• No results found

Bis(μ salicyl­ato κ3O,O′:O′)­bis­­[(imidazole κN3)(salicyl­ato κ2O,O′)­cadmium(II)]

N/A
N/A
Protected

Academic year: 2020

Share "Bis(μ salicyl­ato κ3O,O′:O′)­bis­­[(imidazole κN3)(salicyl­ato κ2O,O′)­cadmium(II)]"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m596

Li-Hua Huoet al. [Cd2(C7H5O3)4(C3H4N2)4] DOI: 10.1107/S1600536804008700 Acta Cryst.(2004). E60, m596±m598 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(

l

-salicylato-

j

3

O

,

O

000

:

O

000

)bis[(imidazole-

j

N

3

)-(salicylato-

j

2

O

,

O

000

)cadmium(II)]

Li-Hua Huo, Shan Gao,* Chang-Sheng Gu, Zhen-Zhong Lu, Hui Zhao and Jing-Gui Zhao

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.026

wRfactor = 0.062

Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

Each Cd atom in the title centrosymmetric dinuclear complex, [Cd2(Hsal)4(Him)4] (where Hsalÿis the salicylate monoanion, C7H5O3ÿ, and Him is imidazole, C3H4N2), shows a penta-gonal±bipyramidal geometry. Five carboxylate O atoms of different salicylates and two imidazole N atoms are coordi-nated to each Cd atom. The two Cd atoms are bridged by two tridentate chelating salicylate ligands, and the Cd Cd distance is 3.86 (3) AÊ. A two-dimensional layer structure is formedviaintermolecular hydrogen bonds.

Comment

Many structures of transition metal complexes containing the salicylate ligand have been reported. In the structural inves-tigation of these complexes, it has been found that salicylic acid functions either as a monodentate ligand (Hanic & Michalov, 1960) or as a multidentate ligand (Vincent et al., 1986), with versatile binding modes and coordination. The structures of the dinuclear complexes [M(2 -Hsal)(H-sal)(L)2]2 (whereLis a water molecule or anN-heterocycle ligand) have only been reported for the complexes [Mn(Hsal)2(H2O)2]2 (Devereux et al., 1995) and [Cd(Hsal)2(H2O)2]2 (Charles et al., 1983). Recently, we obtained the title novel dinuclear cadmium complex [Cd(2± Hsal)(Hsal)(Him)2]2, (I), by the reaction of Cd(NO3)4H2O, salicylic acid and imidazole in an aqueous solution, and its crystal structure is reported here.

As shown in Fig. 1, the crystal structure of (I) may be described as containing essentially isolated asymmetrically bridged dimers of Cd(Hsal)2(Him)2. The centre of the dimer corresponds to a crystallographic centre of symmetry. The dimer is formed by two asymmetric bridging carboxylate O atoms, with Cd1ÐO5i 2.381 (2) AÊ and CdÐO5 2.530 (2) AÊ [symmetry code: (i)ÿx, 2ÿy,ÿz]. The Cd Cd distance is 3.86 (3) AÊ.

(2)

The coordination polyhedron of each Cd atom is an approximate pentagonal bipyramid, with the ®ve carboxyl O atoms in the equatorial plane, two of which are bridging atoms (O5 and O5i). The two imidazole N atoms are in axial posi-tions, with a mean CdÐN distance of 2.246 (2) AÊ.

The stability of complex (I) in the solid state is further enhanced by intramolecular hydrogen bonding between the hydroxyl groups of the Hsalÿfunction and one carboxylate O atom of the same ligand. The hydrogen-bond distances (O O) and angles (OÐH O) are in the ranges 2.486 (2)± 2.547 (2) AÊ and 147±149, respectively. The dihedral angle between the two benzene rings is 25.7 (3), whereas the dihedral angle between the two imidazole rings is 36.9 (3). A two-dimensional layer structure is formedviaintermolecular hydrogen bonds between the H atoms of the imidazole N atoms and the O atoms of the carboxyl groups (Table 2 and Fig. 2).

Experimental

The title complex was prepared by the addition of cadmium nitrate tetrahydrate (20 mmol) to an aqueous solution of imidazole (40 mmol) and salicylic acid (40 mmol). The pH was adjusted to 6 with 0.1MNaOH and the mixed solution was stirred for 30 min at room temperature. The resulting solution was ®ltered and colourless prismatic crystals of (I) were isolated from the ®ltrate after about 7 d. Analysis calculated for C40H36Cd2N8O12: C 45.93, H 3.47, N 10.71%; found: C 45.76, H 3.42, N 10.90%.

Crystal data

[Cd2(C7H5O3)4(C3H4N2)4]

Mr= 1045.57

Triclinic,P1 a= 9.339 (2) AÊ b= 9.793 (2) AÊ c= 12.251 (3) AÊ

= 79.21 (3)

= 86.28 (3)

= 69.76 (3)

V= 1032.7 (5) AÊ3

Z= 1

Dx= 1.681 Mg mÿ3

MoKradiation Cell parameters from 9315

re¯ections

= 3.0±27.5

= 1.10 mmÿ1

T= 293 (2) K Prism, colourless 0.350.240.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin= 0.699,Tmax= 0.826 9420 measured re¯ections

4661 independent re¯ections 4211 re¯ections withI> 2(I) Rint= 0.016

max= 27.5

h=ÿ12!12 k=ÿ11!12 l=ÿ15!15

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.026

wR(F2) = 0.062

S= 1.08 4661 re¯ections 280 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0349P)2

+ 0.2931P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.80 e AÊÿ3

min=ÿ0.50 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Cd1ÐN1 2.251 (2)

Cd1ÐN3 2.232 (2)

Cd1ÐO1 2.538 (2)

Cd1ÐO2 2.390 (2)

Cd1ÐO4 2.404 (2)

Cd1ÐO5i 2.381 (2)

Cd1ÐO5 2.530 (2)

N1ÐCd1ÐO1 89.93 (7)

N1ÐCd1ÐO2 82.76 (7)

N1ÐCd1ÐO4 91.76 (7)

N1ÐCd1ÐO5 86.54 (7)

N1ÐCd1ÐO5i 90.44 (7)

N3ÐCd1ÐO1 89.10 (7)

N3ÐCd1ÐO2 93.93 (7)

N3ÐCd1ÐO4 91.57 (7)

N3ÐCd1ÐO5 96.49 (7)

N3ÐCd1ÐO5i 88.45 (7)

N3ÐCd1ÐN1 176.44 (7)

Symmetry code: (i)ÿx;2ÿy;ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O3ÐH21 O2 0.82 1.75 2.486 (2) 149

O6ÐH22 O4 0.82 1.82 2.547 (2) 147

N2ÐH23 O1ii 0.86 2.13 2.847 (3) 140

N4ÐH24 O3iii 0.86 2.03 2.884 (3) 172

Symmetry codes: (ii)ÿx;1ÿy;ÿz; (iii) 1‡x;y;z.

Acta Cryst.(2004). E60, m596±m598 Li-Hua Huoet al. [Cd2(C7H5O3)4(C3H4N2)4]

m597

metal-organic papers

Figure 1

A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed

(3)

metal-organic papers

m598

Li-Hua Huoet al. [Cd2(C7H5O3)4(C3H4N2)4] Acta Cryst.(2004). E60, m596±m598

H atoms were placed in calculated positions, with CÐH = 0.93 AÊ (aromatic), NÐH = 0.86 AÊ (imidazole) and OÐH = 0.82 AÊ (hydroxyl). All H atoms were re®ned using the riding model approximation, withUiso(H) = 1.2Ueq(C, N) andUiso(H) = 1.5Ueq(O). Data collection:RAPID-AUTO(Rigaku Corporation, 1998); cell re®nement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007), the Educational Committee Foundation of Heilongjiang Province and Heilongjiang University for supporting this work.

References

Charles, N. G., Grif®th, E. A. H., Rodesiler, P. F. & Amma, E. L. (1983).Inorg. Chem.22, 2717±2723.

Devereux, M., McCann, M., Casey, M. T., Curran, M., Ferguson, G., Cardin, C., Convery, M. & Quillet, V. (1995).J. Chem. Soc. Dalton Trans.pp. 771±776. Hanic, F. & Michalov, J. (1960).Acta Cryst.13, 299±302.

Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002).CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m596–m598

supporting information

Acta Cryst. (2004). E60, m596–m598 [https://doi.org/10.1107/S1600536804008700]

Bis(

µ

-salicylato-

κ

3

O

,

O

:

O

)bis[(imidazole-

κ

N

3

)(salicylato-

κ

2

O

,

O

)cadmium(II)]

Li-Hua Huo, Shan Gao, Chang-Sheng Gu, Zhen-Zhong Lu, Hui Zhao and Jing-Gui Zhao

Bis(µ-salicylato-κ3O,O′:O′)bis[(imidazole-κN3)(salicylato- κ2O,O′)cadmium(II)]

Crystal data

[Cd2(C7H5O3)4(C3H4N2)4]

Mr = 1045.57

Triclinic, P1 Hall symbol: -P 1 a = 9.339 (2) Å b = 9.793 (2) Å c = 12.251 (3) Å α = 79.21 (3)° β = 86.28 (3)° γ = 69.76 (3)° V = 1032.7 (5) Å3

Z = 1 F(000) = 524 Dx = 1.681 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 9315 reflections θ = 3.0–27.5°

µ = 1.10 mm−1

T = 293 K Prism, colourless 0.35 × 0.24 × 0.18 mm

Data collection

Rigaku RAXIS-RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.699, Tmax = 0.826

9420 measured reflections 4661 independent reflections 4211 reflections with I > 2σ(I) Rint = 0.016

θmax = 27.5°, θmin = 3.1°

h = −12→12 k = −11→12 l = −15→15

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.026

wR(F2) = 0.062

S = 1.08 4661 reflections 280 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0349P)2 + 0.2931P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.80 e Å−3

Δρmin = −0.50 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m596–m598

O2 −0.0677 (2) 0.7304 (2) 0.2656 (1) 0.0407 (4) O3 −0.2717 (2) 0.6765 (2) 0.3878 (2) 0.0501 (4) O4 0.2380 (2) 0.7028 (2) −0.0317 (1) 0.0441 (4) O5 0.1055 (2) 0.9356 (2) −0.0912 (1) 0.0413 (4) O6 0.4705 (2) 0.5660 (2) −0.1383 (2) 0.0555 (5) N1 −0.1341 (2) 0.7688 (2) 0.0175 (1) 0.0421 (4) N2 −0.2461 (3) 0.6616 (3) −0.0726 (2) 0.0607 (6) N3 0.2250 (2) 0.8565 (2) 0.1905 (1) 0.0374 (4) N4 0.4354 (2) 0.8122 (3) 0.2790 (1) 0.0530 (5) C1 −0.0410 (2) 0.4850 (2) 0.3501 (2) 0.0334 (4) C2 −0.1824 (2) 0.5313 (3) 0.4037 (2) 0.0383 (5) C3 −0.2334 (3) 0.4291 (3) 0.4737 (2) 0.0544 (6) C4 −0.1445 (4) 0.2818 (3) 0.4920 (2) 0.0607 (7) C5 −0.0044 (4) 0.2340 (3) 0.4402 (3) 0.0601 (7) C6 0.0467 (3) 0.3348 (3) 0.3699 (2) 0.0472 (6) C7 0.0128 (2) 0.5935 (2) 0.2720 (2) 0.0338 (4) C8 0.3010 (2) 0.8118 (2) −0.2099 (2) 0.0317 (4) C9 0.4279 (2) 0.6857 (2) −0.2203 (2) 0.0384 (5) C10 0.5162 (3) 0.6839 (3) −0.3164 (2) 0.0470 (6) C11 0.4783 (3) 0.8024 (3) −0.4014 (2) 0.0498 (6) C12 0.3516 (3) 0.9270 (3) −0.3932 (2) 0.0479 (6) C13 0.2648 (3) 0.9307 (2) −0.2973 (2) 0.0398 (5) C14 0.2085 (2) 0.8187 (2) −0.1056 (2) 0.0316 (4) C15 −0.1153 (3) 0.6767 (3) −0.0520 (2) 0.0479 (6) C16 −0.3566 (4) 0.7479 (4) −0.0134 (3) 0.0709 (9) C17 −0.2872 (3) 0.8143 (4) 0.0423 (3) 0.0592 (7) C18 0.3582 (3) 0.7582 (3) 0.2214 (2) 0.0475 (6) C19 0.3468 (3) 0.9533 (3) 0.2861 (2) 0.0565 (7) C20 0.2170 (3) 0.9794 (3) 0.2322 (2) 0.0477 (6) H3 −0.3278 0.4600 0.5084 0.065* H4 −0.1788 0.2139 0.5397 0.073*

H5 0.0550 0.1343 0.4528 0.072*

H6 0.1408 0.3024 0.3351 0.057*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m596–m598

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cd1 0.03330 (9) 0.03102 (8) 0.03074 (8) −0.01015 (6) 0.00409 (5) −0.00590 (6) O1 0.0422 (9) 0.0386 (8) 0.0507 (9) −0.0114 (7) 0.0173 (7) −0.0076 (7) O2 0.0451 (9) 0.0295 (7) 0.0407 (8) −0.0070 (6) 0.0076 (7) −0.0036 (6) O3 0.0339 (8) 0.0490 (9) 0.061 (1) −0.0065 (7) 0.0119 (8) −0.0120 (8) O4 0.0491 (9) 0.0349 (8) 0.0369 (8) −0.0038 (7) 0.0118 (7) −0.0028 (7) O5 0.0389 (8) 0.0326 (7) 0.0442 (9) −0.0019 (6) 0.0113 (7) −0.0104 (7) O6 0.055 (1) 0.0363 (8) 0.055 (1) 0.0068 (7) 0.0132 (8) −0.0043 (8) N1 0.045 (1) 0.043 (1) 0.040 (1) −0.0163 (8) 0.0001 (8) −0.0102 (9) N2 0.075 (2) 0.050 (1) 0.066 (2) −0.026 (1) −0.018 (1) −0.016 (1) N3 0.0384 (9) 0.0331 (9) 0.040 (1) −0.0102 (7) −0.0017 (8) −0.007 (8) N4 0.036 (1) 0.063 (1) 0.058 (1) −0.013 (1) −0.0064 (9) −0.008 (1) C1 0.033 (1) 0.032 (1) 0.033 (1) −0.0107 (8) 0.0003 (8) −0.0033 (8) C2 0.034 (1) 0.045 (1) 0.036 (1) −0.0133 (9) 0.0026 (9) −0.010 (1) C3 0.051 (6) 0.068 (2) 0.052 (2) −0.032 (1) 0.014 (1) −0.011 (1) C4 0.080 (2) 0.060 (2) 0.051 (2) −0.044 (2) 0.008 (1) 0.003 (1) C5 0.068 (2) 0.039 (1) 0.069 (2) −0.020 (1) −0.000 (1) 0.005 (1) C6 0.044 (1) 0.035 (1) 0.056 (1) −0.009 (1) 0.006 (1) −0.003 (1) C7 0.035 (1) 0.033 (1) 0.032 (1) −0.0096 (8) 0.0012 (8) −0.0054 (8) C8 0.030 (1) 0.0321 (9) 0.033 (1) −0.0087 (8) 0.0061 (8) −0.0118 (8) C9 0.036 (1) 0.035 (1) 0.041 (1) −0.0049 (9) 0.0044 (9) −0.0121 (9) C10 0.036 (1) 0.051 (1) 0.052 (1) −0.007 (1) 0.015 (1) −0.023 (1) C11 0.049 (1) 0.066 (2) 0.042 (1) −0.026 (1) 0.019 (1) −0.022 (1) C12 0.057 (2) 0.050 (1) 0.037 (1) −0.022 (1) 0.009 (1) −0.004 (1) C13 0.042 (1) 0.035 (1) 0.039 (1) −0.0089 (9) 0.0070 (9) −0.0077 (9) C14 0.030 (1) 0.0309 (9) 0.034 (1) −0.0086 (8) 0.0043 (8) −0.0101 (8) C15 0.058 (2) 0.036 (1) 0.047 (1) −0.011 (1) −0.005 (1) −0.009 (1) C16 0.052 (2) 0.091 (2) 0.082 (2) −0.034 (2) −0.005 (2) −0.025 (2) C17 0.048 (2) 0.075 (2) 0.062 (2) −0.022 (1) 0.007 (1) −0.028 (2) C18 0.040 (1) 0.042 (1) 0.056 (1) −0.006 (1) 0.001 (1) −0.014 (1) C19 0.070 (2) 0.051 (1) 0.056 (2) −0.026 (1) −0.013 (1) −0.011 (1) C20 0.058 (2) 0.031 (1) 0.051 (1) −0.009 (1) −0.012 (1) −0.008 (1)

Geometric parameters (Å, º)

Cd1—N1 2.251 (2) C1—C7 1.491 (3)

Cd1—N3 2.232 (2) C2—C3 1.386 (4)

Cd1—O1 2.538 (2) C3—C4 1.376 (4)

Cd1—O2 2.390 (2) C3—H3 0.9300

Cd1—O4 2.404 (2) C4—C5 1.383 (4)

Cd1—O5i 2.381 (2) C4—H4 0.9300

Cd1—O5 2.530 (2) C5—C6 1.378 (4)

O1—C7 1.243 (3) C5—H5 0.9300

O2—C7 1.281 (3) C6—H6 0.9300

O3—C2 1.361 (3) C8—C13 1.387 (3)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m596–m598

O4—C14 1.270 (3) C8—C14 1.494 (3)

O5—C14 1.249 (2) C9—C10 1.392 (3)

O5—Cd1i 2.381 (2) C10—C11 1.367 (4)

O6—C9 1.354 (3) C10—H10 0.9300

O6—H22 0.8200 C11—C12 1.389 (4)

N1—C15 1.314 (3) C11—H11 0.9300

N1—C17 1.374 (3) C12—C13 1.383 (3)

N2—C15 1.326 (4) C12—H12 0.9300

N2—C16 1.355 (4) C13—H13 0.9300

N2—H23 0.8600 C15—H15 0.9300

N3—C18 1.309 (3) C16—C17 1.351 (4)

N3—C20 1.370 (3) C16—H16 0.9300

N4—C18 1.329 (3) C17—H17 0.9300

N4—C19 1.359 (4) C18—H18 0.9300

N4—H24 0.8600 C19—C20 1.341 (4)

C1—C6 1.397 (3) C19—H19 0.9300

C1—C2 1.402 (3) C20—H20 0.9300

N1—Cd1—O1 89.93 (7) C5—C4—H4 119.7 N1—Cd1—O2 82.76 (7) C5—C6—C1 120.9 (2) N1—Cd1—O4 91.76 (7) C5—C6—H6 119.5 N1—Cd1—O5 86.54 (7) C6—C1—C2 118.5 (2) N1—Cd1—O5i 90.44 (7) C6—C1—C7 120.9 (2)

N3—Cd1—O1 89.10 (7) C6—C5—C4 119.7 (3) N3—Cd1—O2 93.93 (7) C6—C5—H5 120.2 N3—Cd1—O4 91.57 (7) C7—O1—Cd1 89.3 (1) N3—Cd1—O5 96.49 (7) C7—O2—Cd1 95.2 (1) N3—Cd1—O5i 88.45 (7) C8—C13—H13 119.4

N3—Cd1—N1 176.44 (7) C9—O6—H22 109.5 N1—C15—N2 111.4 (2) C9—C8—C14 120.5 (2)

N1—C15—H15 124.3 C9—C10—H10 119.8

N1—C17—H17 125.5 C10—C11—C12 120.6 (2) N2—C15—H15 124.3 C10—C11—H11 119.7 N2—C16—H16 126.8 C10—C9—C8 119.6 (2) N3—C18—N4 111.2 (2) C11—C10—C9 120.5 (2) N3—C18—H18 124.4 C11—C10—H10 119.8 N3—C20—H20 125.3 C11—C12—H12 120.4 N4—C18—H18 124.4 C12—C13—C8 121.2 (2) N4—C19—H19 126.9 C12—C13—H13 119.4 O1—C7—C1 121.7 (2) C12—C11—H11 119.7 O1—C7—O2 121.3 (2) C13—C8—C9 118.8 (2) O2—C7—C1 117.0 (2) C13—C8—C14 120.7 (2) O2—Cd1—O1 52.93 (5) C13—C12—C11 119.2 (2) O2—Cd1—O4 137.59 (5) C13—C12—H12 120.4 O2—Cd1—O5 165.21 (5) C14—O4—Cd1 95.9 (1) O3—C2—C1 120.8 (2) C14—O5—Cd1i 164.3 (2)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, m596–m598

O4—Cd1—O5 52.67 (5) C15—N1—Cd1 126.8 (2) O4—C14—C8 118.3 (2) C15—N2—C16 107.8 (2) O5i—Cd1—O1 146.03 (5) C15—N2—H23 126.1

O5—Cd1—O1 137.51 (5) C16—N2—H23 126.1 O5i—Cd1—O2 93.47 (6) C16—C17—N1 109.1 (3)

O5i—Cd1—O4 128.73 (6) C16—C17—H17 125.5

O5i—Cd1—O5 76.39 (6) C17—C16—N2 106.3 (3)

O5—C14—C8 120.8 (2) C17—C16—H16 126.8 O6—C9—C8 122.1 (2) C17—N1—Cd1 127.1 (2) O6—C9—C10 118.3 (2) C18—N3—C20 105.6 (2) C1—C6—H6 119.5 C18—N3—Cd1 124.0 (2) C2—C1—C7 120.6 (2) C18—N4—C19 107.6 (2)

C2—C3—H3 120.0 C18—N4—H24 126.2

C2—O3—H21 109.5 C19—C20—N3 109.5 (2) C3—C4—C5 120.6 (3) C19—C20—H20 125.3

C3—C4—H4 119.7 C19—N4—H24 126.2

C3—C2—C1 120.2 (2) C20—N3—Cd1 130.3 (2) C4—C3—C2 120.1 (2) C20—C19—N4 106.2 (2)

C4—C3—H3 120.0 C20—C19—H19 126.9

C4—C5—H5 120.2 Cd1i—O5—Cd1 103.61 (6)

Cd1—O1—C7—O2 −11.2 (2) O5i—Cd1—O2—C7 179.2 (1)

Cd1—O1—C7—C1 166.7 (2) O5i—Cd1—O4—C14 −7.1 (2)

Cd1—O2—C7—C1 −166.1 (2) O5—Cd1—O1—C7 −159.4 (1) Cd1—O2—C7—O1 11.9 (2) O5i—Cd1—O1—C7 16.1 (2)

Cd1i—O5—C14—O4 155.9 (5) O5—Cd1—O4—C14 0.6 (1)

Cd1—O5—C14—O4 1.1 (2) O5i—Cd1—O5—C14 173.2 (2)

Cd1i—O5—C14—C8 −23.8 (7) O5i—Cd1—O5—Cd1i 0.0

Cd1—O5—C14—C8 −178.5 (2) O5i—Cd1—N1—C15 145.8 (2)

Cd1—O4—C14—O5 −1.2 (2) O5—Cd1—N1—C15 69.5 (2) Cd1—O4—C14—C8 178.5 (2) O5i—Cd1—N1—C17 −45.3 (2)

Cd1—N1—C15—N2 171.0 (2) O5—Cd1—N1—C17 −121.6 (2) Cd1—N1—C17—C16 −170.8 (2) O5i—Cd1—N3—C18 −177.1 (2)

Cd1—N3—C18—N4 −176.7 (2) O5—Cd1—N3—C18 −101.0 (2) Cd1—N3—C20—C19 176.6 (2) O5i—Cd1—N3—C20 7.9 (2)

N1—Cd1—O1—C7 −74.6 (1) O5—Cd1—N3—C20 84.0 (2) N1—Cd1—O2—C7 89.2 (1) O6—C9—C10—C11 −179.7 (2) N1—Cd1—O4—C14 84.9 (1) C1—C2—C3—C4 0.8 (4) N1—Cd1—O5—C14 −95.5 (1) C2—C3—C4—C5 −0.6 (5) N1—Cd1—O5—Cd1i 91.30 (8) C2—C1—C7—O1 −170.9 (2)

N2—C16—C17—N1 −0.1 (4) C2—C1—C6—C5 0.1 (4) N3—Cd1—O5—Cd1i −86.81 (7) C2—C1—C7—O2 7.1 (3)

(9)

supporting information

sup-6

Acta Cryst. (2004). E60, m596–m598

O1—Cd1—O4—C14 174.7 (1) C7—C1—C2—C3 178.1 (2) O1—Cd1—O5—C14 −9.4 (2) C7—C1—C2—O3 −1.8 (3) O1—Cd1—O5—Cd1i 177.41 (6) C7—C1—C6—C5 −178.6 (2)

O1—Cd1—N1—C15 −68.1 (2) C8—C9—C10—C11 −1.4 (4) O1—Cd1—N1—C17 100.8 (2) C9—C10—C11—C12 0.3 (4) O1—Cd1—N3—C18 36.7 (2) C9—C8—C13—C12 −0.4 (4) O1—Cd1—N3—C20 −138.2 (2) C9—C8—C14—O5 172.6 (2) O2—Cd1—O1—C7 6.4 (1) C9—C8—C14—O4 −7.1 (3) O2—Cd1—O4—C14 166.1 (1) C10—C11—C12—C13 0.8 (4) O2—Cd1—O5—C14 −139.1 (2) C11—C12—C13—C8 −0.7 (4) O2—Cd1—O5—Cd1i 47.7 (2) C13—C8—C9—O6 179.6 (2)

O2—Cd1—N1—C15 −120.7 (2) C13—C8—C9—C10 1.4 (3) O2—Cd1—N1—C17 48.2 (2) C13—C8—C14—O5 −6.2 (3) O2—Cd1—N3—C18 89.5 (2) C13—C8—C14—O4 174.1 (2) O2—Cd1—N3—C20 −85.5 (2) C14—C8—C9—C10 −177.4 (2) O3—C2—C3—C4 −179.3 (2) C14—C8—C9—O6 0.8 (3) O4—Cd1—N3—C20 136.6 (2) C14—C8—C13—C12 178.4 (2) O4—Cd1—N3—C18 −48.4 (2) C15—N2—C16—C17 0.2 (4) O4—Cd1—N1—C17 −174.0 (2) C15—N1—C17—C16 0.0 (3) O4—Cd1—N1—C15 17.1 (2) C16—N2—C15—N1 −0.2 (3) O4—Cd1—O5—Cd1i −173.8 (1) C17—N1—C15—N2 0.2 (3)

O4—Cd1—O5—C14 −0.6 (1) C18—N3—C20—C19 0.9 (3) O4—Cd1—O1—C7 −166.3 (1) C18—N4—C19—C20 0.3 (3) O4—Cd1—O2—C7 4.5 (2) C19—N4—C18—N3 0.3 (3) O5—Cd1—O2—C7 133.1 (2) C20—N3—C18—N4 −0.7 (3)

Symmetry code: (i) −x, −y+2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A O3—H21···O2 0.82 1.75 2.486 (2) 149 O6—H22···O4 0.82 1.82 2.547 (2) 147 N2—H23···O1ii 0.86 2.13 2.847 (3) 140

N4—H24···O3iii 0.86 2.03 2.884 (3) 172

References

Related documents

Aim: To study the role of Pulmonary Function Tests (PFTs) in the assessment of lung impairment in DPLD patients and its association with clinicoradiological

The existence of a negative influence between debt to equity ratio by profit growth occurs because of the high proportion of debt that the company will be higher the liabilities

Table 4 shows the results of the standard ap- proach on the balanced and the unbalanced breast cancer and diabetes comparable corpora. The first line presents the results for

harta benda wakaf menjadi aset yang produktif, pengelola wakaf ( nazhir ) dapat melakukan kerja. sama dengan investor ( funding ) melalui skim bagi hasil

At run-time, we transform parallel articles into word graphs, build cross-lingual edges, and exploit PageRank with word keyness information for keyword extraction.. We

The purpose of this paper is to investigate the time-varying causal linkages between tourism development and economic growth for the world’s top ten tourism

The natural resources governance index used in this research was drawn from the Revenue Watch Institute for the year 2013 while the natural resources rent, GDP, and

We use a two-sector dynamic deterministic general equilibrium model with four different trends: hours worked, investment-specific productivity, formal productivity, and