• No results found

R22(14) dimers in 3 (hydroxyethyl)amino 1 phenyl­but 2 en 1 one

N/A
N/A
Protected

Academic year: 2020

Share "R22(14) dimers in 3 (hydroxyethyl)amino 1 phenyl­but 2 en 1 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o2005–o2007 doi:10.1107/S1600536805017290 Yao-Cheng Shi C

12H15NO2

o2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

R

2 2

(14) dimers in

3-(hydroxyethyl)amino-1-phenylbut-2-en-1-one

Yao-Cheng Shi

School of Chemistry, Yangzhou University, 130 XiMenWai Street, Yangzhou 225002, People’s Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.071

wRfactor = 0.220

Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

The title compound, C6H5COCH C(NHCH2CH2OH)CH3

or C12H15NO2, has been synthesized by the reaction of

benzoylacetone and ethanolamine in ethanol. In the crystal-line state, molecules are linked by intermolecular hydrogen

bonds (O—H O C) to form centrosymmetric R2

2

(14) dimers.

Comment

The title compound, (I), has been synthesized as part of an ongoing investigation of the chemistry of enaminones (Shi, 2005a,b,c) and its crystal structure has been determined (Fig. 1). An organometallic analog of (I), hereafter (II), has already been studied (Shiet al., 2005). The bond lengths and angles of the O C—C C—N system in (I) are similar to the corresponding values in (II) (Table 1). For the molecules of (I) and (II), the bond lengths in the O C—C C—N system indicate electron delocalization (Shi, Yang, Shenet al., 2004; Shi, Yang, Song & Liu, 2004; Gilliet al., 2000; Gilchrist, 1997). The dihedral angle between the O C—C C—N system and the aromatic ring in (I) is 8.3 (2); the value in (II) is 14.8 (2). Therefore, the above dihedral angles suggest that the benzene ring in (I) and the substituted cyclopentadienyl ring in (II) are

not involved in the conjugation of the O C—C C—N

system; this is in agreement with the fact that the bonds linking the O C—C C—N system and the aromatic ring in (I) and (II) are typical single bonds.

As in (II), the strong intramolecular hydrogen bond involving the enamine N and carbonyl O atom in (I) stabilizes

the enaminone, whereas intermolecular O—H O C

hydrogen bonds form centrosymmetricR2

2(14) dimers

(Bern-steinet al., 1995; Table 2 and Fig. 2). Interestingly, non-classical C—H O C hydrogen bonds are present in the crystalline state of (I), whereas the corresponding intermolecular hydrogen bonds in (II) are not observed.

Experimental

The title compound was synthesized by refluxing a solution of benzoylacetone and ethanolamine (1:1) in ethanol for 4 h. It was

(2)

recrystallized from CH2Cl2–petroleum ether as colorless crystals

(m.p. 359–361 K). IR (KBr): 3332 (br, s, NH, OH), 1602 (vs, C O), 1532 (vs, C C) cm1.H NMR (600 MHz, CDCl3):11.498 (1H,s,

NH), 7.838, 7.395 (2H,m, 3 H,m, C6H5), 5.663 (1H,s, CH), 3.814 (2H,

t,3J= 5.4 Hz, OCH2), 3.492 (2H,t, 3

J= 5.4 Hz, NCH2), 2.881 (br, 1H,

OH), 2.032 (3H,s, CH3).

Crystal data

C12H15NO2

Mr= 205.25 Monoclinic,P21=n

a= 5.6330 (11) A˚

b= 25.961 (5) A˚

c= 7.9770 (16) A˚

= 102.26 (3)

V= 1139.9 (4) A˚3

Z= 4

Dx= 1.196 Mg m

3 MoKradiation Cell parameters from 25

reflections

= 10–13

= 0.08 mm1

T= 293 K Block, Colorless 0.40.30.2 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

!/2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.955,Tmax= 0.976 2449 measured reflections 2224 independent reflections 1044 reflections withI> 2(I)

Rint= 0.050

max= 26.0

h= 0!6

k= 0!31

l=9!9 3 standard reflections

every 200 reflections intensity decay: none

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.071

wR(F2) = 0.220

S= 0.97 2224 reflections 137 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.08P)2 + 0.8P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.32 e A˚

3

min=0.20 e A˚

3

Extinction correction:SHELXL97

Extinction coefficient: 0.065 (8)

Table 1

Selected geometric parameters (A˚ ,).

N—C2 1.449 (4) N—C4 1.318 (4) O1—C1 1.426 (4) O2—C6 1.254 (4) C1—C2 1.490 (5)

C3—C4 1.512 (4) C4—C5 1.386 (5) C5—C6 1.414 (4) C6—C7 1.496 (5)

C2—N—C4 127.0 (3) O1—C1—C2 109.5 (3) N—C2—C1 109.3 (3) N—C4—C3 118.2 (3) N—C4—C5 121.7 (3)

C3—C4—C5 120.0 (3) C4—C5—C6 124.2 (3) O2—C6—C5 122.2 (3) O2—C6—C7 118.2 (3) C5—C6—C7 119.6 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N—Hn O2 0.86 1.98 2.658 (4) 135 O1—Ho O2i

0.82 1.93 2.747 (4) 179 C3—H3b O2ii

0.96 2.54 3.443 (5) 158

Symmetry codes: (i)xþ2;y;zþ1; (ii)x1;y;z.

All H atoms were located in difference maps and subsequently treated as riding atoms, with C—H = 0.93 (olefinic and aromatic), 0.96 (methyl) or 0.97 A˚ (methylene), N—H = 0.86 A˚ and O—H = 0.82 A˚.

Uiso(H) values were set at 1.2Ueq(C,N), 1.5Ueq(Cmethyl) or 1.5Ueq(O).

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97

(Sheldrick, 1997); program(s) used to refine structure:SHELXL97

(Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows

(Farrugia, 1997); software used to prepare material for publication:

PLATON(Spek, 2003).

The author thanks Yangzhou University for financial support.

organic papers

o2006

Yao-Cheng Shi C

[image:2.610.316.566.68.273.2]

12H15NO2 Acta Cryst.(2005). E61, o2005–o2007

Figure 1

[image:2.610.313.566.328.597.2]

The molecular structure of (I). Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2

(3)

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Nether-lands.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed. London: Addison Wesley Longman Limited.

Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000).J. Am. Chem. Soc.122, 10405–10412.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351–

359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Shi, Y.-C. (2005a).Acta Cryst.E61, m811–m812. Shi, Y.-C. (2005b).Acta Cryst.E61, m873–m874. Shi, Y.-C. (2005c).Acta Cryst.E61, o1130–o1132.

Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004).

Polyhedron,23, 15–21.

Shi, Y.-C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004).Polyhedron,23, 1541– 1546.

Shi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005).J. Coord. Chem.58, 363– 371.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

organic papers

Acta Cryst.(2005). E61, o2005–o2007 Yao-Cheng Shi C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o2005–o2007

supporting information

Acta Cryst. (2005). E61, o2005–o2007 [https://doi.org/10.1107/S1600536805017290]

R

22

(14) dimers in 3-(hydroxyethyl)amino-1-phenylbut-2-en-1-one

Yao-Cheng Shi

3-(Hydroxyethylamino)-1-phenylbut-2-en-1-one

Crystal data

C12H15NO2

Mr = 205.25

Monoclinic, P21/n Hall symbol: -P 2yn

a = 5.6330 (11) Å

b = 25.961 (5) Å

c = 7.9770 (16) Å

β = 102.26 (3)°

V = 1139.9 (4) Å3

Z = 4

F(000) = 440

Dx = 1.196 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 25 reflections

θ = 10–13°

µ = 0.08 mm−1

T = 293 K

Block, colorless 0.4 × 0.3 × 0.2 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/2θ scans

Absorption correction: ψ scan

(North et al., 1968)

Tmin = 0.955, Tmax = 0.976 2449 measured reflections

2224 independent reflections 1044 reflections with I > 2σ(I)

Rint = 0.050

θmax = 26.0°, θmin = 1.6°

h = 0→6

k = 0→31

l = −9→9

3 standard reflections every 200 reflections intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.071

wR(F2) = 0.220

S = 0.97

2224 reflections 137 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.08P)2 + 0.8P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.32 e Å−3 Δρmin = −0.20 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o2005–o2007

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of

reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors

based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 1.0052 (4) −0.01119 (10) 0.7678 (3) 0.0753 (9)

Ho 1.0553 −0.0344 0.7150 0.113*

O2 0.8199 (4) 0.08835 (10) 0.4083 (3) 0.0713 (8)

N 0.6354 (5) 0.06123 (12) 0.6757 (3) 0.0616 (9)

Hn 0.7361 0.0550 0.6109 0.074*

C1 0.7635 (7) −0.02264 (16) 0.7842 (5) 0.0720 (11)

H1a 0.7676 −0.0465 0.8784 0.086*

H1b 0.6750 −0.0388 0.6798 0.086*

C2 0.6388 (7) 0.02580 (15) 0.8167 (5) 0.0675 (11)

H2a 0.4739 0.0182 0.8270 0.081*

H2b 0.7239 0.0413 0.9232 0.081*

C3 0.3060 (7) 0.11262 (17) 0.7411 (5) 0.0793 (13)

H3a 0.3168 0.0869 0.8290 0.119*

H3b 0.1470 0.1117 0.6680 0.119*

H3c 0.3344 0.1460 0.7931 0.119*

C4 0.4946 (6) 0.10189 (15) 0.6362 (4) 0.0582 (9)

C5 0.5131 (6) 0.13388 (14) 0.5004 (5) 0.0620 (10)

H5 0.4147 0.1630 0.4821 0.074*

C6 0.6720 (6) 0.12509 (14) 0.3879 (4) 0.0555 (9)

C7 0.6630 (6) 0.15994 (14) 0.2374 (4) 0.0574 (9)

C8 0.4894 (8) 0.19711 (18) 0.1884 (6) 0.0915 (14)

H8 0.3719 0.2017 0.2532 0.110*

C9 0.4824 (10) 0.2278 (2) 0.0470 (7) 0.1073 (17)

H9 0.3641 0.2532 0.0199 0.129*

C10 0.6466 (10) 0.2214 (2) −0.0533 (7) 0.0989 (16)

H10 0.6392 0.2414 −0.1510 0.119*

C11 0.8222 (9) 0.1850 (2) −0.0079 (7) 0.1088 (18)

H11 0.9380 0.1809 −0.0744 0.131*

C12 0.8329 (7) 0.15384 (17) 0.1353 (6) 0.0819 (13)

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o2005–o2007

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0596 (15) 0.0871 (19) 0.0840 (19) 0.0027 (14) 0.0257 (13) −0.0078 (15)

O2 0.0566 (15) 0.0903 (19) 0.0739 (17) 0.0182 (15) 0.0296 (12) 0.0108 (14)

N 0.0498 (17) 0.083 (2) 0.0566 (18) 0.0056 (16) 0.0218 (14) 0.0040 (16)

C1 0.066 (2) 0.088 (3) 0.066 (2) −0.008 (2) 0.0216 (19) 0.009 (2)

C2 0.056 (2) 0.090 (3) 0.060 (2) 0.003 (2) 0.0208 (18) 0.007 (2)

C3 0.068 (3) 0.104 (3) 0.075 (3) 0.013 (2) 0.037 (2) −0.005 (2)

C4 0.0433 (19) 0.074 (2) 0.060 (2) 0.0006 (18) 0.0177 (16) −0.0075 (19)

C5 0.058 (2) 0.067 (2) 0.065 (2) 0.0073 (18) 0.0236 (18) −0.0034 (19)

C6 0.0419 (18) 0.066 (2) 0.060 (2) 0.0010 (18) 0.0142 (15) −0.0053 (18)

C7 0.050 (2) 0.065 (2) 0.059 (2) −0.0053 (18) 0.0148 (17) −0.0045 (18)

C8 0.095 (3) 0.098 (3) 0.091 (3) 0.034 (3) 0.043 (3) 0.020 (3)

C9 0.118 (4) 0.100 (4) 0.107 (4) 0.028 (3) 0.032 (3) 0.035 (3)

C10 0.096 (4) 0.099 (4) 0.102 (4) −0.020 (3) 0.023 (3) 0.036 (3)

C11 0.094 (4) 0.138 (5) 0.109 (4) −0.012 (4) 0.054 (3) 0.036 (4)

C12 0.065 (3) 0.093 (3) 0.097 (3) 0.005 (2) 0.038 (2) 0.017 (3)

Geometric parameters (Å, º)

N—C2 1.449 (4) C4—C5 1.386 (5)

N—C4 1.318 (4) C5—C6 1.414 (4)

N—Hn 0.8600 C5—H5 0.9300

O1—C1 1.426 (4) C6—C7 1.496 (5)

O1—Ho 0.8200 C7—C8 1.370 (5)

O2—C6 1.254 (4) C7—C12 1.391 (5)

C1—C2 1.490 (5) C8—C9 1.375 (6)

C1—H1a 0.9700 C8—H8 0.9300

C1—H1b 0.9700 C9—C10 1.355 (7)

C2—H2a 0.9700 C9—H9 0.9300

C2—H2b 0.9700 C10—C11 1.360 (6)

C3—C4 1.512 (4) C10—H10 0.9300

C3—H3a 0.9600 C11—C12 1.391 (6)

C3—H3b 0.9600 C11—H11 0.9300

C3—H3c 0.9600 C12—H12 0.9300

C1—O1—Ho 109.5 C4—C5—C6 124.2 (3)

C2—N—C4 127.0 (3) C4—C5—H5 117.9

C2—N—Hn 116.5 C6—C5—H5 117.9

C4—N—Hn 116.5 O2—C6—C5 122.2 (3)

O1—C1—C2 109.5 (3) O2—C6—C7 118.2 (3)

O1—C1—H1a 109.8 C5—C6—C7 119.6 (3)

C2—C1—H1a 109.8 C8—C7—C12 116.8 (4)

O1—C1—H1b 109.8 C8—C7—C6 123.7 (3)

C2—C1—H1b 109.8 C12—C7—C6 119.4 (3)

H1a—C1—H1b 108.2 C7—C8—C9 122.4 (4)

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o2005–o2007

N—C2—H2a 109.8 C9—C8—H8 118.8

C1—C2—H2a 109.8 C10—C9—C8 120.5 (5)

N—C2—H2b 109.8 C10—C9—H9 119.7

C1—C2—H2b 109.8 C8—C9—H9 119.7

H2a—C2—H2b 108.3 C9—C10—C11 118.5 (4)

N—C4—C3 118.2 (3) C9—C10—H10 120.7

N—C4—C5 121.7 (3) C11—C10—H10 120.7

C3—C4—C5 120.0 (3) C10—C11—C12 121.7 (4)

C4—C3—H3a 109.5 C10—C11—H11 119.2

C4—C3—H3b 109.5 C12—C11—H11 119.2

H3a—C3—H3b 109.5 C11—C12—C7 120.0 (4)

C4—C3—H3c 109.5 C11—C12—H12 120.0

H3a—C3—H3c 109.5 C7—C12—H12 120.0

H3b—C3—H3c 109.5

C4—N—C2—C1 162.3 (3) O2—C6—C7—C12 −6.3 (5)

O1—C1—C2—N 59.0 (4) C5—C6—C7—C12 174.7 (3)

C2—N—C4—C5 178.1 (3) C12—C7—C8—C9 −0.9 (7)

C2—N—C4—C3 −3.1 (5) C6—C7—C8—C9 −178.5 (4)

N—C4—C5—C6 3.2 (6) C7—C8—C9—C10 1.7 (8)

C3—C4—C5—C6 −175.6 (3) C8—C9—C10—C11 −2.0 (8)

C4—C5—C6—O2 −3.8 (6) C9—C10—C11—C12 1.6 (8)

C4—C5—C6—C7 175.2 (3) C10—C11—C12—C7 −0.8 (8)

O2—C6—C7—C8 171.2 (4) C8—C7—C12—C11 0.5 (6)

C5—C6—C7—C8 −7.9 (5) C6—C7—C12—C11 178.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N—Hn···O1 0.86 2.45 2.786 (4) 104

N—Hn···O2 0.86 1.98 2.658 (4) 135

O1—Ho···O2i 0.82 1.93 2.747 (4) 179

C3—H3b···O2ii 0.96 2.54 3.443 (5) 158

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical