• No results found

(E) 3 Iso­propyl 5,5 di­methyl 2 (phenyl­imino)imidazolidin 4 one

N/A
N/A
Protected

Academic year: 2020

Share "(E) 3 Iso­propyl 5,5 di­methyl 2 (phenyl­imino)imidazolidin 4 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2640

Yuanet al. C

14H19N3O doi:10.1107/S1600536805022749 Acta Cryst.(2005). E61, o2640–o2641

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

(

E

)-3-Isopropyl-5,5-dimethyl-2-(phenylimino)-imidazolidin-4-one

Ju-Zhen Yuan, Yang-Gen Hu, Jia-Jia Wei and Ming-Wu Ding*

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China

Correspondence e-mail: ding5229@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 292 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.039

wRfactor = 0.103 Data-to-parameter ratio = 9.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, C14H19N3O, intermolecular N—H O

hydrogen bonds form an infinite chain along the a axis. Electron delocalizition affects the C—N bonds.

Comment

Derivatives of imidazolones have shown biological and phar-maceutical activities (Sulkowski et al., 1997). Some exhibit good antibacterial and antifungal activities (Trivedi et al., 2002). The title compound, (I), may be used as a new precursor for obtaining bioactive molecules. The crystal structure of (I) is presented here.

Atoms N1, C7, N2, and N3 are coplanar (Fig. 1), the maximum deviation being 0.0001 A˚ for atom N3. The dihedral angle between this plane and the phenyl ring is 45(s.u.). The

C7—N1, C7—N2 and C7—N3 bond lengths are 1.276 (3), 1.356 (2) and 1.412 (3) A˚ , respectively, indicating a degree of electron delocalizition (Yanget al., 1999). The N3—C7—N1— C6 torsion angle of177.7 (2)indicates anEconfiguration of

the moleule about the C7 N1 bond.

The intermolecular interaction N2—H2A O1 (H A = 2.25 A˚ , N O = 2.951 (2) A˚ and N2—H2A O1 = 139)

forms a hydrogen-bond chain (Fig. 2).

Experimental

A solution of phenyl isocyanate in dry dichloromethane (10 ml) was added to a solution of iminophosphane (3 mmol) in dichloromethane (10 ml). The resulting solution was stirred for 1.5 h at 258 K. The resoluted mixture was then purified by column chromatography on silica gel, with petroleum ether/diethyl ether (25:1v/v) as eluent to afford the intermediate carbodiimide, which was reacted with isopropylimide to give (I) in 56% yield.1H NMR (CDCl

3, 400 MHz): 6.96–7.35 (m, 5H, Ph-H), 4.55–4.58 (m, 2H, N—H, C12-H), 1.49– 1.53 (d, 6H, C13-H, C14-H), 1.36 (s, 6H, CH3); m.p. 442 K. MS (EI 70 eV) m/z(%): 159/158 (26/22), 118/117 (24/23), 77 (11), 42/41 (100/ 47). Crystals suitable for single-crystal X-ray diffraction were grown from petroleum ether at 273 K.

(2)

Crystal data

C14H19N3O Mr= 245.32

Orthorhombic,P212121 a= 10.2783 (11) A˚

b= 11.4013 (11) A˚

c= 11.5930 (12) A˚

V= 1358.5 (2) A˚3 Z= 4

Dx= 1.199 Mg m

3

MoKradiation Cell parameters from 2657

reflections = 2.5–22.9

= 0.08 mm1 T= 292 (2) K Block, colorless 0.300.300.20 mm

Data collection

Siemens SMART CCD area-detector diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1997)

Tmin= 0.977,Tmax= 0.985

7376 measured reflections

1539 independent reflections 1406 reflections withI> 2(I)

Rint= 0.029

max= 26.0

h=12!12

k=14!9

l=12!14

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.039 wR(F2) = 0.103 S= 1.09 1539 reflections 167 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.065P)2

+ 0.0483P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.18 e A˚ 3

min=0.18 e A˚ 3

H atoms were placed in calculated positions and treated as riding atoms (C—H = 0.93–0.98 A˚ ), withUisovalues set at 1.2 (CH) or 1.5 (CH3) timesUeqof the parent atom. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection:SMART(Siemens, 1995); cell refinement:SAINT (Siemens, 1995); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT(Siemens, 1995); software used to prepare material for publication:SHELXTL-NT.

The authors gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (project No. 20102001).

References

Sheldrick, G. M. (1990).Acta Cryst.A46, 467–473.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Siemens (1995).SMART(Version 5.0),SAINT(Version 5.0) and

SHELXTL-NT(Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sulkowski, T. S., Strike, D. P. & Elockdah, H. M. (1997).Chem. Abstr.126, 195251h; US Patent No. 5 599 829.

Trivedi, S. D., Kubawat, H. T., Parekh, H. H. (2002).J. Indian Chem. Soc.79, 282.

[image:2.610.67.556.67.287.2] [image:2.610.304.563.71.264.2]

Yang, G. F., Liu, H. Y., Yang, X. F., Yang, H. Z. (1999).Sci. China Ser. B,42, 656–662.

Figure 2

Hydrogen-bonding interactions forming a chain. Figure 1

[image:2.610.46.294.73.292.2]
(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o2640–o2641

supporting information

Acta Cryst. (2005). E61, o2640–o2641 [https://doi.org/10.1107/S1600536805022749]

(

E

)-3-Isopropyl-5,5-dimethyl-2-(phenylimino)imidazolidin-4-one

Ju-Zhen Yuan, Yang-Gen Hu, Jia-Jia Wei and Ming-Wu Ding

(E)-3-Isopropyl-5,5-dimethyl-2-(phenylimino)imidazolidin-4-one

Crystal data C14H19N3O

Mr = 245.32

Orthorhombic, P212121

a = 10.2783 (11) Å b = 11.4013 (11) Å c = 11.5930 (12) Å V = 1358.5 (2) Å3

Z = 4 F(000) = 528

Dx = 1.199 Mg m−3

Melting point: 442 K

Mo radiation, λ = 0.71073 Å Cell parameters from 2657 reflections θ = 2.5–22.9°

µ = 0.08 mm−1

T = 292 K Block, colorless 0.30 × 0.30 × 0.20 mm

Data collection

Siemens SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1997) Tmin = 0.977, Tmax = 0.985

7376 measured reflections 1539 independent reflections 1406 reflections with I > 2σ(I) Rint = 0.029

θmax = 26.0°, θmin = 2.5°

h = −12→12 k = −14→9 l = −12→14

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.039

wR(F2) = 0.103

S = 1.09 1539 reflections 167 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.065P)2 + 0.0483P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.18 e Å−3

Δρmin = −0.18 e Å−3

Absolute structure: Flack (1983), 0000 Friedel pairs

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.6646 (2) 0.5652 (2) −0.0969 (2) 0.0547 (6)

H1 0.6030 0.5266 −0.1417 0.066*

C2 0.7795 (3) 0.6032 (2) −0.1469 (2) 0.0636 (7)

H2 0.7945 0.5895 −0.2248 0.076*

C3 0.8714 (3) 0.6608 (2) −0.0822 (3) 0.0664 (7)

H3 0.9483 0.6862 −0.1162 0.080*

C4 0.8492 (3) 0.6807 (2) 0.0325 (3) 0.0670 (7)

H4 0.9114 0.7196 0.0765 0.080*

C5 0.7347 (2) 0.6432 (2) 0.0833 (2) 0.0549 (6)

H5 0.7203 0.6575 0.1613 0.066*

C6 0.6407 (2) 0.58434 (16) 0.0191 (2) 0.0449 (5) C7 0.46911 (19) 0.45581 (17) 0.06060 (16) 0.0375 (4) C8 0.42016 (19) 0.25966 (17) 0.02323 (17) 0.0390 (5) C9 0.4882 (2) 0.1711 (2) 0.1020 (2) 0.0551 (6)

H9A 0.5604 0.1367 0.0619 0.083*

H9B 0.4278 0.1107 0.1236 0.083*

H9C 0.5190 0.2103 0.1700 0.083*

C10 0.3696 (2) 0.2014 (2) −0.08570 (19) 0.0533 (6)

H10A 0.3198 0.2570 −0.1295 0.080*

H10B 0.3154 0.1360 −0.0653 0.080*

H10C 0.4417 0.1743 −0.1312 0.080*

C11 0.31129 (19) 0.31808 (17) 0.09114 (17) 0.0382 (4) C12 0.2797 (2) 0.51475 (18) 0.18787 (17) 0.0418 (5)

H12 0.3387 0.5811 0.2001 0.050*

C13 0.2513 (3) 0.4632 (2) 0.3049 (2) 0.0666 (8)

H13A 0.1861 0.4035 0.2976 0.100*

H13B 0.2204 0.5238 0.3554 0.100*

H13C 0.3294 0.4296 0.3361 0.100*

C14 0.1602 (3) 0.5625 (2) 0.1286 (2) 0.0643 (7)

H14A 0.1841 0.5941 0.0548 0.096*

H14B 0.1225 0.6233 0.1751 0.096*

H14C 0.0981 0.5005 0.1180 0.096*

N2 0.50252 (17) 0.35963 (13) −0.00149 (16) 0.0452 (4)

H2A 0.5656 0.3582 −0.0502 0.054*

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o2640–o2641

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0566 (14) 0.0509 (13) 0.0566 (13) −0.0034 (11) −0.0014 (11) 0.0101 (11) C2 0.0651 (16) 0.0570 (15) 0.0687 (15) 0.0030 (13) 0.0122 (14) 0.0165 (12) C3 0.0507 (13) 0.0488 (14) 0.100 (2) 0.0003 (12) 0.0198 (14) 0.0159 (14) C4 0.0477 (13) 0.0514 (14) 0.102 (2) −0.0093 (12) −0.0016 (14) −0.0049 (14) C5 0.0521 (13) 0.0440 (12) 0.0687 (14) −0.0056 (11) 0.0004 (11) −0.0083 (11) C6 0.0431 (11) 0.0290 (9) 0.0625 (13) 0.0007 (9) 0.0021 (10) 0.0040 (9) C7 0.0347 (10) 0.0370 (10) 0.0409 (10) 0.0005 (8) −0.0037 (8) −0.0003 (8) C8 0.0394 (10) 0.0314 (9) 0.0464 (11) −0.0003 (8) 0.0000 (9) −0.0023 (9) C9 0.0542 (13) 0.0475 (12) 0.0636 (14) 0.0093 (11) −0.0025 (11) 0.0059 (11) C10 0.0591 (14) 0.0493 (12) 0.0516 (12) 0.0006 (11) 0.0002 (11) −0.0117 (10) C11 0.0378 (10) 0.0360 (9) 0.0409 (10) −0.0014 (8) −0.0046 (8) −0.0024 (8) C12 0.0425 (11) 0.0377 (11) 0.0450 (11) −0.0006 (9) 0.0008 (9) −0.0102 (8) C13 0.089 (2) 0.0617 (16) 0.0488 (13) 0.0107 (14) 0.0099 (14) −0.0049 (11) C14 0.0662 (16) 0.0585 (15) 0.0681 (15) 0.0208 (13) −0.0106 (13) −0.0139 (13) N2 0.0421 (9) 0.0375 (9) 0.0560 (10) −0.0008 (8) 0.0120 (8) −0.0060 (8) N3 0.0385 (9) 0.0350 (8) 0.0462 (9) −0.0024 (7) 0.0015 (8) −0.0057 (7) N1 0.0434 (10) 0.0365 (9) 0.0559 (10) −0.0036 (8) 0.0028 (8) −0.0037 (8) O1 0.0410 (8) 0.0456 (8) 0.0606 (9) −0.0090 (7) 0.0037 (7) −0.0084 (7)

Geometric parameters (Å, º)

C1—C2 1.384 (3) C9—H9A 0.9600

C1—C6 1.385 (3) C9—H9B 0.9600

C1—H1 0.9300 C9—H9C 0.9600

C2—C3 1.374 (4) C10—H10A 0.9600

C2—H2 0.9300 C10—H10B 0.9600

C3—C4 1.368 (4) C10—H10C 0.9600

C3—H3 0.9300 C11—O1 1.217 (2)

C4—C5 1.385 (4) C11—N3 1.358 (3)

C4—H4 0.9300 C12—N3 1.476 (2)

C5—C6 1.391 (3) C12—C13 1.506 (3)

C5—H5 0.9300 C12—C14 1.509 (3)

C6—N1 1.414 (3) C12—H12 0.9800

C7—N1 1.276 (3) C13—H13A 0.9600

C7—N2 1.356 (2) C13—H13B 0.9600

C7—N3 1.412 (3) C13—H13C 0.9600

C8—N2 1.448 (2) C14—H14A 0.9600

C8—C10 1.519 (3) C14—H14B 0.9600

C8—C11 1.522 (3) C14—H14C 0.9600

C8—C9 1.530 (3) N2—H2A 0.8600

C2—C1—C6 120.6 (2) C8—C10—H10B 109.5

C2—C1—H1 119.7 H10A—C10—H10B 109.5

C6—C1—H1 119.7 C8—C10—H10C 109.5

(6)

C3—C2—H2 119.7 H10B—C10—H10C 109.5

C1—C2—H2 119.7 O1—C11—N3 126.8 (2)

C4—C3—C2 119.7 (3) O1—C11—C8 125.70 (18)

C4—C3—H3 120.2 N3—C11—C8 107.51 (17)

C2—C3—H3 120.2 N3—C12—C13 110.95 (17)

C3—C4—C5 120.3 (3) N3—C12—C14 111.61 (17)

C3—C4—H4 119.9 C13—C12—C14 113.2 (2)

C5—C4—H4 119.9 N3—C12—H12 106.9

C4—C5—C6 120.8 (2) C13—C12—H12 106.9

C4—C5—H5 119.6 C14—C12—H12 106.9

C6—C5—H5 119.6 C12—C13—H13A 109.5

C1—C6—C5 118.2 (2) C12—C13—H13B 109.5 C1—C6—N1 124.4 (2) H13A—C13—H13B 109.5 C5—C6—N1 117.2 (2) C12—C13—H13C 109.5 N1—C7—N2 132.97 (19) H13A—C13—H13C 109.5 N1—C7—N3 120.49 (18) H13B—C13—H13C 109.5 N2—C7—N3 106.54 (16) C12—C14—H14A 109.5 N2—C8—C10 112.31 (17) C12—C14—H14B 109.5 N2—C8—C11 100.82 (15) H14A—C14—H14B 109.5 C10—C8—C11 111.72 (17) C12—C14—H14C 109.5 N2—C8—C9 111.73 (17) H14A—C14—H14C 109.5 C10—C8—C9 111.34 (17) H14B—C14—H14C 109.5 C11—C8—C9 108.41 (17) C7—N2—C8 112.54 (16)

C8—C9—H9A 109.5 C7—N2—H2A 123.7

C8—C9—H9B 109.5 C8—N2—H2A 123.7

H9A—C9—H9B 109.5 C11—N3—C7 111.18 (17)

C8—C9—H9C 109.5 C11—N3—C12 126.18 (17)

H9A—C9—H9C 109.5 C7—N3—C12 122.62 (16)

H9B—C9—H9C 109.5 C7—N1—C6 121.14 (18)

C8—C10—H10A 109.5

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o2640–o2641

Figure

Figure 2Hydrogen-bonding interactions forming a chain.

References

Related documents

Our key results also use separate estimates of counties’ effects on test scores for high- and low-income children, which are constructed by further restricting this sample average

However, since we decided to investigate only the gender non-specific pronouns, sentiment words, and occupations, so that the gen- erated sentences hardly incorporate any context

We hypothesize that the proposed models use anchor slots (slots in cur- rent utterance having slot distance 0 which are al- ways positive) and learn slot co-occurrence of can-

We report on the ongoing development of IDION, a web resource of richly documented multiword expressions (MWEs) of Modern Greek addressed to the human user and to

Where this was not available (e.g. in the English-Irish Dictionary, all expressions were un- der an English headword), the first word of the Irish entry was used.. As Irish is

Bounds Testing Approach to Analysing the Environment Kuznets Curve Hypothesis: The Role of Biomass Energy Consumption in the United States with Structural Breaks. Energy

We use large scale German and Czech mono- lingual NewsCrawl data to train a cross-lingual masked language model in order to bootstrap our unsupervised NMT model which itself is

Looking at the growth rate series, we observe significant negative trends in three countries: Chad, Equatorial Guinea and Mozambique, and evidence of mean reversion,