9 (2) C14—C15—C16—C17 171.3 (2) C15—C16—C17—C18 178.8 (2) C16—C17—C18—C19 179.2 (2) C17—C18—C19—C20 177.0 (2)

C18—C19—C20—C21 179.7 (2) N4—C35—C36—C37 174.9 (2) C35—C36—C37—C38 177.3 (2) C36—C37—C38—C39 179.0 (2) C37—C38—C39—C40 178.1 (2) C38—C39—C40—C41 179.2 (2) C39—C40—C41—C42 178.3 (2)

Symmetry code: (i)x1;y;zþ2.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1 O1 0.89 (3) 2.13 (2) 2.570 (2) 109 (2) N2—H11 O2ii

0.93 (3) 2.07 (3) 2.993 (3) 168 (2) N3—H29 O2 0.87 (3) 2.11 (2) 2.579 (3) 113 (2) N3—H30 O1i

0.97 (3) 1.90 (3) 2.845 (3) 165 (3) N4—H39 O1iii

0.98 (3) 2.02 (3) 2.993 (4) 170 (2)

Symmetry codes: (i)x1;y;zþ2; (ii)xþ1;þy;þz; (iii)xþ1;þyþ1;þz.

H atoms bonded to C atoms were included in the refinement at calculated positions as riding atoms, with C—H = 0.95 A˚ andUiso(H) = 1.2Ueq(C). The H atoms of the NH2and NH groups were located in a difference synthesis and refined isotropically. Some low-angle reflections were excluded from the refinement, as they were probably obscured by the beam-stop.

Data collection: CRYSTALCLEAR (Rigaku, 1999); cell refine-ment:CRYSTALCLEAR; data reduction:CrystalStructure(Rigaku/ MSC, 2004); program(s) used to solve structure:SIR97(Altomareet al., 1999); program(s) used to refine structure:CRYSTALS (Better-idgeet al., 2003); molecular graphics:ORTEPIII(Burnett & Johnson, 1996) andMERCURY(Version 1.3; Brunoet al., 2002); software used to prepare material for publication:CrystalStructure.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115–119.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003).J. Appl. Cryst.36, 1487.

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002).Acta Cryst.B58, 389–397.

Burnett, M. N. & Johnson, C. K. (1996).ORTEPIII. Report ORNL-6895. Ridge National Laboratory, Tennessee, USA.

Charbonneau, G. P. & Delugeard, Y. (1977).Acta Cryst.B33, 1586–1588. Gulbis, J. M., Mackay, M. F., Banwell, M. G. & Lambert, J. N. (1992).Acta

Cryst.C48, 332–334.

Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.

Kubo, K., Mori, A., Ujiie, S. & Tschierske, C. (2004).J. Oleo. Sci.53, 575–579. Kubo, K., Mori, A., Ujiie, S. & Tschierske, C. (2005).J. Oleo. Sci.54, 179–183. Kubo, K., Sutoh, T., Mori, A. & Ujiie, S. (2002).Bull. Chem. Soc. Jpn,75, 1353–

1358.

Kubo, K., Tsuji, K., Mori, A. & Ujiie, S. (2004).J. Oleo. Sci.53, 467–470. Kubo, K., Tsuruta, T., Hashimoto, M., Mori, A. & Ujiie, S. (2002).ITE Lett.

Batteries New Technol. Med.3, 475–478.

Kubo, K. Yamamoto, E. & Mori, A. (2001).Acta Cryst.C57, 611–613. Larson, A. C. (1970).Crystallographic Computing,edited by F. R. Ahmed, S.

R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.

Lide, D. R. (1990).Handbook of Chemistry and Physics, 71st ed. Boston: CRC Press.

Mori, A. & Takeshita, H. (1995).J. Synth. Org. Chem Jpn.53, 197–206. Mori, A., Takeshita, H., Katahira, K., Kida, K., Jin, C. & Ujiie, S. (2002).Liq.

Cryst.29, 1235–1241.

Prout, C. K., Orley, T. M., Tickle, I. J. & Wright, J. D. (1973).J. Chem. Soc. Perkin Trans. 2, pp. 523–527.

Rigaku (1999).CRYSTALCLEAR. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.

Rigaku/MSC (2004).CrystalStructure. Version 3.7.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Shimanouchi, H. & Sasada, Y. (1973).Acta Cryst.B29, 81–90.

Yamamoto, E., Kubo, K., Kato, N. & Mori, A. (2001).Acta Cryst.E57, o279– o281.

organic papers

o2752

Kuboet al. C

(4)

supporting information

Acta Cryst. (2005). E61, o2750–o2752 [https://doi.org/10.1107/S1600536805023792]

2-Amino-5-[4-(octylamino)phenyl]cyclohepta-2,4,6-trien-1-one

Kanji Kubo, Taisuke Matsumoto, Kouki Katahira and Akira Mori

2-Amino-5-[4-(octylamino)phenyl]cyclohepta-2,4,6-trien-1-one

Crystal data

C21H28N2O Mr = 324.46

Triclinic, P1 Hall symbol: -P 1 a = 7.691 (2) Å b = 14.882 (4) Å c = 16.948 (5) Å α = 77.200 (14)° β = 77.262 (14)° γ = 80.658 (14)° V = 1832.0 (9) Å3

Z = 4

F(000) = 704.00 Dx = 1.176 Mg m−3

Mo radiation, λ = 0.71070 Å Cell parameters from 2903 reflections θ = 3.1–27.5°

µ = 0.07 mm−1 T = 123 K Platelet, yellow 0.12 × 0.10 × 0.03 mm

Data collection

Rigaku Saturn diffractometer

Detector resolution: 7.31 pixels mm-1 ω scans

Absorption correction: multi-scan (Jacobson, 1998)

Tmin = 0.991, Tmax = 0.998 22067 measured reflections

8302 independent reflections 3759 reflections with I > 2σ(I) Rint = 0.064

θmax = 27.5° h = −9→9 k = −19→19 l = −21→21

Refinement

Refinement on F2 R[F2 > 2σ(F2)] = 0.071 wR(F2) = 0.202 S = 1.00 8285 reflections 508 parameters

H atoms treated by a mixture of independent and constrained refinement

w = 1/[0.0015Fo2 + σ(Fo2)]/(4Fo2) (Δ/σ)max < 0.001

Δρmax = 0.53 e Å−3 Δρmin = −0.49 e Å−3

Extinction correction: Larson (1970), eq. 22 Extinction coefficient: 156 (60)

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o2750–o2752

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

C40 0.9623 (4) 1.1326 (2) 0.5568 (2) 0.0480 (9) C41 1.0564 (4) 1.1906 (2) 0.4788 (2) 0.0546 (10) C42 1.2145 (4) 1.2326 (2) 0.4903 (2) 0.0646 (11) H1 −0.840 (3) −0.088 (2) 0.939 (2) 0.056 (9)* H2 −0.901 (4) 0.013 (2) 0.937 (2) 0.053 (9)*

H3 −0.7016 0.1186 0.9191 0.046*

H4 −0.4461 0.1745 0.8810 0.046*

H5 −0.0997 −0.0494 0.8437 0.046*

H6 −0.2693 −0.1587 0.8785 0.046*

H7 −0.2196 0.2146 0.9146 0.045*

H8 0.0091 0.3072 0.8783 0.046*

H9 0.2699 0.1542 0.7071 0.044*

H10 0.0415 0.0601 0.7462 0.046*

H11 0.277 (3) 0.3474 (19) 0.7977 (17) 0.036 (7)*

H12 0.5250 0.2255 0.7244 0.048*

H13 0.4445 0.3005 0.6583 0.048*

H14 0.5209 0.4161 0.7117 0.047*

H15 0.6010 0.3412 0.7779 0.047*

H16 0.8401 0.2998 0.6826 0.048*

H17 0.7546 0.3619 0.6113 0.048*

H18 0.7873 0.4931 0.6557 0.052*

H19 0.8689 0.4317 0.7285 0.052*

H20 1.1195 0.3873 0.6370 0.050*

H21 1.0381 0.4498 0.5646 0.051*

H22 1.0569 0.5802 0.6163 0.061*

H23 1.1466 0.5164 0.6855 0.061*

H24 1.3923 0.4779 0.5880 0.063*

H25 1.3027 0.5422 0.5189 0.063*

H26 1.3713 0.6680 0.5454 0.086*

H27 1.5315 0.5992 0.5725 0.086*

H28 1.3664 0.6254 0.6380 0.086*

H29 −0.672 (4) 0.320 (2) 0.9586 (19) 0.047 (8)* H30 −0.524 (4) 0.279 (2) 1.011 (2) 0.087 (13)*

H31 −0.2785 0.3710 0.9748 0.050*

H32 −0.1259 0.4878 0.9257 0.050*

H33 −0.4484 0.6652 0.7936 0.055*

H34 −0.6722 0.5897 0.8060 0.053*

H35 −0.0695 0.6227 0.9487 0.046*

H36 0.1326 0.7309 0.9164 0.046*

H37 0.0363 0.8034 0.6836 0.053*

H38 −0.1742 0.6991 0.7177 0.051*

H39 0.298 (3) 0.828 (2) 0.825 (2) 0.051 (9)*

H40 0.3541 0.8372 0.6635 0.052*

H41 0.2225 0.9266 0.6731 0.053*

H42 0.4223 0.9742 0.7367 0.053*

H43 0.5563 0.8880 0.7188 0.053*

H44 0.5911 0.9500 0.5786 0.056*

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o2750–o2752

H46 0.6693 1.0720 0.6657 0.055*

H47 0.7975 0.9853 0.6442 0.055*

H48 0.8383 1.0550 0.5058 0.056*

H49 0.7147 1.1424 0.5288 0.056*

H50 0.9231 1.1705 0.5971 0.055*

H51 1.0462 1.0824 0.5755 0.055*

H52 0.9718 1.2396 0.4591 0.062*

H53 1.0994 1.1522 0.4390 0.062*

H54 1.1737 1.2918 0.5042 0.075*

H55 1.3013 1.2390 0.4405 0.075*

H56 1.2672 1.1932 0.5333 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

C28 0.0357 (14) 0.0251 (13) 0.070 (2) 0.0052 (11) −0.0221 (14) −0.0180 (14) C29 0.0308 (13) 0.0261 (13) 0.059 (2) 0.0041 (11) −0.0136 (13) −0.0164 (13) C30 0.0274 (12) 0.0261 (13) 0.062 (2) 0.0042 (10) −0.0109 (13) −0.0117 (13) C31 0.0286 (12) 0.0275 (13) 0.060 (2) 0.0010 (10) −0.0153 (13) −0.0121 (13) C32 0.0346 (13) 0.0238 (12) 0.061 (2) 0.0008 (11) −0.0126 (13) −0.0140 (13) C33 0.0446 (15) 0.0287 (13) 0.058 (2) −0.0024 (12) −0.0117 (15) −0.0122 (14) C34 0.0393 (14) 0.0296 (13) 0.060 (2) 0.0007 (11) −0.0180 (14) −0.0147 (14) C35 0.0452 (15) 0.0315 (14) 0.055 (2) −0.0016 (12) −0.0086 (15) −0.0101 (14) C36 0.0445 (16) 0.0283 (13) 0.060 (2) −0.0028 (12) −0.0052 (15) −0.0091 (14) C37 0.0492 (17) 0.0346 (15) 0.056 (2) −0.0041 (13) −0.0043 (15) −0.0085 (14) C38 0.0510 (17) 0.0306 (14) 0.055 (2) −0.0066 (13) −0.0018 (15) −0.0086 (14) C39 0.0536 (18) 0.0359 (15) 0.051 (2) −0.0044 (14) −0.0007 (15) −0.0045 (14) C40 0.0541 (17) 0.0315 (14) 0.053 (2) −0.0082 (13) 0.0034 (15) −0.0074 (14) C41 0.0597 (19) 0.0410 (17) 0.055 (2) −0.0035 (15) −0.0020 (17) −0.0040 (15) C42 0.064 (2) 0.0512 (19) 0.071 (2) −0.0105 (17) 0.0027 (19) −0.0083 (19)

Geometric parameters (Å, º)

O1—C1 1.279 (3) N3—H29 0.87 (3)

O2—C22 1.274 (3) N3—H30 0.97 (3)

N1—C2 1.345 (3) N4—H39 0.98 (3)

N2—C11 1.362 (3) C3—H3 0.950

N2—C14 1.451 (3) C4—H4 0.950

N3—C23 1.352 (3) C6—H5 0.950

N4—C32 1.385 (3) C7—H6 0.950

N4—C35 1.439 (4) C9—H7 0.950

C1—C2 1.472 (3) C10—H8 0.950

C1—C7 1.414 (3) C12—H9 0.950

C2—C3 1.382 (3) C13—H10 0.950

C3—C4 1.390 (3) C14—H12 0.950

C4—C5 1.391 (3) C14—H13 0.950

C5—C6 1.418 (3) C15—H14 0.950

C5—C8 1.482 (3) C15—H15 0.950

C6—C7 1.375 (3) C16—H16 0.950

C8—C9 1.411 (4) C16—H17 0.950

C8—C13 1.397 (3) C17—H18 0.950

C9—C10 1.374 (3) C17—H19 0.950

C10—C11 1.409 (3) C18—H20 0.950

C11—C12 1.400 (4) C18—H21 0.950

C12—C13 1.386 (3) C19—H22 0.950

C14—C15 1.521 (4) C19—H23 0.950

C15—C16 1.521 (3) C20—H24 0.950

C16—C17 1.525 (4) C20—H25 0.950

C17—C18 1.506 (3) C21—H26 0.950

C18—C19 1.530 (4) C21—H27 0.950

C19—C20 1.513 (4) C21—H28 0.950

C20—C21 1.519 (5) C24—H31 0.950

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, o2750–o2752

C22—C28 1.423 (3) C27—H33 0.950

C23—C24 1.389 (4) C28—H34 0.950

C24—C25 1.382 (3) C30—H35 0.950

C25—C26 1.397 (3) C31—H36 0.950

C26—C27 1.404 (4) C33—H37 0.950

C26—C29 1.486 (3) C34—H38 0.950

C27—C28 1.379 (4) C35—H40 0.950

C29—C30 1.405 (4) C35—H41 0.950

C29—C34 1.405 (4) C36—H42 0.950

C30—C31 1.382 (3) C36—H43 0.950

C31—C32 1.406 (4) C37—H44 0.950

C32—C33 1.392 (5) C37—H45 0.950

C33—C34 1.387 (4) C38—H46 0.950

C35—C36 1.512 (4) C38—H47 0.950

C36—C37 1.521 (4) C39—H48 0.950

C37—C38 1.524 (4) C39—H49 0.950

C38—C39 1.521 (4) C40—H50 0.950

C39—C40 1.525 (4) C40—H51 0.950

C40—C41 1.514 (4) C41—H52 0.950

C41—C42 1.520 (5) C41—H53 0.950

N1—H1 0.89 (3) C42—H54 0.950

N1—H2 0.83 (3) C42—H55 0.950

N2—H11 0.93 (3) C42—H56 0.950

O1···N3i 2.845 (3) C10···H19iii 3.166

O1···N4ii 2.993 (4) C10···H31 3.262

O1···C31ii 3.520 (3) C11···H3v 2.805

O2···N2iii 2.993 (3) C11···H4v 3.574

O2···C10iii 3.550 (3) C11···H16iii 3.291 O2···C25iii 3.529 (3) C11···H19iii 3.455

N1···N1iv 3.210 (3) C11···H20iii 3.022

N1···N4ii 3.580 (4) C12···H2v 3.46 (3)

N1···C5i 3.523 (4) C12···H3v 3.132

N1···C8iii 3.455 (3) C12···H16iii 3.218 N1···C13iii 3.407 (3) C12···H20iii 3.425

N2···O2v 2.993 (3) C12···H42ix 3.204

N2···C4v 3.597 (3) C12···H50ii 3.522

N3···O1i 2.845 (3) C12···H56ii 3.523

N3···C1i 3.573 (3) C13···H2v 2.94 (3)

N3···C26vi 3.486 (4) C13···H3v 3.564

N3···C30vi 3.358 (3) C13···H16iii 3.198

N4···O1vii 2.993 (4) C13···H41ix 3.488

N4···N1vii 3.580 (4) C13···H42ix 3.348

N4···C1vii 3.531 (4) C13···H50ii 3.180

C1···N3i 3.573 (3) C13···H51ii 3.446

C1···N4ii 3.531 (4) C14···H4v 3.119

C1···C3i 3.570 (4) C14···H20iii 3.223

(10)

C1···C36ii 3.495 (4) C14···H46ix 3.504

C2···C4i 3.522 (4) C15···H4v 3.354

C3···C1i 3.570 (4) C15···H24iii 3.074

C3···C7i 3.591 (4) C16···H24iii 3.512

C3···C11iii 3.372 (3) C16···H25xii 3.294 C3···C12iii 3.423 (4) C16···H50ix 3.194

C4···N2iii 3.597 (3) C18···H13v 3.531

C4···C1i 3.459 (4) C18···H21xii 3.342

C4···C2i 3.522 (4) C18···H54ix 3.215

C4···C14iii 3.563 (3) C19···H14v 3.561

C5···N1i 3.523 (4) C19···H38v 3.567

C7···C3i 3.591 (4) C19···H52xiii 3.537

C8···N1v 3.455 (3) C20···H13v 3.516

C10···O2v 3.550 (3) C20···H14v 3.142

C11···C3v 3.372 (3) C20···H17xii 3.308

C12···C3v 3.423 (4) C20···H24viii 3.166 C13···N1v 3.407 (3) C20···H25viii 3.172 C14···C4v 3.563 (3) C20···H27viii 3.413

C15···C22v 3.422 (4) C21···H14v 3.372

C20···C20viii 3.530 (4) C21···H18v 3.506 C22···C15iii 3.422 (4) C21···H24viii 3.439 C23···C25vi 3.454 (4) C21···H25viii 3.442 C25···O2v 3.529 (3) C21···H52xiii 3.439 C25···C23vi 3.454 (4) C21···H55xiv 3.297 C26···N3vi 3.486 (4) C22···H11iii 2.79 (3) C28···C31iii 3.385 (3) C22···H14iii 3.047 C30···N3vi 3.358 (3) C22···H15iii 2.931 C31···O1vii 3.520 (3) C22···H32vi 3.567

C31···C28v 3.385 (3) C22···H35vi 3.475

C36···C1vii 3.495 (4) C22···H35vi 3.475

O1···H4i 3.398 C23···H7 3.301

O1···H7i 2.803 C23···H11iii 3.42 (3)

O1···H29i 3.35 (3) C23···H15iii 2.859

O1···H30i 1.90 (3) C23···H35vi 3.503

O1···H31i 3.236 C24···H7 3.153

O1···H33ix 3.473 C24···H8 3.018

O1···H36ii 2.766 C24···H15iii 3.380

O1···H39ii 2.02 (3) C24···H19iii 3.568

O1···H42ii 3.425 C24···H36xv 3.397

O1···H43ii 3.363 C25···H8 3.200

O2···H8iii 2.800 C25···H19iii 3.304

O2···H11iii 2.07 (3) C26···H19iii 3.352

O2···H14iii 3.232 C26···H30vi 3.34 (4)

O2···H15iii 3.270 C27···H30vi 3.50 (4)

O2···H23x 3.386 C27···H39iii 3.59 (2)

O2···H32iii 2.716 C28···H14iii 3.179

O2···H35iii 3.530 C28···H15iii 3.544

(11)

supporting information

sup-8 Acta Cryst. (2005). E61, o2750–o2752

N1···H1iv 3.46 (3) C28···H31vi 3.500

N1···H2iv 2.68 (2) C28···H36iii 3.433

N1···H5iii 3.041 C29···H6xi 3.048

N1···H7i 3.284 C29···H29vi 3.53 (3)

N1···H10iii 3.572 C29···H30vi 3.41 (3)

N1···H39ii 3.07 (3) C29···H34v 3.568

N1···H42ii 3.513 C30···H6xi 2.931

N2···H3v 3.221 C30···H29vi 2.93 (2)

N2···H4v 3.095 C30···H30vi 3.39 (3)

N2···H20iii 2.882 C30···H34v 3.099

N2···H23iii 3.400 C31···H1vii 3.42 (3)

N2···H29v 3.33 (3) C31···H5xi 3.394

N3···H4 2.821 C31···H6xi 2.910

N3···H6i 3.340 C31···H31xv 3.226

N3···H7 2.940 C31···H34v 2.821

N3···H11iii 3.27 (3) C32···H1vii 3.58 (3)

N3···H15iii 3.136 C32···H5xi 2.981

N3···H35vi 2.934 C32···H6xi 3.040

N4···H1vii 3.04 (3) C32···H33v 3.535

N4···H5xi 2.952 C32···H34v 3.010

N4···H10xi 3.350 C33···H5xi 3.485

N4···H33v 3.271 C33···H6xi 3.124

C1···H4i 3.463 C33···H28iii 3.513

C1···H7i 3.485 C33···H34v 3.453

C1···H30i 2.72 (3) C33···H52xvi 3.338

C1···H39ii 2.68 (3) C33···H53xvi 3.226

C1···H42ii 2.974 C34···H6xi 3.117

C1···H43ii 3.178 C34···H22iii 3.272

C2···H39ii 3.22 (3) C34···H23iii 3.454

C2···H42ii 3.035 C34···H43iii 3.484

C3···H12iii 3.455 C34···H52xvi 3.550

C3···H42ii 3.485 C34···H53xvi 3.537

C4···H12iii 2.892 C35···H10xi 3.223

C4···H15iii 3.534 C36···H9xi 3.405

C4···H30 3.57 (4) C36···H10xi 3.516

C5···H2v 3.26 (3) C37···H9xi 3.384

C5···H12iii 3.380 C37···H53xiii 3.244

C5···H46ii 3.418 C38···H12xi 3.567

C6···H1v 3.40 (3) C38···H53xiii 3.211

C6···H2v 3.24 (3) C39···H48xiii 3.337

C6···H46ii 3.532 C39···H51xiii 3.572

C6···H47ii 3.596 C39···H53xiii 3.562

C7···H3i 3.383 C40···H10vii 3.310

C7···H30i 3.09 (3) C40···H16xi 3.511

C7···H39ii 3.59 (3) C40···H48xiii 3.236

C7···H42ii 3.316 C41···H22xiii 3.494

C7···H43ii 3.124 C41···H37xvi 2.972

(12)

C8···H16iii 3.261 C41···H44xiii 3.251

C9···H1i 3.24 (3) C41···H47xiii 3.590

C9···H2v 3.13 (3) C41···H48xiii 3.576

C9···H3v 3.447 C42···H22xiii 3.595

C9···H15iii 3.179 C42···H27xiv 3.271

C9···H16iii 3.289 C42···H38xvi 3.514

C9···H31 3.294 C42···H44xiii 3.208

C10···H3v 2.984 C42···H45v 3.583

C10···H16iii 3.316

C11—N2—C14 126.2 (2) C14—C15—H14 107.9

C32—N4—C35 123.4 (3) C14—C15—H15 107.7

O1—C1—C2 116.0 (2) C16—C15—H14 107.8

O1—C1—C7 120.4 (2) C16—C15—H15 107.7

C2—C1—C7 123.6 (2) H14—C15—H15 109.5

N1—C2—C1 113.5 (2) C15—C16—H16 109.1

N1—C2—C3 120.3 (2) C15—C16—H17 109.0

C1—C2—C3 126.2 (2) C17—C16—H16 109.0

C2—C3—C4 132.3 (2) C17—C16—H17 109.2

C3—C4—C5 130.9 (2) H16—C16—H17 109.5

C4—C5—C6 123.3 (2) C16—C17—H18 107.9

C4—C5—C8 118.2 (2) C16—C17—H19 108.1

C6—C5—C8 118.4 (2) C18—C17—H18 108.0

C5—C6—C7 130.7 (2) C18—C17—H19 108.0

C1—C7—C6 132.8 (2) H18—C17—H19 109.5

C5—C8—C9 120.6 (2) C17—C18—H20 108.5

C5—C8—C13 123.2 (2) C17—C18—H21 108.6

C9—C8—C13 116.2 (2) C19—C18—H20 108.4

C8—C9—C10 122.1 (2) C19—C18—H21 108.6

C9—C10—C11 120.9 (2) H20—C18—H21 109.5

N2—C11—C10 118.4 (2) C18—C19—H22 108.4

N2—C11—C12 123.7 (2) C18—C19—H23 108.6

C10—C11—C12 117.9 (2) C20—C19—H22 108.3

C11—C12—C13 120.3 (2) C20—C19—H23 108.6

C8—C13—C12 122.7 (2) H22—C19—H23 109.5

N2—C14—C15 107.8 (2) C19—C20—H24 108.2

C14—C15—C16 116.1 (2) C19—C20—H25 108.6

C15—C16—C17 111.0 (2) C21—C20—H24 108.2

C16—C17—C18 115.3 (2) C21—C20—H25 108.5

C17—C18—C19 113.3 (2) H24—C20—H25 109.5

C18—C19—C20 113.4 (2) C20—C21—H26 109.3

C19—C20—C21 113.8 (3) C20—C21—H27 109.7

O2—C22—C23 117.0 (2) C20—C21—H28 109.4

O2—C22—C28 120.0 (2) H26—C21—H27 109.5

C23—C22—C28 123.0 (2) H26—C21—H28 109.5

N3—C23—C22 112.9 (2) H27—C21—H28 109.5

N3—C23—C24 120.4 (2) C23—C24—H31 113.8

(13)

supporting information

sup-10 Acta Cryst. (2005). E61, o2750–o2752

C23—C24—C25 132.3 (2) C24—C25—H32 114.7

C24—C25—C26 130.6 (2) C26—C25—H32 114.7

C25—C26—C27 123.6 (2) C26—C27—H33 114.3

C25—C26—C29 118.0 (2) C28—C27—H33 114.3

C27—C26—C29 118.4 (2) C22—C28—H34 113.8

C26—C27—C28 131.4 (2) C27—C28—H34 113.8

C22—C28—C27 132.4 (2) C29—C30—H35 119.1

C26—C29—C30 121.7 (2) C31—C30—H35 119.2

C26—C29—C34 121.7 (3) C30—C31—H36 119.5

C30—C29—C34 116.6 (2) C32—C31—H36 119.5

C29—C30—C31 121.6 (2) C32—C33—H37 119.7

C30—C31—C32 121.0 (3) C34—C33—H37 119.7

N4—C32—C31 119.0 (3) C29—C34—H38 118.9

N4—C32—C33 123.0 (2) C33—C34—H38 119.0

C31—C32—C33 118.0 (2) N4—C35—H40 109.5

C32—C33—C34 120.7 (2) N4—C35—H41 109.4

C29—C34—C33 122.1 (3) C36—C35—H40 109.5

N4—C35—C36 109.6 (2) C36—C35—H41 109.4

C35—C36—C37 116.0 (3) H40—C35—H41 109.5

C36—C37—C38 112.1 (2) C35—C36—H42 107.8

C37—C38—C39 114.8 (3) C35—C36—H43 107.8

C38—C39—C40 113.0 (2) C37—C36—H42 107.9

C39—C40—C41 114.4 (3) C37—C36—H43 107.8

C40—C41—C42 114.1 (3) H42—C36—H43 109.5

C2—N1—H1 115.8 (18) C36—C37—H44 108.8

C2—N1—H2 120 (2) C36—C37—H45 108.8

H1—N1—H2 121 (3) C38—C37—H44 108.8

C11—N2—H11 116.4 (15) C38—C37—H45 108.8

C14—N2—H11 117.4 (15) H44—C37—H45 109.5

C23—N3—H29 113.2 (18) C37—C38—H46 108.1

C23—N3—H30 125 (2) C37—C38—H47 108.1

H29—N3—H30 118 (2) C39—C38—H46 108.1

C32—N4—H39 108.6 (17) C39—C38—H47 108.1

C35—N4—H39 122.6 (16) H46—C38—H47 109.5

C2—C3—H3 113.8 C38—C39—H48 108.6

C4—C3—H3 113.9 C38—C39—H49 108.6

C3—C4—H4 114.5 C40—C39—H48 108.6

C5—C4—H4 114.6 C40—C39—H49 108.6

C5—C6—H5 114.7 H48—C39—H49 109.5

C7—C6—H5 114.6 C39—C40—H50 108.2

C1—C7—H6 113.6 C39—C40—H51 108.2

C6—C7—H6 113.6 C41—C40—H50 108.2

C8—C9—H7 119.0 C41—C40—H51 108.3

C10—C9—H7 118.9 H50—C40—H51 109.5

C9—C10—H8 119.6 C40—C41—H52 108.4

C11—C10—H8 119.5 C40—C41—H53 108.3

C11—C12—H9 119.8 C42—C41—H52 108.4

(14)

C8—C13—H10 118.7 H52—C41—H53 109.5

C12—C13—H10 118.6 C41—C42—H54 109.4

N2—C14—H12 109.9 C41—C42—H55 109.6

N2—C14—H13 109.9 C41—C42—H56 109.5

C15—C14—H12 110.0 H54—C42—H55 109.5

C15—C14—H13 109.8 H54—C42—H56 109.5

H12—C14—H13 109.5 H55—C42—H56 109.5

C11—N2—C14—C15 −172.2 (2) C16—C17—C18—C19 −179.2 (2) C14—N2—C11—C10 175.9 (2) C17—C18—C19—C20 −177.0 (2) C14—N2—C11—C12 −2.0 (4) C18—C19—C20—C21 −179.7 (2) C32—N4—C35—C36 −169.9 (2) O2—C22—C23—N3 1.7 (4) C35—N4—C32—C31 165.8 (2) O2—C22—C23—C24 178.3 (3) C35—N4—C32—C33 −15.7 (3) O2—C22—C28—C27 −179.9 (2) O1—C1—C2—N1 −1.6 (4) C23—C22—C28—C27 0.3 (5) O1—C1—C2—C3 178.6 (3) C28—C22—C23—N3 −178.5 (3) O1—C1—C7—C6 178.4 (3) C28—C22—C23—C24 −1.9 (5) C2—C1—C7—C6 0.5 (5) N3—C23—C24—C25 177.8 (3) C7—C1—C2—N1 176.4 (3) C22—C23—C24—C25 1.4 (6) C7—C1—C2—C3 −3.4 (5) C23—C24—C25—C26 0.2 (5) N1—C2—C3—C4 −176.8 (3) C24—C25—C26—C27 −0.1 (4) C1—C2—C3—C4 2.9 (6) C24—C25—C26—C29 178.2 (3) C2—C3—C4—C5 0.9 (6) C25—C26—C27—C28 −1.4 (5) C3—C4—C5—C6 −2.6 (5) C25—C26—C29—C30 −36.6 (4) C3—C4—C5—C8 179.1 (3) C25—C26—C29—C34 141.8 (2) C4—C5—C6—C7 0.4 (5) C27—C26—C29—C30 141.8 (2) C4—C5—C8—C9 34.2 (4) C27—C26—C29—C34 −39.8 (4) C4—C5—C8—C13 −144.6 (2) C29—C26—C27—C28 −179.8 (3) C6—C5—C8—C9 −144.2 (3) C26—C27—C28—C22 1.7 (6) C6—C5—C8—C13 37.0 (4) C26—C29—C30—C31 179.7 (2) C8—C5—C6—C7 178.7 (3) C26—C29—C34—C33 −178.5 (2) C5—C6—C7—C1 1.4 (6) C30—C29—C34—C33 −0.0 (3) C5—C8—C9—C10 −179.6 (2) C34—C29—C30—C31 1.2 (3) C5—C8—C13—C12 179.0 (2) C29—C30—C31—C32 −2.2 (3) C9—C8—C13—C12 0.1 (3) C30—C31—C32—N4 −179.5 (2) C13—C8—C9—C10 −0.7 (4) C30—C31—C32—C33 1.9 (3) C8—C9—C10—C11 0.8 (4) N4—C32—C33—C34 −179.2 (2) C9—C10—C11—N2 −178.1 (2) C31—C32—C33—C34 −0.7 (3) C9—C10—C11—C12 −0.1 (3) C32—C33—C34—C29 −0.2 (4) N2—C11—C12—C13 177.4 (2) N4—C35—C36—C37 −174.9 (2) C10—C11—C12—C13 −0.5 (4) C35—C36—C37—C38 −177.3 (2) C11—C12—C13—C8 0.5 (4) C36—C37—C38—C39 −179.0 (2) N2—C14—C15—C16 179.9 (2) C37—C38—C39—C40 −178.1 (2) C14—C15—C16—C17 171.3 (2) C38—C39—C40—C41 179.2 (2) C15—C16—C17—C18 178.8 (2) C39—C40—C41—C42 178.3 (2)

(15)

supporting information

sup-12 Acta Cryst. (2005). E61, o2750–o2752

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···O1 0.89 (3) 2.13 (2) 2.570 (2) 109 (2) N2—H11···O2v 0.93 (3) 2.07 (3) 2.993 (3) 168 (2) N3—H29···O2 0.87 (3) 2.11 (2) 2.579 (3) 113 (2) N3—H30···O1i 0.97 (3) 1.90 (3) 2.845 (3) 165 (3) N4—H39···O1vii 0.98 (3) 2.02 (3) 2.993 (4) 170 (2)

Figure

Figure 1
Figure 2The �–� interaction of molecule (Ia). [Symmetry code: (i) �1 � x, �y, 2 � z.]
Table 1Selected geometric parameters (A˚ , �).

References

Related documents

When normalizing on the total abundance of Firmicutes in the samples, 19 pathways remained differential (including 3-phenylpropanoate degradation, sulfite reduction,.. FIGURE 2

Comments This can be a real eye-opener to learn what team members believe are requirements to succeed on your team. Teams often incorporate things into their “perfect team

18 th Sunday in Ordinary Time Saint Rose of Lima Parish Parroquia Santa Rosa de Lima.. August

The supplementation of succinic acid and salicylic acid under optimum concentrations resulted to the maximal lutein content of 7.01 mg/g and productivity 5.11 mg/ L/d while

In the previous sections, we dis- cuss the expectation that a neural network exploiting the fractional convolution should perform slightly worse than a pure binary (1-bit weights

• Our goal is to make Pittsburgh Public Schools First Choice by offering a portfolio of quality school options that promote high student achievement in the most equitable and

Reporting to Management is based on two global operating segments, Sales Regions and Production Units, as well as three smaller operating segments: Wound and Skin Care, Porgès