• No results found

[N,N′ Bis(2 meth­oxy­carbonyl 3 oxo­butyl­­idene)­ethyl­enediaminato κ4O,N,N′,O′]­cobalt(II)

N/A
N/A
Protected

Academic year: 2020

Share "[N,N′ Bis(2 meth­oxy­carbonyl 3 oxo­butyl­­idene)­ethyl­enediaminato κ4O,N,N′,O′]­cobalt(II)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2004). E60, m149±m150 DOI: 10.1107/S1600536803029520 Takashiro Akitsuet al. C14H18CoN2O6

m149

metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[

N,N

000

-Bis(2-methoxycarbonyl-3-oxobutylidene)-ethylenediaminato-

j

4

O,N,N

000

,

O

000

]cobalt(II)

Takashiro Akitsu,* Izumi Iwakura, Hirotaka Tanaka, Taketo Ikeno, Yasuaki Einaga and Tohru Yamada

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: akitsu@chem.keio.ac.jp

Key indicators Single-crystal X-ray study

T= 298 K

Mean(C±C) = 0.004 AÊ Disorder in main residue

Rfactor = 0.041

wRfactor = 0.135

Data-to-parameter ratio = 11.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, [Co(C14H18N2O6)], is the ®rst structurally

characterized example of a -ketoiminato CoII complex

without axial ligands. It adopts a square-planarcis-[CoN2O2]

coordination geometry, and lies on a mirror plane. The planar complexes are stacked along 21 screw axes parallel to b to

form columns, the Co Co distance in the column being 3.5213 (2) AÊ.

Comment

-Ketoiminato CoII complexes have been the subject of

extensive study because of their powerful utility as catalysts for borohydride reduction (Ohtsukaet al., 2001), regioselec-tive conversion of ,-unsaturated carboxyamides (Kato & Mukaiyama, 1990) and other reactions. Furthermore, optically active-ketoiminato CoII/III (Yamada et al., 1999, 2003) and

MnIII (Nagata et al., 1994) complexes have long been

employed as chiral catalysts in asymmetric syntheses. Hence, their crystal structures, including the determination of abso-lute con®guration (Ohbaet al., 2001), have been investigated. Because of dif®culty in isolation and crystallization, studies of the crystal structures of-ketoiminato CoIIcomplexes without

axial ligands have never been undertaken. However, it was recently revealed that sublimation gave rise to single crystals suitable for X-ray structure analysis. Here we report the ®rst structural study of the CoIIcomplex of the title compound, (I).

In (I), all the non-H atoms lie on a mirror plane at y= 1 4

except for the ethylenediamine moiety, where the atom C12 is disordered over two sites. Therefore, the bulk of the molecule is planar, as shown in Fig. 1. The CoII complex has a

four-coordinate square planar cis-[CoN2O2] coordination

geometry, in which CoÐN and CoÐO bond distances are 1.836 (3) and 1.840 (3), and 1.864 (2) and 1.865 (2) AÊ, respectively (Table 1). These values are slightly shorter than those of the related CoIIIcomplexes with axial ligands. The trans-OÐCoÐN bond angles are approximately 180, and the

cis-OÐCoÐN,cis-NÐCoÐN, andcis-OÐCoÐO bond angles are approximately 90. As for the ligand of (I), the geometric parameters reported here agree with the corresponding values reported for analogous Schiff base ligands in the Cambridge Structural Database (Allen, 2002).

There is no obvious evidence of intramolecular or inter-molecular hydrogen bonds. On the other hand, adjacent

(2)

planar molecules related by the 21screw axis parallel tobare

stacked alternately with a Co Co distance of 3.5213 (2) AÊ, forming one-dimensional columns.

Experimental

The title compound, (I), was synthesized and puri®ed according to the method of Kato & Mukaiyama (1991). Red needle-like single crystals of (I) suitable for X-ray diffraction were obtained by sublimation at 473 K.

Crystal data

C14H18CoN2O6 Mr= 369.23

Orthorhombic,Pnma a= 14.791 (2) AÊ

b= 6.939 (1) AÊ

c= 15.424 (3) AÊ

V= 1583.0 (4) AÊ3 Z= 4

Dx= 1.549 Mg mÿ3

Mo Kradiation Cell parameters from 25

re¯ections

= 10.0±12.1 = 1.12 mmÿ1 T= 298.2 K

Fragment cut from needle, red 0.500.230.20 mm

Data collection

Rigaku AFC-7Rdiffractometer

!±2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.742,Tmax= 0.800

2447 measured re¯ections 1963 independent re¯ections 1817 re¯ections withI> 2(I)

Rint= 0.050

max= 27.5 h=ÿ7!19

k=ÿ9!3

l=ÿ20!0 3 standard re¯ections

every 150 re¯ections intensity decay: 0.6%

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.041 wR(F2) = 0.135 S= 1.05 1817 re¯ections 142 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.44 e AÊÿ3

min=ÿ0.78 e AÊÿ3 Table 1

Selected geometric parameters (AÊ,).

Co1ÐO1 1.864 (2) Co1ÐO4 1.865 (2) Co1ÐN1 1.840 (3) Co1ÐN2 1.836 (3)

N1ÐC5 1.477 (5) N2ÐC12 1.502 (5) C5ÐC12 1.418 (6)

O1ÐCo1ÐO4 88.04 (10) O1ÐCo1ÐN1 92.6 (1) O1ÐCo1ÐN2 179.5 (1) O4ÐCo1ÐN1 179.4 (1) O4ÐCo1ÐN2 92.5 (1)

N1ÐCo1ÐN2 86.8 (1) Co1ÐN1ÐC5 113.4 (2) Co1ÐN2ÐC12 112.5 (2) N1ÐC5ÐC12 111.4 (3) N2ÐC12ÐC5 108.7 (3) N1ÐC5ÐC12ÐN2 27.3 (3)

Since the intensity of diffraction was considerably weak, we did not use all the independent re¯ections for the re®nement. There is positional disorder of the atom C12 over two sites, which are equally occupied and are related by a mirror. It was assumed that the ethylenediamine moiety has two possible conformations, namely C5(H4A/H4B)±C12(H12/H13) and C5(H4Ai/H4Bi)±C12i(H12i/H13i) [symmetry code: (i)x,1

2ÿy, z]. The N1ÐC5ÐC12ÐN2 torsion angle

of 27.3 (3)is within the normal range for the ethylenediamine ligand.

All H atoms were placed at calculated positions (CÐH = 0.95± 0.97 AÊ), and allowed for as riding, with Uiso(H) = 1.2Ueq(parent atom).

Data collection: WinAFC Diffractometer Control Software

(Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corpor-ation, 2001); program(s) used to solve structure:SIR92 (Altomareet al., 1994); program(s) used to re®ne structure: SHELXL97 (Shel-drick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:TEXSAN.

This work was supported by a Grant-in-Aid for the 21st Century COE program `KEIO Life Conjugate Chemistry' from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

Allen, F. H. (2002).Acta Cryst.B58, 380±288.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kato, K. & Mukaiyama, T. (1990).Chem. Lett.pp. 1395±1398. Kato, K. & Mukaiyama, T. (1991).Bull. Chem. Soc. Jpn,64, 2948±2953. Molecular Structure Corporation (2001).TEXSAN.Version 1.11. MSC, 9009

New Trails Drive, The Woodlands, TX 77381±5209, USA.

Nagata, T., Imagawa, K., Yamada, T., Mukaiyama, T. (1994).Inorg. Chim. Acta,220, 283±287.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Ohba, S., Nagata, T., Yamada, T. (2001).Acta Cryst.E57, m124±m126. Ohtsuka, Y., Koyasu, K., Miyazaki, D., Ikeno, T. & Yamada, T. (2001).Org.

Lett.3, 3421±3424.

Rigaku (1999).WinAFC Diffractometer Control Software. Rigaku Corpora-tion, Tokyo, Japan.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Yamada, T., Nagata, T., Ikeno, T., Ohtsuka, Y., Sagara, A. & Mukaiyama, T.

(1999).Inorg. Chim. Acta,296, 86±93.

Yamada, T., Nagata, T., Sugi, K. D., Yorozu, K., Ikeno, T., Ohtsuka, Y., Miyazaki, D. & Mukaiyama, T. (2003).Chem. Eur. J.9, 4485±4509.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, m149–m150

supporting information

Acta Cryst. (2004). E60, m149–m150 [https://doi.org/10.1107/S1600536803029520]

[

N,N

-Bis(2-methoxycarbonyl-3-oxobutylidene)ethylenediaminato-κ

4

O,N,N

,

O

]cobalt(II)

Takashiro Akitsu, Izumi Iwakura, Hirotaka Tanaka, Taketo Ikeno, Yasuaki Einaga and Tohru

Yamada

(I)

Crystal data C14H18CoN2O6

Mr = 369.23

Orthorhombic, Pnma Hall symbol: -P 2ac 2n a = 14.791 (2) Å b = 6.939 (1) Å c = 15.424 (3) Å V = 1583.0 (4) Å3

Z = 4

F(000) = 764.0 Dx = 1.549 Mg m−3

Mo radiation, λ = 0.7107 Å Cell parameters from 25 reflections θ = 10.0–12.1°

µ = 1.12 mm−1

T = 298 K Needle, red

0.50 × 0.23 × 0.20 mm

Data collection Rigaku AFC-7R

diffractometer ω–2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.742, Tmax = 0.800

2447 measured reflections 1963 independent reflections

1581 reflections with I > 2σ(I) Rint = 0.050

θmax = 27.5°

h = −7→19 k = −9→3 l = −20→0

3 standard reflections every 150 reflections intensity decay: 0.6%

Refinement Refinement on F2

R[F2 > 2σ(F2)] = 0.041

wR(F2) = 0.135

S = 1.05 1581 reflections 142 parameters

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.1P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.44 e Å−3

Δρmin = −0.78 e Å−3

Special details

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R

-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for

(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Co1 0.50923 (3) 0.2500 0.98257 (3) 0.0360 (2) O1 0.5773 (2) 0.2500 0.8809 (2) 0.0449 (6) O2 0.4834 (2) 0.2500 0.6226 (2) 0.070 (1) O3 0.3441 (2) 0.2500 0.6744 (2) 0.0690 (9) O4 0.6176 (2) 0.2500 1.0443 (1) 0.0443 (5) O5 0.6521 (3) 0.2500 1.3160 (2) 0.106 (2) O6 0.5053 (2) 0.2500 1.3285 (2) 0.078 (1) N1 0.4016 (2) 0.2500 0.9228 (2) 0.0415 (6) N2 0.4412 (2) 0.2500 1.0821 (2) 0.0467 (7) C1 0.6280 (3) 0.2500 0.7369 (3) 0.082 (2) C2 0.5518 (2) 0.2500 0.8010 (2) 0.0435 (7) C3 0.4606 (2) 0.2500 0.7764 (2) 0.0385 (7) C4 0.3906 (2) 0.2500 0.8393 (2) 0.0433 (7) C5 0.3214 (3) 0.2500 0.9798 (3) 0.078 (2) C6 0.4351 (2) 0.2500 0.6841 (2) 0.0446 (8) C7 0.3115 (3) 0.2500 0.5870 (3) 0.082 (2) C8 0.7296 (3) 0.2500 1.1516 (3) 0.076 (2) C9 0.6317 (2) 0.2500 1.1266 (2) 0.0445 (7) C10 0.5621 (2) 0.2500 1.1877 (2) 0.0425 (7) C11 0.4700 (3) 0.2500 1.1614 (2) 0.0496 (8)

C12 0.3443 (3) 0.1965 (7) 1.0658 (3) 0.048 (2) 0.50 C13 0.5810 (3) 0.2500 1.2824 (2) 0.0551 (9)

C14 0.5142 (4) 0.2500 1.4220 (3) 0.084 (2) H1 0.6650 0.1382 0.7449 0.1042* H2 0.6056 0.2500 0.6791 0.1042* H3 0.3292 0.2500 0.8184 0.0508*

H4A 0.2951 0.3755 0.9805 0.0929* 0.50 H4B 0.2777 0.1609 0.9578 0.0929* 0.50 H5 0.2468 0.2500 0.5860 0.0967*

H6 0.3316 0.1371 0.5573 0.0967* H7 0.7353 0.2500 1.2140 0.0926* H8 0.7595 0.1393 1.1292 0.0926* H9 0.4246 0.2500 1.2060 0.0580* H10 0.4573 0.2500 1.4495 0.1023* H11 0.5485 0.1393 1.4401 0.1023*

H12 0.3357 0.0617 1.0738 0.0252* 0.50 H13 0.3057 0.2635 1.1061 0.0252* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, m149–m150

O4 0.035 (1) 0.067 (1) 0.031 (1) 0.0000 0.0019 (9) 0.0000 O5 0.072 (2) 0.207 (5) 0.040 (2) 0.0000 −0.011 (2) 0.0000 O6 0.084 (3) 0.125 (3) 0.027 (1) 0.0000 0.007 (1) 0.0000 N1 0.027 (1) 0.062 (2) 0.035 (1) 0.0000 0.008 (1) 0.0000 N2 0.034 (1) 0.072 (2) 0.035 (1) 0.0000 0.007 (1) 0.0000 C1 0.035 (2) 0.170 (5) 0.040 (2) 0.0000 0.009 (2) 0.0000 C2 0.034 (2) 0.064 (2) 0.032 (2) 0.0000 0.006 (1) 0.0000 C3 0.033 (1) 0.051 (2) 0.032 (2) 0.0000 0.002 (1) 0.0000 C4 0.032 (2) 0.060 (2) 0.037 (2) 0.0000 0.001 (1) 0.0000 C5 0.030 (2) 0.162 (5) 0.043 (2) 0.0000 0.011 (1) 0.0000 C6 0.038 (2) 0.061 (2) 0.035 (2) 0.0000 0.001 (1) 0.0000 C7 0.049 (2) 0.158 (5) 0.038 (2) 0.0000 −0.016 (2) 0.0000 C8 0.045 (2) 0.137 (5) 0.046 (2) 0.0000 −0.008 (2) 0.0000 C9 0.042 (2) 0.052 (2) 0.040 (2) 0.0000 −0.006 (1) 0.0000 C10 0.047 (2) 0.050 (2) 0.030 (2) 0.0000 0.001 (1) 0.0000 C11 0.047 (2) 0.068 (2) 0.034 (2) 0.0000 0.011 (1) 0.0000 C12 0.033 (2) 0.068 (4) 0.042 (2) −0.002 (2) 0.013 (2) 0.002 (2) C13 0.066 (2) 0.065 (2) 0.034 (2) 0.0000 −0.001 (2) 0.0000 C14 0.113 (4) 0.115 (5) 0.025 (2) 0.0000 0.003 (2) 0.0000

Geometric parameters (Å, º)

Co1—O1 1.864 (2) C4—H3 0.965 Co1—O4 1.865 (2) C5—C12 1.418 (6) Co1—N1 1.840 (3) C5—H4A 0.954 Co1—N2 1.836 (3) C5—H4Ai 0.954

O1—C2 1.288 (4) C5—H4B 0.957 O2—C6 1.187 (4) C5—H4Bi 0.957

O3—C6 1.354 (4) C7—H5 0.956 O3—C7 1.431 (5) C7—H6 0.955 O4—C9 1.286 (4) C7—H6i 0.955

O5—C13 1.172 (6) C8—C9 1.499 (6) O6—C13 1.326 (5) C8—H7 0.966 O6—C14 1.448 (5) C8—H8 0.951 N1—C4 1.299 (4) C8—H8i 0.951

N1—C5 1.477 (5) C9—C10 1.395 (5) N2—C11 1.295 (4) C10—C11 1.421 (5) N2—C12 1.502 (5) C10—C13 1.486 (5) C1—C2 1.500 (5) C11—H9 0.961 C1—H1 0.957 C12—H12 0.952 C1—H1i 0.957 C12—H13 0.964

C1—H2 0.951 C14—H10 0.943 C2—C3 1.401 (5) C14—H11 0.962 C3—C4 1.418 (4) C14—H11i 0.962

C3—C6 1.472 (4)

(6)

O1—Co1—N2 179.5 (1) O3—C7—H5 110.6 O4—Co1—N1 179.4 (1) O3—C7—H6 110.3 O4—Co1—N2 92.5 (1) O3—C7—H6i 110.3

N1—Co1—N2 86.8 (1) H5—C7—H6 107.7 Co1—O1—C2 130.3 (2) H5—C7—H6i 107.7

C6—O3—C7 116.0 (3) H6—C7—H6i 110.2

Co1—O4—C9 130.0 (2) C9—C8—H7 109.8 C13—O6—C14 117.2 (4) C9—C8—H8 110.9 Co1—N1—C4 127.2 (2) C9—C8—H8i 110.9

Co1—N1—C5 113.4 (2) H7—C8—H8 108.8 C4—N1—C5 119.4 (3) H7—C8—H8i 108.8

Co1—N2—C11 127.6 (3) H8—C8—H8i 107.7

Co1—N2—C12 112.5 (2) O4—C9—C8 114.1 (3) C11—N2—C12 118.2 (3) O4—C9—C10 123.2 (3) C2—C1—H1 110.1 C8—C9—C10 122.7 (3) C2—C1—H1i 110.1 C9—C10—C11 120.9 (3)

C2—C1—H2 110.8 C9—C10—C13 121.6 (3) H1—C1—H1i 108.2 C11—C10—C13 117.4 (3)

H1—C1—H2 108.8 N2—C11—C10 125.8 (3) H1i—C1—H2 108.8 N2—C11—H9 116.4

O1—C2—C1 114.3 (3) C10—C11—H9 117.8 O1—C2—C3 122.7 (3) N2—C12—C5 108.7 (3) C1—C2—C3 123.0 (3) N2—C12—H12 110.4 C2—C3—C4 121.1 (3) N2—C12—H13 109.7 C2—C3—C6 120.6 (3) C5—C12—H12 110.3 C4—C3—C6 118.3 (3) C5—C12—H13 109.6 N1—C4—C3 126.0 (3) H12—C12—H13 108.1 N1—C4—H3 116.7 O5—C13—O6 121.3 (4) C3—C4—H3 117.4 O5—C13—C10 127.1 (4) N1—C5—C12 111.4 (3) O6—C13—C10 111.6 (3) N1—C5—H4A 109.5 O6—C14—H10 111.6 N1—C5—H4B 109.3 O6—C14—H11 109.7 C12—C5—H4A 109.1 O6—C14—H11i 109.7

C12—C5—H4B 108.9 H10—C14—H11 109.9 H4A—C5—H4B 108.5 H10—C14—H11i 109.9

O2—C6—O3 120.6 (3) H11—C14—H11i 105.9

(7)

supporting information

sup-5 Acta Cryst. (2004). E60, m149–m150

O1—C2—C3—C4 0.0 N2—Co1—N1—C5 0.0000 (1) O1—C2—C3—C6 180.0 N2—C11—C10—C9 0.0000 (1) O2—C6—O3—C7 0.0000 (2) N2—C11—C10—C13 −180.0 O2—C6—C3—C2 0.0000 (2) C1—C2—C3—C4 −180.0 O2—C6—C3—C4 −180.0 C1—C2—C3—C6 0.0 O3—C6—C3—C2 180.0 C3—C4—N1—C5 180.0 O3—C6—C3—C4 0.0000 (2) C3—C6—O3—C7 180.0 O4—Co1—O1—C2 −180.0 C4—N1—C5—C12 163.7 (2) O4—Co1—N2—C11 0.0000 (1) C5—C12—N2—C11 166.1 (2) O4—Co1—N2—C12 −164.5 (2) C8—C9—C10—C11 180.0 O4—C9—C10—C11 0.0000 (2) C8—C9—C10—C13 0.0000 (3) O4—C9—C10—C13 180.0 C10—C11—N2—C12 163.7 (2) O5—C13—O6—C14 0.0000 (1) C10—C13—O6—C14 −180.0 O5—C13—C10—C9 0.0

References

Related documents

(Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software ; data reduction: TEXSAN (Molecular Structure Corpora- tion, 1989); program(s) used to solve structure:

(Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corpora- tion, 2001); program(s) used to solve structure: SIR

(Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software ; data reduction: TEXSAN (Molecular Structure Corpora- tion, 2001); program(s) used to solve structure: SIR

(Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software ; data reduction: TEXSAN (Molecular Structure Corpora- tion, 2001); program(s) used to solve structure: SIR

(Rigaku, 1985); cell re®nement: Rigaku/AFC Diffractometer Control Software ; data reduction: TEXSAN (Molecular Structure Corpor- ation and Rigaku, 2000); program(s) used to

(Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software ; data reduction: TEXSAN (Molecular Structure Corpora- tion, 2001); program(s) used to solve structure: SIR

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software ; data reduction: TEXSAN (Molecular Structure

Data collection: WinAFC (Rigaku Corporation, 1999); cell re®nement: WinAFC ; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR