• No results found

1 [2 (4 Hy­droxy­phen­yl) 4,6 dimeth­­oxy 1 benzo­furan 3 yl]ethanone

N/A
N/A
Protected

Academic year: 2020

Share "1 [2 (4 Hy­droxy­phen­yl) 4,6 dimeth­­oxy 1 benzo­furan 3 yl]ethanone"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2385–o2386 doi:10.1107/S160053680601734X Liet al. C

18H16O5

o2385

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[2-(4-Hydroxyphenyl)-4,6-dimethoxy-1-benzo-furan-3-yl]ethanone

Xiao-Xiao Li, Yu-Ping Wei, Ye-Fei Nan, Chang-Hua Hua and Liang-Dong Sun*

Department of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, People’s Republic of China

Correspondence e-mail: doristju@gmail.com

Key indicators

Single-crystal X-ray study

T= 294 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.048

wRfactor = 0.147

Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 29 April 2006 Accepted 10 May 2006

#2006 International Union of Crystallography

All rights reserved

In the crystal structure of the title compound, C18H16O5, O—

H O hydrogen bonds connect the molecules into centro-symmetric dimers that form stacks down theaaxis.

Comment

The structure of the title compound, (I), a 2-phenylbenzofuran derivative prepared by oxidation of the corresponding substituted flavylium salt (Jurd, 1964) is presented here (Fig. 1 and Table 1).

The atoms of the benzofuran ring system are almost coplanar, the mean deviation from the C1–C8/O1 mean plane being 0.0102 (2) A˚ . The benzofuran system and its hydroxy-phenyl substituent are inclined at a dihedral angle of 33.5 (1),

with a C4—O1—C1—C9 torsion angle of 179.78 (12). The

angles about C1 are significantly distorted from trigonal geometry (Table 1). In particular, the widening of the C2— C1—C9 angle [136.80 (16)] may reflect steric interaction

beween the hydroxyphenyl and ethanone substituents. In the crystal structure, O—H O hydrogen bonds link adjacent molecules into centrosymmetric dimers (Table 2). An intermolecular -stacking interaction, with a centroid– centroid distance of 3.566 (2) A˚ , between the furan ring and the fused benzene ring of an adjacent molecule, forms stacks along theaaxis (Fig. 2).

Experimental

The title compound was prepared according to the procedure of Jurd (1964). Suitable crystals were obtained by evaporation of an ethyl acetate/hexane (1:1v/v) solution (m.p. 446 K).

Crystal data

C18H16O5

Mr= 312.32

Monoclinic,P21=a

a= 7.8442 (12) A˚

b= 18.365 (3) A˚

c= 10.7516 (18) A˚

= 105.781 (7)

V= 1490.5 (4) A˚3

Z= 4

Dx= 1.392 Mg m 3

MoKradiation

= 0.10 mm1

(2)

Data collection

Rigaku Saturn diffractometer

!scans

Absorption correction: multi-scan (REQAB; Jacobson, 1998)

Tmin= 0.974,Tmax= 0.980

9260 measured reflections 3401 independent reflections 2251 reflections withI> 2(I)

Rint= 0.061

max= 27.5

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.048

wR(F2) = 0.147

S= 1.04 3401 reflections 214 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0789P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.35 e A˚

3

min=0.30 e A˚

3

Table 1

Selected bond and torsion angles ().

O1—C1—C2 110.54 (14) O1—C1—C9 112.66 (14)

C2—C1—C9 136.80 (16)

[image:2.610.314.562.71.258.2]

C4—O1—C1—C9 179.78 (12)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O2—H2 O3i 0.94 (3) 1.85 (3) 2.781 (2) 170 (3)

Symmetry code: (i)xþ1;yþ1;zþ1.

All H atoms were positioned geometrically and refined as riding (C—H = 0.93–0.96 A˚ ); for the CH and CH2groups, Uiso(H) values

were set equal to 1.2Ueq(C) [1.5Ueq(C) for the methyl groups].

Data collection:CrystalClear(Molecular Structure Corporation & Rigaku, 1999); cell refinement: CrystalClear; data reduction: Crys-talStructure(Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97(Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: CrystalStructure.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Jacobson, R. (1998).REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.

Jurd, L. (1964).J. Org. Chem.29, 2602–2605.

Molecular Structure Corporation & Rigaku (1999). CrystalClear. Version 1.3.6. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku, 3-9-12 Akishima, Tokyo, Japan.

Rigaku/MSC (2005).CrystalStructure. Version 3.7.0. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA .

Sheldrick, G. M. (1990).Acta Cryst.A46, 467–473.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Figure 2

The crystal packing of (I), viewed approximately down the a axis. Hydrogen bonds are shown as dashed lines.

Figure 1

[image:2.610.316.564.299.505.2]
(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2385–o2386

supporting information

Acta Cryst. (2006). E62, o2385–o2386 [https://doi.org/10.1107/S160053680601734X]

1-[2-(4-Hydroxyphenyl)-4,6-dimethoxy-1-benzofuran-3-yl]ethanone

Xiao-Xiao Li, Yu-Ping Wei, Ye-Fei Nan, Chang-Hua Hua and Liang-Dong Sun

1-[4,6-Dimethoxy-2-(4-hydroxyphenyl)-1-benzofuran-3-yl]ethanone

Crystal data

C18H16O5

Mr = 312.32 Monoclinic, P21/a

Hall symbol: -P 2yab a = 7.8442 (12) Å b = 18.365 (3) Å c = 10.7516 (18) Å β = 105.781 (7)° V = 1490.5 (4) Å3

Z = 4

F(000) = 656.00 Dx = 1.392 Mg m−3

Melting point: 446 K

Mo radiation, λ = 0.71070 Å Cell parameters from 2508 reflections θ = 3.1–27.5°

µ = 0.10 mm−1

T = 294 K Block, colorless 0.26 × 0.24 × 0.20 mm

Data collection

Rigaku Saturn diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 7.31 pixels mm-1

ω scans

Absorption correction: multi-scan (REQAB; Jacobson, 1998) Tmin = 0.974, Tmax = 0.980

9260 measured reflections 3401 independent reflections 2251 reflections with I > 2σ(I) Rint = 0.061

θmax = 27.5°, θmin = 3.1°

h = −10→10 k = −16→23 l = −12→13

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.048

wR(F2) = 0.147

S = 1.04 3401 reflections 214 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0789P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.35 e Å−3

(4)

Special details

Experimental. IR (KBr, cm-1): 3208, 2916, 1631, 1586; 1H NMR (CD

3COCD3): δ 7.673–7.655 (m, 2 H), 6.948–6.930 (m,

2H), 6.792–6.788 (d, 1H), 6.484–6.480 (d, 1H), 3.944 (s, 3H), 3.878 (s, 3H), 3.454 (s, 1H), 2.556–2.554 (d, 3 H). Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.06237 (15) 0.34041 (6) 0.09951 (10) 0.0394 (3)

O2 0.3160 (2) 0.65123 (7) 0.30923 (16) 0.0601 (4)

H2 0.378 (4) 0.6507 (15) 0.398 (3) 0.112 (11)*

O3 0.49617 (18) 0.33356 (8) 0.43245 (13) 0.0602 (4)

O4 −0.17940 (19) 0.11923 (7) −0.12270 (13) 0.0592 (4)

O5 0.27885 (16) 0.11544 (7) 0.26779 (12) 0.0483 (4)

C1 0.1902 (2) 0.35238 (9) 0.21353 (16) 0.0365 (4)

C2 0.2566 (2) 0.28712 (9) 0.27017 (15) 0.0351 (4)

C3 0.1613 (2) 0.23011 (9) 0.18406 (15) 0.0344 (4)

C4 0.0457 (2) 0.26642 (9) 0.08197 (15) 0.0356 (4)

C5 −0.0721 (2) 0.23581 (10) −0.02554 (15) 0.0410 (4)

H5 −0.1458 0.2637 −0.0905 0.049*

C6 −0.0712 (2) 0.16098 (10) −0.02834 (16) 0.0415 (4)

C7 0.0446 (2) 0.12027 (10) 0.06927 (16) 0.0412 (4)

H7 0.0428 0.0697 0.0634 0.049*

C8 0.1616 (2) 0.15328 (9) 0.17406 (15) 0.0372 (4)

C9 0.2198 (2) 0.42969 (9) 0.24337 (15) 0.0366 (4)

C10 0.2648 (2) 0.45773 (10) 0.36872 (16) 0.0442 (4)

H10 0.2742 0.4263 0.4380 0.053*

C11 0.2953 (2) 0.53074 (10) 0.39200 (16) 0.0454 (5)

H11 0.3250 0.5481 0.4764 0.054*

C12 0.2820 (2) 0.57862 (10) 0.29026 (17) 0.0422 (4)

C13 0.2297 (2) 0.55274 (10) 0.16481 (17) 0.0473 (5)

H13 0.2146 0.5849 0.0958 0.057*

C14 0.2000 (2) 0.47933 (10) 0.14195 (16) 0.0424 (4)

H14 0.1660 0.4625 0.0572 0.051*

C15 0.3968 (2) 0.28167 (10) 0.39254 (16) 0.0397 (4)

C16 0.4238 (3) 0.21487 (12) 0.4729 (2) 0.0642 (6)

H16A 0.5219 0.2219 0.5479 0.077*

H16B 0.4483 0.1746 0.4235 0.077*

H16C 0.3187 0.2048 0.4993 0.077*

C17 −0.2939 (3) 0.15712 (12) −0.2296 (2) 0.0719 (7)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2385–o2386

H17B −0.2239 0.1853 −0.2727 0.086*

H17C −0.3707 0.1889 −0.1988 0.086*

C18 0.2729 (3) 0.03830 (11) 0.26189 (19) 0.0598 (6)

H18A 0.3621 0.0186 0.3335 0.072*

H18B 0.2942 0.0223 0.1824 0.072*

H18C 0.1583 0.0218 0.2657 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0430 (6) 0.0320 (7) 0.0361 (7) −0.0027 (5) −0.0010 (5) −0.0024 (5)

O2 0.0837 (10) 0.0306 (7) 0.0554 (9) −0.0051 (7) 0.0009 (8) −0.0048 (6)

O3 0.0586 (8) 0.0463 (9) 0.0592 (9) −0.0065 (7) −0.0122 (7) −0.0075 (6)

O4 0.0719 (9) 0.0381 (8) 0.0496 (8) −0.0084 (7) −0.0138 (7) −0.0059 (6)

O5 0.0532 (7) 0.0344 (7) 0.0479 (8) 0.0051 (6) −0.0021 (6) 0.0016 (5)

C1 0.0376 (8) 0.0362 (10) 0.0322 (9) −0.0031 (7) 0.0034 (7) −0.0030 (7)

C2 0.0363 (8) 0.0328 (9) 0.0345 (9) −0.0032 (7) 0.0067 (7) −0.0024 (6)

C3 0.0327 (8) 0.0336 (9) 0.0358 (9) −0.0041 (7) 0.0073 (7) −0.0023 (7)

C4 0.0365 (8) 0.0323 (9) 0.0364 (9) −0.0041 (7) 0.0068 (7) −0.0025 (7)

C5 0.0436 (9) 0.0378 (10) 0.0352 (9) −0.0026 (7) 0.0000 (7) −0.0020 (7)

C6 0.0444 (9) 0.0379 (10) 0.0371 (10) −0.0078 (8) 0.0028 (7) −0.0066 (7)

C7 0.0470 (9) 0.0296 (9) 0.0439 (10) −0.0030 (7) 0.0070 (8) −0.0028 (7)

C8 0.0369 (8) 0.0348 (9) 0.0385 (10) 0.0011 (7) 0.0080 (7) 0.0007 (7)

C9 0.0366 (8) 0.0336 (9) 0.0362 (9) −0.0011 (7) 0.0043 (7) −0.0033 (7)

C10 0.0563 (11) 0.0368 (9) 0.0351 (10) 0.0013 (8) 0.0049 (8) 0.0003 (7)

C11 0.0550 (10) 0.0401 (10) 0.0346 (9) 0.0010 (8) 0.0013 (8) −0.0079 (8)

C12 0.0459 (9) 0.0303 (9) 0.0452 (10) −0.0014 (7) 0.0037 (8) −0.0052 (7)

C13 0.0615 (11) 0.0375 (10) 0.0395 (10) 0.0011 (9) 0.0081 (8) 0.0037 (8)

C14 0.0506 (10) 0.0398 (10) 0.0321 (9) −0.0008 (8) 0.0032 (8) −0.0043 (7)

C15 0.0366 (8) 0.0391 (10) 0.0398 (10) −0.0004 (7) 0.0043 (7) −0.0071 (7)

C16 0.0713 (14) 0.0532 (13) 0.0510 (12) −0.0120 (11) −0.0124 (10) 0.0078 (9) C17 0.0864 (16) 0.0539 (14) 0.0505 (13) −0.0052 (12) −0.0238 (11) −0.0052 (10) C18 0.0692 (13) 0.0333 (11) 0.0682 (14) 0.0064 (10) 0.0037 (11) 0.0066 (9)

Geometric parameters (Å, º)

O1—C4 1.3732 (19) C9—C10 1.396 (2)

O1—C1 1.3742 (19) C9—C14 1.397 (2)

O2—C12 1.364 (2) C10—C11 1.373 (2)

O2—H2 0.94 (3) C10—H10 0.9300

O3—C15 1.232 (2) C11—C12 1.385 (3)

O4—C6 1.367 (2) C11—H11 0.9300

O4—C17 1.432 (2) C12—C13 1.383 (2)

O5—C8 1.357 (2) C13—C14 1.379 (2)

O5—C18 1.418 (2) C13—H13 0.9300

C1—C2 1.380 (2) C14—H14 0.9300

C1—C9 1.460 (2) C15—C16 1.482 (3)

(6)

C2—C15 1.471 (2) C16—H16B 0.9600

C3—C4 1.389 (2) C16—H16C 0.9600

C3—C8 1.415 (2) C17—H17A 0.9600

C4—C5 1.388 (2) C17—H17B 0.9600

C5—C6 1.375 (2) C17—H17C 0.9600

C5—H5 0.9300 C18—H18A 0.9600

C6—C7 1.403 (2) C18—H18B 0.9600

C7—C8 1.384 (2) C18—H18C 0.9600

C7—H7 0.9300

C4—O1—C1 107.45 (12) C10—C11—C12 120.27 (16)

C12—O2—H2 99.6 (17) C10—C11—H11 119.9

C6—O4—C17 116.78 (16) C12—C11—H11 119.9

C8—O5—C18 118.10 (14) O2—C12—C13 118.41 (17)

O1—C1—C2 110.54 (14) O2—C12—C11 122.19 (16)

O1—C1—C9 112.66 (14) C13—C12—C11 119.39 (17)

C2—C1—C9 136.80 (16) C14—C13—C12 120.05 (17)

C1—C2—C3 106.02 (14) C14—C13—H13 120.0

C1—C2—C15 123.65 (15) C12—C13—H13 120.0

C3—C2—C15 130.33 (15) C13—C14—C9 121.42 (16)

C4—C3—C8 115.64 (14) C13—C14—H14 119.3

C4—C3—C2 105.55 (15) C9—C14—H14 119.3

C8—C3—C2 138.70 (15) O3—C15—C2 120.49 (17)

O1—C4—C5 122.15 (15) O3—C15—C16 117.42 (17)

O1—C4—C3 110.44 (13) C2—C15—C16 122.10 (15)

C5—C4—C3 127.41 (17) C15—C16—H16A 109.5

C6—C5—C4 114.65 (15) C15—C16—H16B 109.5

C6—C5—H5 122.7 H16A—C16—H16B 109.5

C4—C5—H5 122.7 C15—C16—H16C 109.5

O4—C6—C5 124.83 (16) H16A—C16—H16C 109.5

O4—C6—C7 113.67 (17) H16B—C16—H16C 109.5

C5—C6—C7 121.50 (15) O4—C17—H17A 109.5

C8—C7—C6 121.79 (17) O4—C17—H17B 109.5

C8—C7—H7 119.1 H17A—C17—H17B 109.5

C6—C7—H7 119.1 O4—C17—H17C 109.5

O5—C8—C7 123.06 (16) H17A—C17—H17C 109.5

O5—C8—C3 117.99 (14) H17B—C17—H17C 109.5

C7—C8—C3 118.94 (15) O5—C18—H18A 109.5

C10—C9—C14 117.27 (16) O5—C18—H18B 109.5

C10—C9—C1 123.66 (15) H18A—C18—H18B 109.5

C14—C9—C1 119.06 (14) O5—C18—H18C 109.5

C11—C10—C9 121.48 (16) H18A—C18—H18C 109.5

C11—C10—H10 119.3 H18B—C18—H18C 109.5

C9—C10—H10 119.3

C4—O1—C1—C2 −0.05 (17) C18—O5—C8—C3 176.57 (14)

C4—O1—C1—C9 −179.78 (12) C6—C7—C8—O5 −177.92 (15)

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o2385–o2386

C9—C1—C2—C3 179.46 (17) C4—C3—C8—O5 176.54 (14)

O1—C1—C2—C15 179.30 (14) C2—C3—C8—O5 0.9 (3)

C9—C1—C2—C15 −1.1 (3) C4—C3—C8—C7 −2.8 (2)

C1—C2—C3—C4 0.33 (17) C2—C3—C8—C7 −178.48 (17)

C15—C2—C3—C4 −179.09 (15) O1—C1—C9—C10 146.22 (16)

C1—C2—C3—C8 176.29 (18) C2—C1—C9—C10 −33.4 (3)

C15—C2—C3—C8 −3.1 (3) O1—C1—C9—C14 −32.8 (2)

C1—O1—C4—C5 −179.37 (15) C2—C1—C9—C14 147.61 (19)

C1—O1—C4—C3 0.27 (16) C14—C9—C10—C11 −2.5 (3)

C8—C3—C4—O1 −177.42 (12) C1—C9—C10—C11 178.45 (16)

C2—C3—C4—O1 −0.37 (17) C9—C10—C11—C12 −0.1 (3)

C8—C3—C4—C5 2.2 (2) C10—C11—C12—O2 −178.15 (17)

C2—C3—C4—C5 179.25 (15) C10—C11—C12—C13 3.0 (3)

O1—C4—C5—C6 179.63 (14) O2—C12—C13—C14 177.82 (16)

C3—C4—C5—C6 0.1 (2) C11—C12—C13—C14 −3.3 (3)

C17—O4—C6—C5 3.9 (3) C12—C13—C14—C9 0.7 (3)

C17—O4—C6—C7 −176.34 (18) C10—C9—C14—C13 2.2 (3)

C4—C5—C6—O4 178.07 (16) C1—C9—C14—C13 −178.71 (15)

C4—C5—C6—C7 −1.7 (2) C1—C2—C15—O3 −20.5 (3)

O4—C6—C7—C8 −178.77 (15) C3—C2—C15—O3 158.83 (17)

C5—C6—C7—C8 1.0 (3) C1—C2—C15—C16 159.00 (18)

C18—O5—C8—C7 −4.1 (2) C3—C2—C15—C16 −21.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H2···O3i 0.94 (3) 1.85 (3) 2.781 (2) 170 (3)

Figure

Table 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical