• No results found

20(29) Lupene 3β,28β di­acetate

N/A
N/A
Protected

Academic year: 2020

Share "20(29) Lupene 3β,28β di­acetate"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1352

Tahiret al. C34H54O4 doi:10.1107/S1600536806008233 Acta Cryst.(2006). E62, o1352–o1354 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

20(29)-Lupene-3

b

,28

b

-diacetate

Ietidal Eltahir Mohamed,a M. Iqbal Choudhary,bShamsher Ali,cShazia Anjumc* and Atta-ur-Rahmanc

aDepartment of Botany, Faculity of Science,

University of Kartoum, Kartoum 321, PC 11115, Sudan,bHEJ Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan, andcHEJ Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi-75270, Pakistan

Correspondence e-mail: anjumshazia@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.042

wRfactor = 0.118 Data-to-parameter ratio = 8.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 23 February 2006 Accepted 6 March 2006

#2006 International Union of Crystallography All rights reserved

The triterpene 20(29)-lupene-3,28-diacetate, C34H54O4, was

obtained by acetylation of naturally occurring betulin. The cyclopentane ring adopts a twisted envelope conformation and the cyclohexane rings are all in chair conformations. The molecular structure is stabilized only by weak intramolecular C—H O hydrogen bonds.

Comment

Diospyros mespiliformis (Hochst. ex A.DC), an important member of the Ebenaceae family, is a tropical shrub which occurs widely in Sudan throughout the high rainfall savannahs in the Red Sea Hills (Erkowit), Blue Nile, Kassala, Kordofan, Darfur along Bahr el Ghazal and Equatoria (El Amin, 1990). The genus Diospyros and the whole Ebenaceae family are known to produce dimeric naphthoquinones and triterpenoids of the lupane series (Zhong et al., 1984). Several ethno-pharmacological uses have been reported in respect of D. mespiliformis; for example, as an unusual remedy for fever, whooping cough and wounds. Barks and roots are used against serious infections, malaria, pneumonia, syphilis, leprosy and dermatomycoses; it facilitates child birth and it is also used as an antihelmintic drug (Watt & Brandwijk, 1962).

(2)

part of our ongoing study of the molecular structures and relative stereochemistry of biologically active natural products (Awanet al., 2005; Choudharyet al., 2006; Anjumet al., 2005). The crystal structure of (I) has been reported previously by Daset al.(1983) [Cambridge Structural Database, Version 5.27 (CSD; Allen, 2002), refcode CUBYAZ] with an R value of 0.055. However, the earlier paper did not discuss the mol-ecular or crystal structure. Our work is of higher precision and reports structural details.

The bond lengths in (I) show normal values (Allenet al., 1987). All ring junctions in the lupane nucleus aretrans-fused. The cyclopentane ring adopts a twisted envelope conforma-tion at C17—C18. The six-membered rings adopt normal chair conformations (Cremer & Pople, 1975).

An O-acetyl group is attached to atom C3 of ringAin an equatorial orientation; the torsion angle C31—O1—C3—C2 is 94.0 (3). The isopropyl group is equatorially attached to atom

C20 of cyclopentane ring E; the torsion angle C21—C20— C23—C24 is107.1 (4).

is observed. However, the molecular structure is stabilized by weak intramolecular C—H O interactions. S5 graph-set

motifs are formed by H16A O3—C26—C17—C16—,

H22A O3—C26—C17—C22—, C3—H3A O2—C31—

O1— and C30—H30A O1—C3—C4— (Bernstein et al.,

1995).

Experimental

Purified betulin (15.0 mg, 0.032 mmol) was dissolved in pyridine (1 ml), followed by the addition of acetic anhydride (2 ml, 21.2 mmol). The reaction mixture was stirred overnight at room temperature. The resulting mixture was poured into ice water and extracted with ethyl acetate. This extract was concentrated under vacuum and purified by flash chromatography using a silica column to yield compound (I) (10 mg, 0.019 mmol, 59.5% yield).

Crystal data

C34H54O4 Mr= 526.77

Orthorhombic,P212121 a= 12.5710 (13) A˚

b= 15.6745 (16) A˚

c= 15.7618 (16) A˚

V= 3105.8 (6) A˚3

Z= 4

Dx= 1.127 Mg m

3

MoKradiation Cell parameters from 7765

reflections

= 1.8–25.0

= 0.07 mm1

T= 293 (2) K Block, colorless 0.360.340.15 mm

Data collection

Siemens SMART CCD area detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.867,Tmax= 0.990

15663 measured reflections

3072 independent reflections 2868 reflections withI> 2(I)

Rint= 0.016 max= 25.0 h=14!14

k=18!17

l=18!16

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.042 wR(F2) = 0.118 S= 1.04 3072 reflections 350 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0708P)2 + 0.5698P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002

max= 0.31 e A˚

3

min=0.19 e A˚

[image:2.610.46.296.71.231.2]

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C3—H3A O2 0.98 2.32 2.702 (4) 102 C16—H16A O3 0.97 2.49 2.876 (3) 104 C22—H22A O3 0.97 2.52 2.929 (4) 106 C30—H30A O1 0.96 2.54 2.914 (4) 106

H atoms were placed in calculated positions with C—H distances in the range 0.93–0.98 A˚ . TheUiso(H) values were constrained to be

1.5Ueqof the carrier atom for methyl H atoms and 1.2Ueqfor the

other H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection:SMART(Siemens, 1996); cell refinement:SAINT

Figure 1

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed lines indicate intramolecular hydrogen bonds.

Figure 2

[image:2.610.313.565.588.644.2]
(3)

structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication: SHELXTL,PARST(Nardelli, 1995) andPLATON(Spek, 2003).

One of the authors (IEM) thanks the Third World Orga-nization For Women in Science (TWOWS) for financial assistance for her visit to HEJRIC, ICCS, University of Karachi.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.

Anjum, S., Choudhary. M. I., Ali, S., Fun, H. K. & Atta-ur-Rahman (2005).

Acta Cryst.E61, o3001–o3002.

Awan, S. I., Choudhary, M. I., Atta-ur-Rahman, Anjum, S., Ali, S. & Fun. H.-K. (2005).Acta Cryst.E61, o2354–o2356.

Bernard, P., Scior, T., Didier, B., Hibert, M. & Berthon, J. Y. (2001).

Phytochemistry,58, 865–874.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Choudhary, M. I., Lannang, A. M., Anjum, S., Fun, H.-K., Lontsi, D. & Tangmouo, J. G. (2006).Acta Cryst.E62, o116–o118.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Das, P. K., Mukherjee, M. & Ray, S. (1983).Indian J. Phys. Sect. A,75, 182–

189.

El Amin, H. M. (1990).Trees and Shrubs of the Sudan, p. 351. Exeter, England: Ithaca Press.

Kim, D. S., Pezzuto, J. M. & Pisha, E. (1998).Bioorg. Med. Chem. Lett.8, 1707– 12.

Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Rajic, A., Akihisa, T., Ukiya, M., Yasakawa, K., Sandeman, R. M., Chandler, D. S. & Polya, G. M. (2001).Planta Med.67, 599–604.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997).SHELXTL. Version 5.1. Bruker AXS Inc., Madison,

Wisconsin, USA.

Siemens (1996).SMARTandSAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Watt, J. M. & Brandwijk, B. M. G. (1962).The Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd ed., p. 369. Edinburgh: E. & S. Livingstone Ltd.

Ying, Q. L., Rineerart, A. R., Simon, S. R. & Cheronis, J. C. (1991).Biochem. J.

277, 521–526.

Zdzisinska, B., Rzeski, W., Paduch, R., Ciesielska, A. S., Kaczor, J., Wejksza, K. & Szerszen, M. K. (2003).Pol. J. Pharmacol.55, 235–238.

Zhong, S.-M., Waterman, P. G. & Jeffreys, J. A. D. (1984).Phytochemistry,23, 1067–1072.

organic papers

(4)

supporting information

Acta Cryst. (2006). E62, o1352–o1354 [https://doi.org/10.1107/S1600536806008233]

20(29)-Lupene-3

β

,28

β

-diacetate

Ietidal Eltahir Mohamed, M. Iqbal Choudhary, Shamsher Ali, Shazia Anjum and Atta-ur-Rahman

20 (29)-Lupene-3β, 28β-diacetate

Crystal data

C34H54O4

Mr = 526.77

Orthorhombic, P212121

a = 12.5710 (13) Å b = 15.6745 (16) Å c = 15.7618 (16) Å V = 3105.8 (6) Å3

Z = 4

F(000) = 1160

Dx = 1.127 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 7765 reflections θ = 1.8–25.0°

µ = 0.07 mm−1

T = 293 K Block, colorless 0.36 × 0.34 × 0.15 mm

Data collection

Siemens SMART CCD area detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.33 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.867, Tmax = 0.990

15663 measured reflections 3072 independent reflections 2868 reflections with I > 2σ(I) Rint = 0.016

θmax = 25.0°, θmin = 1.8°

h = −14→14 k = −18→17 l = −18→16

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.042

wR(F2) = 0.118

S = 1.04 3072 reflections 350 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0708P)2 + 0.5698P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002 Δρmax = 0.31 e Å−3 Δρmin = −0.19 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, o1352–o1354

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.36728 (17) 0.24735 (12) 0.15235 (13) 0.0641 (6) O2 0.2583 (3) 0.29177 (16) 0.05064 (17) 0.1039 (10) O3 0.56973 (15) −0.50494 (11) −0.02444 (13) 0.0627 (5) O4 0.7128 (2) −0.49647 (16) 0.05617 (18) 0.1007 (9) C1 0.5019 (2) 0.08991 (14) 0.00738 (16) 0.0496 (6)

H1A 0.5671 0.0951 −0.0251 0.060*

H1B 0.4440 0.0821 −0.0325 0.060*

C2 0.4837 (3) 0.17272 (16) 0.05588 (19) 0.0578 (7)

H2A 0.5445 0.1844 0.0919 0.069*

H2B 0.4761 0.2196 0.0162 0.069*

C3 0.3849 (2) 0.16559 (15) 0.10930 (17) 0.0531 (6)

H3A 0.3245 0.1553 0.0713 0.064*

C4 0.3875 (2) 0.09419 (16) 0.17485 (16) 0.0517 (6) C5 0.41004 (19) 0.01078 (15) 0.12392 (13) 0.0417 (5)

H5A 0.3493 0.0058 0.0852 0.050*

C6 0.4062 (2) −0.07091 (16) 0.17651 (15) 0.0507 (6)

H6A 0.3475 −0.0679 0.2164 0.061*

H6B 0.4716 −0.0767 0.2087 0.061*

C7 0.3920 (2) −0.14877 (15) 0.11888 (15) 0.0473 (6)

H7A 0.3232 −0.1449 0.0912 0.057*

H7B 0.3916 −0.1998 0.1537 0.057*

C8 0.47887 (17) −0.15809 (14) 0.05036 (14) 0.0373 (5) C9 0.49718 (17) −0.06993 (13) 0.00590 (13) 0.0364 (5)

H9A 0.4316 −0.0596 −0.0261 0.044*

C10 0.50954 (18) 0.01032 (14) 0.06399 (14) 0.0397 (5) C11 0.5840 (2) −0.07784 (14) −0.06212 (15) 0.0459 (5)

H11A 0.5913 −0.0236 −0.0912 0.055*

H11B 0.6513 −0.0905 −0.0348 0.055*

C12 0.5597 (2) −0.14716 (15) −0.12708 (15) 0.0482 (6)

H12A 0.6204 −0.1536 −0.1645 0.058*

H12B 0.4996 −0.1294 −0.1613 0.058*

C13 0.53456 (18) −0.23318 (14) −0.08662 (14) 0.0381 (5)

H13A 0.5982 −0.2506 −0.0551 0.046*

C14 0.44243 (17) −0.22426 (14) −0.02011 (15) 0.0391 (5) C15 0.4163 (2) −0.31270 (15) 0.01911 (18) 0.0520 (6)

H15A 0.4741 −0.3290 0.0566 0.062*

H15B 0.3526 −0.3073 0.0534 0.062*

C16 0.3991 (2) −0.38469 (15) −0.04601 (19) 0.0550 (6)

H16A 0.3903 −0.4384 −0.0163 0.066*

(6)

C17 0.49242 (19) −0.39180 (15) −0.10744 (17) 0.0481 (6) C18 0.5106 (2) −0.30437 (15) −0.14969 (16) 0.0447 (5)

H18A 0.4428 −0.2891 −0.1765 0.054*

C19 0.6176 (2) 0.01305 (17) 0.10992 (18) 0.0552 (6)

H19A 0.6211 0.0631 0.1449 0.083*

H19B 0.6739 0.0145 0.0688 0.083*

H19C 0.6251 −0.0368 0.1448 0.083*

C20 0.5883 (2) −0.32414 (17) −0.22310 (16) 0.0546 (6)

H20A 0.6597 −0.3305 −0.1990 0.066*

C21 0.5500 (3) −0.41356 (19) −0.2529 (2) 0.0742 (9)

H21A 0.5127 −0.4088 −0.3066 0.089*

H21B 0.6105 −0.4512 −0.2607 0.089*

C22 0.4758 (3) −0.44940 (18) −0.18529 (19) 0.0651 (8)

H22A 0.4940 −0.5081 −0.1722 0.078*

H22B 0.4024 −0.4473 −0.2042 0.078*

C23 0.5948 (3) −0.2608 (2) −0.29512 (18) 0.0696 (8) C24 0.6893 (4) −0.2367 (3) −0.3246 (3) 0.1104 (15)

H24A 0.6935 −0.1993 −0.3703 0.133*

H24B 0.7511 −0.2573 −0.2995 0.133*

C25 0.4931 (4) −0.2298 (2) −0.3329 (2) 0.0946 (13)

H25A 0.5084 −0.1937 −0.3805 0.142*

H25B 0.4541 −0.1981 −0.2911 0.142*

H25C 0.4515 −0.2777 −0.3512 0.142*

C26 0.5922 (2) −0.42190 (15) −0.06018 (18) 0.0502 (6)

H26A 0.6519 −0.4255 −0.0990 0.060*

H26B 0.6101 −0.3819 −0.0155 0.060*

C27 0.6352 (2) −0.53389 (17) 0.03414 (17) 0.0541 (6) C28 0.6063 (3) −0.62063 (19) 0.0647 (2) 0.0799 (10)

H28A 0.6231 −0.6255 0.1240 0.120*

H28B 0.6456 −0.6626 0.0334 0.120*

H28C 0.5314 −0.6298 0.0566 0.120*

C29 0.4671 (3) 0.1122 (2) 0.24657 (18) 0.0707 (9)

H29A 0.5353 0.1257 0.2227 0.106*

H29B 0.4733 0.0627 0.2820 0.106*

H29C 0.4423 0.1595 0.2798 0.106*

C30 0.2761 (3) 0.0884 (2) 0.2149 (2) 0.0712 (8)

H30A 0.2568 0.1429 0.2380 0.107*

H30B 0.2767 0.0465 0.2594 0.107*

H30C 0.2254 0.0721 0.1723 0.107*

C31 0.3036 (3) 0.30328 (19) 0.1161 (2) 0.0647 (8) C32 0.2962 (3) 0.3840 (2) 0.1662 (3) 0.0957 (13)

H32A 0.2491 0.4230 0.1380 0.144*

H32B 0.3655 0.4093 0.1710 0.144*

H32C 0.2691 0.3716 0.2218 0.144*

C33 0.5805 (2) −0.18953 (15) 0.09551 (15) 0.0473 (6)

H33A 0.5841 −0.1650 0.1512 0.071*

H33B 0.6419 −0.1725 0.0634 0.071*

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, o1352–o1354

C34 0.33930 (18) −0.19452 (17) −0.06529 (18) 0.0522 (6)

H34A 0.3181 −0.2366 −0.1062 0.078*

H34B 0.3522 −0.1413 −0.0936 0.078*

H34C 0.2837 −0.1873 −0.0241 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

Geometric parameters (Å, º)

O1—C31 1.317 (3) C16—C17 1.526 (4)

O1—C3 1.467 (3) C16—H16A 0.9700

O2—C31 1.193 (4) C16—H16B 0.9700

O3—C27 1.318 (3) C17—C26 1.533 (3)

O3—C26 1.446 (3) C17—C22 1.538 (3)

O4—C27 1.190 (3) C17—C18 1.541 (3)

C1—C2 1.524 (3) C18—C20 1.546 (4)

C1—C10 1.537 (3) C18—H18A 0.9800

C1—H1A 0.9700 C19—H19A 0.9600

C1—H1B 0.9700 C19—H19B 0.9600

C2—C3 1.504 (4) C19—H19C 0.9600

C2—H2A 0.9700 C20—C23 1.511 (4)

C2—H2B 0.9700 C20—C21 1.555 (4)

C3—C4 1.523 (4) C20—H20A 0.9800

C3—H3A 0.9800 C21—C22 1.524 (5)

C4—C29 1.536 (4) C21—H21A 0.9700

C4—C30 1.539 (4) C21—H21B 0.9700

C4—C5 1.560 (3) C22—H22A 0.9700

C5—C6 1.526 (3) C22—H22B 0.9700

C5—C10 1.567 (3) C23—C24 1.330 (6)

C5—H5A 0.9800 C23—C25 1.491 (5)

C6—C7 1.532 (3) C24—H24A 0.9300

C6—H6A 0.9700 C24—H24B 0.9300

C6—H6B 0.9700 C25—H25A 0.9600

C7—C8 1.543 (3) C25—H25B 0.9600

C7—H7A 0.9700 C25—H25C 0.9600

C7—H7B 0.9700 C26—H26A 0.9700

C8—C33 1.543 (3) C26—H26B 0.9700

C8—C9 1.566 (3) C27—C28 1.488 (4)

C8—C14 1.587 (3) C28—H28A 0.9600

C9—C11 1.535 (3) C28—H28B 0.9600

C9—C10 1.564 (3) C28—H28C 0.9600

C9—H9A 0.9800 C29—H29A 0.9600

C10—C19 1.540 (3) C29—H29B 0.9600

C11—C12 1.524 (3) C29—H29C 0.9600

C11—H11A 0.9700 C30—H30A 0.9600

C11—H11B 0.9700 C30—H30B 0.9600

C12—C13 1.525 (3) C30—H30C 0.9600

C12—H12A 0.9700 C31—C32 1.495 (4)

C12—H12B 0.9700 C32—H32A 0.9600

C13—C18 1.525 (3) C32—H32B 0.9600

C13—C14 1.568 (3) C32—H32C 0.9600

C13—H13A 0.9800 C33—H33A 0.9600

C14—C34 1.551 (3) C33—H33B 0.9600

C14—C15 1.553 (3) C33—H33C 0.9600

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, o1352–o1354

C15—H15A 0.9700 C34—H34B 0.9600

C15—H15B 0.9700 C34—H34C 0.9600

C31—O1—C3 118.2 (2) H16A—C16—H16B 108.0

C27—O3—C26 117.5 (2) C16—C17—C26 110.1 (2)

C2—C1—C10 114.2 (2) C16—C17—C22 116.4 (2)

C2—C1—H1A 108.7 C26—C17—C22 108.6 (2)

C10—C1—H1A 108.7 C16—C17—C18 108.85 (19)

C2—C1—H1B 108.7 C26—C17—C18 111.26 (19)

C10—C1—H1B 108.7 C22—C17—C18 101.4 (2)

H1A—C1—H1B 107.6 C13—C18—C17 113.48 (19)

C3—C2—C1 110.0 (2) C13—C18—C20 120.6 (2)

C3—C2—H2A 109.7 C17—C18—C20 103.81 (19)

C1—C2—H2A 109.7 C13—C18—H18A 106.0

C3—C2—H2B 109.7 C17—C18—H18A 106.0

C1—C2—H2B 109.7 C20—C18—H18A 106.0

H2A—C2—H2B 108.2 C10—C19—H19A 109.5

O1—C3—C2 108.6 (2) C10—C19—H19B 109.5

O1—C3—C4 109.3 (2) H19A—C19—H19B 109.5

C2—C3—C4 114.6 (2) C10—C19—H19C 109.5

O1—C3—H3A 108.0 H19A—C19—H19C 109.5

C2—C3—H3A 108.0 H19B—C19—H19C 109.5

C4—C3—H3A 108.0 C23—C20—C18 117.7 (2)

C3—C4—C29 112.2 (2) C23—C20—C21 112.5 (2)

C3—C4—C30 107.6 (2) C18—C20—C21 102.2 (2)

C29—C4—C30 107.6 (2) C23—C20—H20A 108.0

C3—C4—C5 105.70 (18) C18—C20—H20A 108.0

C29—C4—C5 114.5 (2) C21—C20—H20A 108.0

C30—C4—C5 109.1 (2) C22—C21—C20 108.1 (2)

C6—C5—C4 114.70 (17) C22—C21—H21A 110.1

C6—C5—C10 110.43 (19) C20—C21—H21A 110.1

C4—C5—C10 117.31 (19) C22—C21—H21B 110.1

C6—C5—H5A 104.2 C20—C21—H21B 110.1

C4—C5—H5A 104.2 H21A—C21—H21B 108.4

C10—C5—H5A 104.2 C21—C22—C17 105.0 (2)

C5—C6—C7 110.49 (18) C21—C22—H22A 110.7

C5—C6—H6A 109.6 C17—C22—H22A 110.7

C7—C6—H6A 109.6 C21—C22—H22B 110.7

C5—C6—H6B 109.6 C17—C22—H22B 110.7

C7—C6—H6B 109.6 H22A—C22—H22B 108.8

H6A—C6—H6B 108.1 C24—C23—C25 122.3 (3)

C6—C7—C8 114.1 (2) C24—C23—C20 119.9 (3)

C6—C7—H7A 108.7 C25—C23—C20 117.8 (3)

C8—C7—H7A 108.7 C23—C24—H24A 120.0

C6—C7—H7B 108.7 C23—C24—H24B 120.0

C8—C7—H7B 108.7 H24A—C24—H24B 120.0

H7A—C7—H7B 107.6 C23—C25—H25A 109.5

(10)

C7—C8—C9 109.49 (17) H25A—C25—H25B 109.5

C33—C8—C9 111.49 (18) C23—C25—H25C 109.5

C7—C8—C14 110.31 (18) H25A—C25—H25C 109.5 C33—C8—C14 110.67 (17) H25B—C25—H25C 109.5 C9—C8—C14 107.81 (17) O3—C26—C17 107.8 (2)

C11—C9—C10 113.80 (17) O3—C26—H26A 110.1

C11—C9—C8 110.22 (17) C17—C26—H26A 110.1

C10—C9—C8 117.54 (16) O3—C26—H26B 110.1

C11—C9—H9A 104.6 C17—C26—H26B 110.1

C10—C9—H9A 104.6 H26A—C26—H26B 108.5

C8—C9—H9A 104.6 O4—C27—O3 123.2 (3)

C1—C10—C19 107.8 (2) O4—C27—C28 123.8 (3)

C1—C10—C9 107.87 (16) O3—C27—C28 112.9 (3) C19—C10—C9 112.67 (19) C27—C28—H28A 109.5

C1—C10—C5 107.23 (18) C27—C28—H28B 109.5

C19—C10—C5 114.86 (18) H28A—C28—H28B 109.5

C9—C10—C5 106.10 (17) C27—C28—H28C 109.5

C12—C11—C9 112.63 (19) H28A—C28—H28C 109.5

C12—C11—H11A 109.1 H28B—C28—H28C 109.5

C9—C11—H11A 109.1 C4—C29—H29A 109.5

C12—C11—H11B 109.1 C4—C29—H29B 109.5

C9—C11—H11B 109.1 H29A—C29—H29B 109.5

H11A—C11—H11B 107.8 C4—C29—H29C 109.5

C11—C12—C13 113.01 (18) H29A—C29—H29C 109.5

C11—C12—H12A 109.0 H29B—C29—H29C 109.5

C13—C12—H12A 109.0 C4—C30—H30A 109.5

C11—C12—H12B 109.0 C4—C30—H30B 109.5

C13—C12—H12B 109.0 H30A—C30—H30B 109.5

H12A—C12—H12B 107.8 C4—C30—H30C 109.5

C12—C13—C18 114.55 (19) H30A—C30—H30C 109.5 C12—C13—C14 110.73 (17) H30B—C30—H30C 109.5 C18—C13—C14 110.79 (18) O2—C31—O1 124.4 (3)

C12—C13—H13A 106.8 O2—C31—C32 123.7 (3)

C18—C13—H13A 106.8 O1—C31—C32 111.9 (3)

C14—C13—H13A 106.8 C31—C32—H32A 109.5

C34—C14—C15 105.93 (19) C31—C32—H32B 109.5 C34—C14—C13 109.70 (19) H32A—C32—H32B 109.5 C15—C14—C13 110.04 (17) C31—C32—H32C 109.5 C34—C14—C8 111.48 (18) H32A—C32—H32C 109.5 C15—C14—C8 111.46 (18) H32B—C32—H32C 109.5

C13—C14—C8 108.23 (16) C8—C33—H33A 109.5

C16—C15—C14 114.7 (2) C8—C33—H33B 109.5

C16—C15—H15A 108.6 H33A—C33—H33B 109.5

C14—C15—H15A 108.6 C8—C33—H33C 109.5

C16—C15—H15B 108.6 H33A—C33—H33C 109.5

C14—C15—H15B 108.6 H33B—C33—H33C 109.5

H15A—C15—H15B 107.6 C14—C34—H34A 109.5

(11)

supporting information

sup-8

Acta Cryst. (2006). E62, o1352–o1354

C17—C16—H16A 109.3 H34A—C34—H34B 109.5

C15—C16—H16A 109.3 C14—C34—H34C 109.5

C17—C16—H16B 109.3 H34A—C34—H34C 109.5

C15—C16—H16B 109.3 H34B—C34—H34C 109.5

(12)

C4—C5—C10—C9 −166.53 (18) C27—O3—C26—C17 −165.1 (2) C10—C9—C11—C12 −170.02 (18) C16—C17—C26—O3 60.7 (3) C8—C9—C11—C12 55.5 (2) C22—C17—C26—O3 −67.7 (3) C9—C11—C12—C13 −52.4 (3) C18—C17—C26—O3 −178.5 (2) C11—C12—C13—C18 −179.6 (2) C26—O3—C27—O4 −2.8 (4) C11—C12—C13—C14 54.2 (3) C26—O3—C27—C28 −178.5 (2) C12—C13—C14—C34 62.7 (2) C3—O1—C31—O2 0.7 (5) C18—C13—C14—C34 −65.5 (2) C3—O1—C31—C32 −178.4 (3) C12—C13—C14—C15 178.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C3—H3A···O2 0.98 2.32 2.702 (4) 102

C16—H16A···O3 0.97 2.49 2.876 (3) 104

C22—H22A···O3 0.97 2.52 2.929 (4) 106

Figure

Figure 1The structure of (I), showing 50% probability displacement ellipsoids andthe atom-numbering scheme

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical