• No results found

1,1,2,2 Tetra­chloro 1,2 di­phenyl­ethane

N/A
N/A
Protected

Academic year: 2020

Share "1,1,2,2 Tetra­chloro 1,2 di­phenyl­ethane"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o678

Garcia-Sanchezet al. C

14H10Cl4 doi:10.1107/S1600536805004472 Acta Cryst.(2005). E61, o678–o680

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1,2,2-Tetrachloro-1,2-diphenylethane

Adriana Garcia-Sanchez,a Itzia I. Padilla-Martı´nez,a Francisco J. Martı´nez-Martı´nez,b Herbert Ho¨pflcand

Efre´n V. Garcı´a-Ba´eza*

aUnidad Profesional Interdisciplinaria de

Biotecnologı´a, Instituto Polite´cnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticoma´n, Me´xico, DF 07340, Mexico, b

Departamento de Quı´mica, Universidad Auto´noma de Colima, Mexico, andcCentro de Investigacio´nes Quı´micas, Universidad Auto´noma del Estado de Morelos, Cuernava Morelos, Mexico

Correspondence e-mail: vgarcia@acei.upibi.ipn.mx

Key indicators

Single-crystal X-ray study

T= 100 K

Mean(C–C) = 0.02 A˚

Rfactor = 0.026

wRfactor = 0.067

Data-to-parameter ratio = 17.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C14H10Cl4, possesses Ci symmetry and crystallizes with one half-molecule in the asymmetric unit. The two phenyl rings are antiperiplanar and inclined to one another by 180by symmetry. The central C—C bond distance

and the Cl—C—Cl bond angle [1.5887 (18) A˚ and 106.02 (7),

respectively] are significantly different from ideal sp3values. In the crystal, a supramolecular structure is achieved by soft parallel-displaced–stacking and C—H intermolecular interactions.

Comment

Halogenated hydrocarbons are known for their toxic effects, and some of these compounds are suspected of having human carcinogenic activity (Corniaet al., 1993). The title compound, (I), and its derivatives constitute an important class of halo-genated hydrocarbons whose internal rotation processes and conformational preferences have been studied by NMR and X-ray methods (Antolini et al., 1995). In this context the crystal structure of (I) is reported here.

The molecular conformation and dimensions of (I), illu-strated in Fig. 1, are very similar to those reported for several

p-substituted diaryl derivatives of 1,1,2,2-tetrachloroethane (Antoliniet al., 1994). Selected interatomic distances and bond and torsion angles are listed in Table 1.

The asymmetric unit of (I) contains one half-molecule, with the other half generated by a center of inversion, which lies at the midpoint of the C1—C1ibond [symmetry code: (i)x+ 1,

y,z+ 1]. Thereby, perfect staggering around the C1—C1i bond is a consequence, with the aromatic rings in an anti-periplanar position [C2—C1—C1i—C2i = 180]. The same molecular conformation and symmetry requirements (1) were observed in other 4,4-(1,1,2,2-tetrachloroethane-1,2-di-yl)dichlorobenzenes (Hovmo¨ller et al., 1978; Antolini et al, 1994). Good agreement of the corresponding values of bond

(2)

distances and angles with compound (I) is found. Never-theless, some of these geometric parameters are significantly different from those reported for many DDT-type derivatives of known structures and from mean values retrieved from the Cambridge Structural Database (Version of April 2004; Allen, 2002).

The C1—C1idistance of 1.5887 (18) A˚ is significantly longer than the mean value of 1.513 A˚ for a C—C single bond (Allen

et al., 1987). Such bond lengthening is accompanied by a substantial decrease of the bond angle [Cl1—C1—Cl2 = 106.02 (7)] in comparison with the idealsp3

angle of 109.5 A˚ . In contrast, the Cl1—C1 and Cl2—C1 bond distances, of 1.7969 (13) and 1.7882 (14) A˚ , respectively, are similar to the value of 1.792 A˚ found in DDT-type derivatives.

The supramolecular structure of (I), shown in Fig. 2, is achieved by parallel displaced -stacking interactions [symmetry code:x,y, 1z] between the aromatic rings, with interplanar and intercentroid distances of 3.374 and 3.8916 (10) A˚ , respectively (Singh & Thornton, 1990). T-shaped (Umezawa et al., 1998) C4—H4 Phiii [symmetry code: (iii) x, 1

2y,

1

2+z] intermolecular interactions of

2.8267 A˚ [C4 Ph = 3.6971 (16) A˚ and C4—H4 Ph = 152.74] also contribute to the crystal packing.

Experimental

,,-Trichlorotoluene (1.02 ml, 7.15 mmol) and triethylamine (3.8 ml, 27.24 mmol) were heated at 393 K in a sealed ampoule for 24 h. The resulting mixture was dissolved in CHCl3 (50 ml) and

extracted with three portions of distilled water (20 ml). After drying with Na2SO4and concentrating, the organic phase was

chromato-graphed on silica gel to obtain 0.914 g (80% yield) of (I) as a white solid. Crystals suitable for X-ray analysis were obtained by crystal-lization from a chloroform solution.1H NMR (CDCl

3):7.44 (br, 2H,

Hp), 7.35 (t, 2H, Hm), 7.21 (br, 2H, Ho); 13

C NMR (CDCl3):136.4

(Ci), 131.0 (Cp), 130.0 (Cm), 126.87 (Co), 96.8 (CCl2).

Crystal data

C14H10Cl4 Mr= 320.02 Monoclinic,P21=c a= 8.5925 (10) A˚

b= 10.6129 (13) A˚

c= 7.7558 (9) A˚ = 114.315 (2)

V= 644.52 (13) A˚3

Z= 2

Dx= 1.649 Mg m

3

MoKradiation Cell parameters from 600

reflections = 20–25

= 0.89 mm1 T= 100 (2) K Block, colorless 0.520.490.42 mm

Data collection

Bruker SMART area-detector diffractometer

’and!scans

6982 measured reflections 1461 independent reflections 1451 reflections withI> 2(I)

Rint= 0.021

max= 27.6 h=10!10

k=13!13

l=10!10

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.026 wR(F2) = 0.067 S= 1.12 1461 reflections 82 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0354P)2

+ 0.3344P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.41 e A˚

3 min=0.23 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

Cl1—C1 1.7969 (13)

Cl2—C1 1.7882 (14)

C1—C2 1.523 (2)

C1—C1i

1.5887 (18)

Cl1—C1—Cl2 106.02 (7)

Cl1—C1—C2 110.43 (9)

Cl1—C1—C1i

107.00 (9)

Cl2—C1—C2 110.37 (9)

Cl2—C1—C1i 107.69 (9)

Symmetry code: (i)xþ1;y;zþ1.

All the H atoms could be located in difference Fourier maps, and were refined as riding atoms, with C—H = 0.95 A˚ and Uiso(H) =

1.2Ueq(C).

Data collection:SMART(Bruker, 2000); cell refinement:SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve

organic papers

Acta Cryst.(2005). E61, o678–o680 Garcia-Sanchezet al. C

[image:2.610.96.224.72.314.2]

14H10Cl4

o679

Figure 2

The crystal packing of compound (I). Parallel displaced–stacking and C4—H4 iii

intermolecular interactions are shown as dotted lines. [Symmetry codes: (ii)x,y, 1z; (iii)x,1

2y, 1 2+z.]

Figure 1

The molecular structure of compound (I), showing displacement ellipsoids drawn at the 30% probability level [Symmetry code: (a)

[image:2.610.316.564.72.190.2]
(3)

structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 2000); software used to prepare material for publication:SHELXL97andWinGX2003(Farrugia, 1999).

This work was supported by CGPI–IPN (Coordinacio´n General de Posgrado e Investigacio´n del Instituto Polite´cnico Nacional).

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Allen, F. A., Kennard, O. J., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans.2, pp. S1–19.

Antolini, L., Folli, U., Iarossi, D., Mucci, A., Sbardellati, S. & Taddei, F. (1995).

J. Chem. Soc. Perkin Trans.2, pp. 1007–1015.

Antolini, L., Folli, U., Mucci, A., Sbardellati, S. & Taddei, F. (1994).J. Chem. Soc. Perkin Trans.2, pp. 1107–1114.

Bruker (2000).SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Winsconsin, USA.

Cornia, A., Folli, U., Sbardellati, S. & Taddei, F. (1993).J. Chem. Soc. Perkin Trans.2, pp. 1847–1853.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Hovmo¨ller, S., Smith, G. & Kennard, C. H. L. (1978). Acta Cryst.B34, 3016–3021.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Singh, J. & Thornton, J. M. (1990).J. Mol. Biol.211, 595–615.

Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998).Bull. Chem. Soc. Jpn,71, 1207–1213.

organic papers

o680

Garcia-Sanchezet al. C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o678–o680

supporting information

Acta Cryst. (2005). E61, o678–o680 [https://doi.org/10.1107/S1600536805004472]

1,1,2,2-Tetrachloro-1,2-diphenylethane

Adriana Garcia-Sanchez, Itzia I. Padilla-Mart

í

nez, Francisco J. Mart

í

nez-Mart

í

nez, Herbert

H

ö

pfl and Efr

é

n V. Garc

í

a-B

á

ez

1,1,2,2-Tetrachloro-1,2-diphenylethane

Crystal data

C14H10Cl4

Mr = 320.02 Monoclinic, P21/c

Hall symbol: -P 2ybc a = 8.5925 (10) Å b = 10.6129 (13) Å c = 7.7558 (9) Å β = 114.315 (2)° V = 644.52 (13) Å3

Z = 2

F(000) = 324 Dx = 1.649 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 600 reflections θ = 20–25°

µ = 0.89 mm−1

T = 100 K Block, colorless 0.52 × 0.49 × 0.42 mm

Data collection

Bruker SMART area-detector diffractometer

Graphite monochromator φ and ω scans

6982 measured reflections 1461 independent reflections

1451 reflections with I > 2σ(I) Rint = 0.021

θmax = 27.6°, θmin = 2.6°

h = −10→10 k = −13→13 l = −10→10

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.026

wR(F2) = 0.067

S = 1.12 1461 reflections 82 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0354P)2 + 0.3344P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.41 e Å−3

Δρmin = −0.23 e Å−3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o678–o680

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.46504 (4) 0.00002 (3) 0.20693 (4) 0.0158 (1) Cl2 0.57707 (4) 0.19318 (3) 0.48969 (4) 0.0160 (1) C1 0.45328 (16) 0.05183 (12) 0.42181 (17) 0.0128 (3) C2 0.26869 (16) 0.07810 (12) 0.38812 (18) 0.0140 (3) C3 0.22964 (18) 0.17374 (13) 0.48755 (19) 0.0167 (3) C4 0.06136 (18) 0.19511 (13) 0.4596 (2) 0.0191 (4) C5 −0.06910 (17) 0.12216 (14) 0.3324 (2) 0.0194 (4) C6 −0.03112 (17) 0.02648 (14) 0.2344 (2) 0.0179 (4) C7 0.13693 (18) 0.00440 (12) 0.2613 (2) 0.0160 (4)

H3 0.31844 0.22437 0.57459 0.0201*

H4 0.03568 0.26006 0.52813 0.0229*

H5 −0.18417 0.13766 0.31249 0.0233*

H6 −0.12033 −0.02432 0.14832 0.0215*

H7 0.16197 −0.06108 0.19317 0.0192*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0167 (2) 0.0189 (2) 0.0124 (2) 0.0015 (1) 0.0066 (1) −0.0004 (1) Cl2 0.0154 (2) 0.0118 (2) 0.0200 (2) −0.0018 (1) 0.0066 (1) 0.0000 (1) C1 0.0147 (6) 0.0119 (6) 0.0117 (6) −0.0010 (5) 0.0053 (5) −0.0012 (4) C2 0.0133 (6) 0.0141 (6) 0.0139 (6) 0.0016 (5) 0.0049 (5) 0.0028 (5) C3 0.0173 (6) 0.0153 (6) 0.0168 (6) 0.0017 (5) 0.0064 (5) 0.0006 (5) C4 0.0201 (7) 0.0191 (7) 0.0203 (7) 0.0058 (5) 0.0105 (5) 0.0031 (5) C5 0.0151 (6) 0.0239 (7) 0.0202 (7) 0.0049 (5) 0.0083 (5) 0.0086 (5) C6 0.0139 (7) 0.0221 (7) 0.0149 (6) −0.0012 (5) 0.0031 (5) 0.0039 (5) C7 0.0167 (7) 0.0161 (6) 0.0139 (6) 0.0005 (5) 0.0051 (5) 0.0005 (4)

Geometric parameters (Å, º)

Cl1—C1 1.7969 (13) C5—C6 1.385 (2)

Cl2—C1 1.7882 (14) C6—C7 1.391 (2)

C1—C2 1.523 (2) C3—H3 0.95

C1—C1i 1.5887 (18) C4—H4 0.95

C2—C3 1.397 (2) C5—H5 0.95

C2—C7 1.394 (2) C6—H6 0.95

C3—C4 1.390 (2) C7—H7 0.95

C4—C5 1.385 (2)

Cl1···Cl1ii 3.5003 (6) C6···C4viii 3.426 (2)

Cl1···Cl2i 3.2516 (6) C6···C5viii 3.484 (2)

Cl1···Cl2iii 3.5506 (6) C6···C7vi 3.583 (2)

Cl1···C3i 3.2831 (15) C7···C6vi 3.583 (2)

Cl2···C7i 3.2027 (15) C7···Cl2i 3.2027 (15)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o678–o680

Cl2···Cl1i 3.2516 (6) C6···H7vi 3.0538

Cl1···H5v 3.1396 C7···H4ix 2.9967

Cl1···H7 2.6428 H3···Cl2 2.5859

Cl1···H3i 3.0672 H3···Cl1i 3.0672

Cl1···H6vi 3.1161 H4···C6x 2.9626

Cl2···H3 2.5859 H4···C7x 2.9967

Cl2···H5v 2.9609 H5···Cl1xi 3.1396

Cl2···H7i 2.9157 H5···Cl2xi 2.9609

Cl2···H5vii 3.0773 H5···Cl2xii 3.0773

C3···Cl1i 3.2831 (15) H6···Cl1vi 3.1161

C4···C6viii 3.426 (2) H7···Cl1 2.6428

C5···C5viii 3.514 (2) H7···Cl2i 2.9157

C5···C6viii 3.484 (2) H7···C6vi 3.0538

Cl1—C1—Cl2 106.02 (7) C5—C6—C7 120.37 (14)

Cl1—C1—C2 110.43 (9) C2—C7—C6 120.16 (13)

Cl1—C1—C1i 107.00 (9) C2—C3—H3 119.88

Cl2—C1—C2 110.37 (9) C4—C3—H3 119.88

Cl2—C1—C1i 107.69 (9) C3—C4—H4 119.83

C1i—C1—C2 114.89 (11) C5—C4—H4 119.84

C1—C2—C3 120.54 (12) C4—C5—H5 120.12

C1—C2—C7 120.27 (12) C6—C5—H5 120.14

C3—C2—C7 119.16 (14) C5—C6—H6 119.82

C2—C3—C4 120.24 (13) C7—C6—H6 119.81

C3—C4—C5 120.32 (13) C2—C7—H7 119.92

C4—C5—C6 119.74 (15) C6—C7—H7 119.92

Cl1—C1—C2—C3 −146.78 (11) C2—C1—C1i—Cl1i −57.02 (12)

Cl1—C1—C2—C7 35.06 (15) C2—C1—C1i—Cl2i 56.59 (12)

Cl2—C1—C2—C3 −29.87 (15) C2—C1—C1i—C2i 180.00 (11)

Cl2—C1—C2—C7 151.96 (11) C1—C2—C3—C4 −178.38 (12) C1i—C1—C2—C3 92.10 (15) C7—C2—C3—C4 −0.2 (2)

C1i—C1—C2—C7 −86.07 (15) C1—C2—C7—C6 178.34 (12)

Cl1—C1—C1i—Cl1i −180.00 (8) C3—C2—C7—C6 0.1 (2)

Cl1—C1—C1i—Cl2i −66.40 (10) C2—C3—C4—C5 −0.3 (2)

Cl1—C1—C1i—C2i 57.02 (12) C3—C4—C5—C6 0.8 (2)

Cl2—C1—C1i—Cl1i 66.40 (10) C4—C5—C6—C7 −0.8 (2)

Cl2—C1—C1i—Cl2i 179.98 (10) C5—C6—C7—C2 0.4 (2)

Cl2—C1—C1i—C2i −56.59 (12)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2; (v) x+1, y, z; (vi) −x, −y, −z; (vii) x+1, −y+1/2, z+1/2; (viii) −x, −y, −z+1; (ix) x, −y+1/2, z−1/2; (x) x, −y+1/2, z+1/2; (xi) x−1, y, z; (xii) x−1, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C3—H3···Cl2 0.95 2.59 2.9856 (17) 106

Figure

Figure 1The molecular structure of compound (I), showing displacement�ellipsoids drawn at the 30% probability level [Symmetry code: (a)x + 1, �y, �z + 1.]

References

Related documents

In analogue mode, press PROG/CH +/– , or the number buttons, to select the video channel~. For other

Do not walk into or touch spilled substances and avoid inhalation of fumes, smoke, dusts and vapours by staying up windRemove any contaminated clothing and

In view of the present satisfactory level of computerisation in commercial bank branches, it is proposed that, ‘‘payment of interest on savings bank accounts by scheduled

- Habitat for Humanity International – Provided computer support for the direct mail, telemarketing, major donor, matching gift, and special event fundraising programs -

(a) in respect of any of the securities of the responsible issuer that the person or company subsequently disposed of on or before the 10th trading day after the public correction

No.3 IP Fixed Mobile All-IP based FMC Single Platform Box Module Site or Central Office One Cabinet One Site 9KW 3×3KW Smart modularized power management 2KW

FC (Fibre Channel Arbitrated Loop) - SPS (Stand by Power Supply) - SLC (Single-Level Cell) - DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access Memory).. 9

Prerequisite: Completion of the Basic Law Enforcement Program Course Title Hours CJK 0101V Corrections: Interpersonal Skills II 50 CJK 0480V Corrections: