• No results found

Poly[bis­­(μ penta­fluoro­benzene­thiol­ato)lead(II)]

N/A
N/A
Protected

Academic year: 2020

Share "Poly[bis­­(μ penta­fluoro­benzene­thiol­ato)lead(II)]"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2006). E62, m1365–m1367 doi:10.1107/S1600536806018563 Fleischeret al. [Pb(C

6F5S)2]

m1365

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Poly[bis(

l

-pentafluorobenzenethiolato)lead(II)]

Holger Fleischer,a Cathrin Helleraand Dieter Schollmeyerb*

a

Institut fu¨r Anorganische Chemie und Analytische Chemie der Universita¨t Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, andb

Institut fu¨r Organische Chemie der Universita¨t Mainz, Duesbergweg 10-14, 55099 Mainz, Federal Republic of Germany

Correspondence e-mail: scholli@uni-mainz.de

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.015 A˚

Rfactor = 0.051

wRfactor = 0.149

Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 11 May 2006 Accepted 18 May 2006

#2006 International Union of Crystallography All rights reserved

The title compound, [Pb(SC6F5)2]n, exhibits a layered structure containing two differently hexacoordinated PbII atoms. One is situated on a centre of inversion and is coordinated by six S atoms, its valence lone pair of electrons being consequently stereochemically inactive. The other Pb atom is pyramidally coordinated by three S atoms and forms three contacts to adjacent F atoms, the stereochemically active lone pair pointing towards the F3plane.

Comment

PbII thiolates without additional donor atoms tend to form thiolate-bridged polymeric solid state structures and hence are soluble only in strongly polar solvents (Dance, 1986). The title compound, (I), which is of interest for synthetic purposes (Peach & Spinney, 1971; Redo´net al., 2001; Morales-Morales

et al., 2001), is very soluble in acetone and methanol. It was thus of interest to explore its crystal structure and to see whether intra- or intermolecular Pb F contacts are present.

Two quite different hexacoordinate PbIIcentres are present in (I). Pb1 is situated on an inversion centre, its valence lone pair being consequently stereochemically inactive (Fig. 1). It is coordinated by six S atoms and exhibits a distorted octahedral coordination geometry, with Pb1—S distances between 2.971 (2) and 3.036 (2) A˚ andcisS—Pb1—S angles between 66.49 (6) and 113.51 (6).

Atom Pb2 is coordinated by three SC6F5ligandsviatheir S

(2)

Pb F contacts are rather long [2.968 (6)–3.245 (6) A˚ ]. The PbS3 unit exhibits a trigonal–pyramidal configuration with a

fairly narrow spread of S—Pb2—S angles between 75.61 (7) and 86.77 (8). The stereochemically active lone pair of

elec-trons points towards the F3plane, from which Pb2 is displaced

by 0.339 (3) A˚ .

Atoms Pb1 and Pb2 are connected via 2

-S bridges and form a sheet structure consisting of PbS6octahedra and PbS3

pyramids sharing corners and edges (Fig. 3). It is interesting to compare the crystal structure of (I) to that of Pb(SAr)2(Ar =

C6H2

t

Bu3-2,4,6; Hitchcocket al.1983). In both, pyramidal PbS3

units form 2

-S bridges to another crystallographically different Pb atom. In Pb(SAr)2, this second Pb atom exhibits a

pseudo-trigonal–bipyramidal PbS4coordination mode, with a

stereochemically active lone pair in an equatorial position, and is thus different from the octahedrally coordinated Pb1 in Pb(SC6F5)2.

The Pb—S bonds in (I) are longer [mean Pb—S = 3.012 (3) A˚ for the six-coordinate site and mean Pb—S = 2.721 (3) A˚ for the three-coordinate site] and hence weaker

than those in Pb(SAr)2 [mean Pb—S = 2.788 (3) A˚ for the

four-coordinate site and mean Pb—S = 2.669 (3) A˚ for the three-coordinate site]. This may explain the enhanced solu-bility of Pb(SC6F5)2 in acetone and methanol, despite the

polymeric nature of its structure in the solid state.

Experimental

Compound (I) was prepared according to the literature procedure of Peach (1968). Its purity was confirmed by elemental (C and S) analysis and 19F NMR spectroscopy. Crystals suitable for single-crystal X-ray diffraction were obtained by cooling a saturated solu-tion of the compound in acetone from room temperature to 278 K.

Crystal data

[Pb(C6F5S)2]

Mr= 605.43

Monoclinic,P21=c

a= 14.7217 (5) A˚ b= 13.7581 (5) A˚ c= 10.5960 (4) A˚

= 95.647 (1)

V= 2135.73 (13) A˚3

Z= 6

Dx= 2.824 Mg m

3

MoKradiation

= 12.25 mm1

T= 298 (2) K Plate, yellow

0.280.240.09 mm

Data collection

Bruker SMART CCD diffractometer

!scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995) Tmin= 0.03,Tmax= 0.30

(expected range = 0.033–0.332)

32252 measured reflections 5306 independent reflections 3532 reflections withI> 2(I) Rint= 0.161

max= 28.3

metal-organic papers

m1366

Fleischeret al. [Pb(C

[image:2.610.49.295.68.243.2]

6F5S)2] Acta Cryst.(2006). E62, m1365–m1367

Figure 1

Detail of (I), showing the Pb coordination environments (30% displacement ellipsoids). [Symmetry codes: (i) 1x, 1y, 1z; (ii) 1x,y1

[image:2.610.329.544.71.359.2]

2, 1 2z.]

Figure 2

Environment of atom Pb2 in (I), showing the Pb F interactions as dashed lines (30% displacement ellipsids). The symmetry codes are as in Fig. 1.

Figure 3

[image:2.610.46.297.313.447.2]
(3)

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.051

wR(F2) = 0.149 S= 1.01 5306 reflections 340 parameters

w= 1/[2

(Fo2) + (0.076P)2

+ 4.1862P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 2.22 e A˚3

min=1.58 e A˚

3

Table 1

Selected bond lengths (A˚ ).

Pb1—S1 2.971 (2) Pb1—S2 3.030 (2) Pb1—S3 3.036 (2)

Pb2—S2 2.704 (2) Pb2—S3 2.721 (2) Pb2—S1i

2.737 (3)

Symmetry code: (i)xþ1;y1 2;zþ12.

The highest peak is located 0.87 A˚ from atom Pb2 and the deepest hole is located 0.69 A˚ from the same atom. The high value ofRintis

due to the poor quality of the crystal used for analysis.

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1998); data reduction: SAINT; program(s) used to solve

structure:SIR92(Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3(Farrugia, 1997); software used to prepare material for publication:SHELXL97.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435–436.

Blessing, R. H. (1995).Acta Cryst.A51, 33–38.

Bruker (1998).SMARTandSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dance, I. G. (1986).Polyhedron,5, 1037–1104. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Hitchcock, P. B., Lappert, M. F., Samways, B. J. & Weinberg, E. L. (1983). Chem. Commun.pp. 1492–1494.

Morales-Morales, D., Zheng, Y., Dilworth, J. R., Redo´n, R. & Torrens, H. (2001).Inorg. Chim. Acta,314, 37–41.

Peach, M. E. (1968).Can. J. Chem.46, 2699–2706.

Peach, M. E. & Spinney, H. G. (1971).Can. J. Chem.49, 644–648.

Redo´n, R., Cramer, R., Berne´s, S., Morales, D. & Torrens, H. (2001). Polyhedron,20, 3119–3125.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany.

metal-organic papers

Acta Cryst.(2006). E62, m1365–m1367 Fleischeret al. [Pb(C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, m1365–m1367

supporting information

Acta Cryst. (2006). E62, m1365–m1367 [https://doi.org/10.1107/S1600536806018563]

Poly[bis(

µ

-pentafluorobenzenethiolato)lead(II)]

Holger Fleischer, Cathrin Heller and Dieter Schollmeyer

Poly[bis(µ-pentafluorobenzenethiolato)lead(II)]

Crystal data

[Pb(C6F5S)2]

Mr = 605.43 Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 14.7217 (5) Å

b = 13.7581 (5) Å

c = 10.5960 (4) Å

β = 95.647 (1)°

V = 2135.73 (13) Å3

Z = 6

F(000) = 1656

Dx = 2.824 Mg m−3

Mo radiation, λ = 0.71069 Å Cell parameters from 8121 reflections

θ = 2.4–28°

µ = 12.25 mm−1

T = 298 K Plate, yellow

0.28 × 0.24 × 0.09 mm

Data collection

Bruker SMART CCD diffractometer

Radiation source: sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995)

Tmin = 0.03, Tmax = 0.30

32252 measured reflections 5306 independent reflections 3532 reflections with I > 2σ(I)

Rint = 0.161

θmax = 28.3°, θmin = 2.0°

h = −19→19

k = −18→18

l = −14→14

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.051

wR(F2) = 0.149

S = 1.01 5306 reflections 340 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

w = 1/[σ2(F

o2) + (0.076P)2 + 4.1862P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 2.22 e Å−3

Δρmin = −1.58 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, m1365–m1367

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Pb1 0.5000 0.5000 0.5000 0.05137 (16)

Pb2 0.51081 (2) 0.33516 (3) 0.15769 (3) 0.05254 (14) S1 0.5479 (2) 0.64837 (18) 0.3139 (3) 0.0591 (6)

C1 0.6662 (7) 0.6580 (6) 0.3398 (9) 0.050 (2)

C2 0.7211 (9) 0.6009 (8) 0.2709 (10) 0.063 (3)

C3 0.8152 (10) 0.6078 (10) 0.2843 (12) 0.075 (3) C4 0.8573 (8) 0.6744 (10) 0.3658 (13) 0.074 (3)

C5 0.8056 (8) 0.7317 (8) 0.4379 (10) 0.060 (2)

C6 0.7127 (8) 0.7239 (7) 0.4252 (9) 0.054 (2)

F2 0.6822 (6) 0.5361 (5) 0.1889 (7) 0.084 (2)

F3 0.8639 (6) 0.5513 (7) 0.2147 (8) 0.103 (3)

F4 0.9481 (5) 0.6837 (7) 0.3774 (9) 0.108 (3)

F5 0.8453 (6) 0.7980 (6) 0.5190 (7) 0.089 (2)

F6 0.6630 (4) 0.7838 (4) 0.4935 (5) 0.0630 (14)

S2 0.37825 (17) 0.38874 (16) 0.3029 (2) 0.0480 (5)

C7 0.2967 (6) 0.4544 (6) 0.2072 (7) 0.0437 (18)

C8 0.3179 (7) 0.5166 (6) 0.1106 (9) 0.050 (2)

C9 0.2523 (8) 0.5694 (7) 0.0385 (8) 0.053 (2)

C10 0.1621 (8) 0.5592 (8) 0.0598 (10) 0.063 (3) C11 0.1372 (7) 0.4989 (8) 0.1537 (10) 0.060 (2)

C12 0.2045 (7) 0.4465 (7) 0.2246 (9) 0.053 (2)

F8 0.4050 (4) 0.5277 (5) 0.0852 (6) 0.0655 (15)

F9 0.2756 (5) 0.6314 (5) −0.0517 (6) 0.0736 (18)

F10 0.0978 (5) 0.6118 (6) −0.0091 (7) 0.091 (2)

F11 0.0496 (5) 0.4888 (7) 0.1736 (9) 0.094 (2)

F12 0.1785 (4) 0.3855 (5) 0.3135 (6) 0.0665 (15)

S3 0.59071 (16) 0.32156 (18) 0.3998 (2) 0.0525 (5)

C13 0.7067 (6) 0.3294 (6) 0.3796 (8) 0.0439 (17)

C14 0.7485 (7) 0.2704 (7) 0.2951 (8) 0.049 (2)

C15 0.8393 (7) 0.2720 (8) 0.2827 (9) 0.057 (2)

C16 0.8951 (7) 0.3338 (8) 0.3560 (10) 0.061 (2) C17 0.8580 (7) 0.3956 (8) 0.4399 (10) 0.057 (2)

C18 0.7655 (8) 0.3925 (7) 0.4496 (9) 0.056 (2)

F14 0.6950 (4) 0.2074 (4) 0.2208 (5) 0.0623 (14)

F15 0.8759 (5) 0.2129 (6) 0.2004 (6) 0.0796 (19)

F16 0.9836 (4) 0.3380 (6) 0.3450 (7) 0.088 (2)

F17 0.9098 (5) 0.4585 (6) 0.5100 (8) 0.086 (2)

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, m1365–m1367

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Pb1 0.0585 (3) 0.0437 (3) 0.0515 (3) −0.0045 (2) 0.0035 (2) 0.00125 (19) Pb2 0.0508 (2) 0.0550 (2) 0.0527 (2) −0.00188 (15) 0.00916 (15) 0.00094 (15) S1 0.0603 (15) 0.0485 (13) 0.0678 (15) −0.0065 (10) 0.0039 (12) 0.0085 (10) C1 0.057 (5) 0.042 (4) 0.052 (5) 0.005 (4) 0.013 (4) 0.009 (4) C2 0.083 (8) 0.052 (5) 0.053 (5) 0.013 (5) 0.010 (5) 0.011 (4) C3 0.081 (9) 0.078 (8) 0.068 (7) 0.029 (7) 0.022 (6) 0.019 (6) C4 0.056 (6) 0.085 (8) 0.081 (8) 0.016 (6) 0.012 (6) 0.033 (7) C5 0.058 (6) 0.062 (6) 0.056 (5) −0.011 (5) −0.010 (5) 0.014 (5) C6 0.069 (6) 0.044 (5) 0.048 (5) 0.004 (4) 0.005 (4) 0.006 (4) F2 0.112 (6) 0.066 (4) 0.074 (4) 0.008 (4) 0.019 (4) −0.012 (3) F3 0.106 (6) 0.112 (6) 0.099 (5) 0.048 (5) 0.045 (5) 0.017 (5) F4 0.053 (4) 0.146 (8) 0.127 (7) 0.013 (4) 0.013 (4) 0.042 (6) F5 0.088 (5) 0.085 (5) 0.089 (5) −0.017 (4) −0.020 (4) 0.011 (4) F6 0.077 (4) 0.056 (3) 0.055 (3) 0.010 (3) 0.006 (3) −0.002 (3) S2 0.0559 (13) 0.0452 (11) 0.0424 (10) 0.0048 (9) 0.0021 (9) −0.0006 (8) C7 0.051 (5) 0.042 (4) 0.037 (4) 0.005 (4) −0.001 (3) −0.003 (3) C8 0.061 (6) 0.042 (4) 0.047 (4) −0.007 (4) 0.005 (4) −0.003 (3) C9 0.072 (7) 0.043 (5) 0.043 (4) 0.002 (4) 0.000 (4) 0.005 (4) C10 0.075 (7) 0.056 (6) 0.055 (5) 0.014 (5) −0.011 (5) −0.006 (4) C11 0.039 (5) 0.074 (7) 0.065 (6) −0.003 (5) −0.007 (4) −0.011 (5) C12 0.051 (5) 0.055 (5) 0.052 (5) 0.001 (4) 0.000 (4) −0.004 (4) F8 0.068 (4) 0.065 (3) 0.064 (3) −0.010 (3) 0.012 (3) 0.014 (3) F9 0.110 (6) 0.054 (3) 0.055 (3) 0.003 (3) 0.001 (3) 0.013 (3) F10 0.088 (5) 0.085 (5) 0.093 (5) 0.027 (4) −0.026 (4) 0.008 (4) F11 0.055 (4) 0.113 (6) 0.113 (6) 0.002 (4) 0.002 (4) 0.013 (5) F12 0.058 (4) 0.074 (4) 0.068 (3) −0.008 (3) 0.011 (3) 0.013 (3) S3 0.0453 (12) 0.0562 (13) 0.0559 (12) −0.0013 (10) 0.0050 (10) 0.0027 (10) C13 0.044 (4) 0.040 (4) 0.048 (4) 0.001 (4) 0.001 (3) 0.008 (3) C14 0.055 (5) 0.047 (5) 0.044 (4) 0.003 (4) 0.000 (4) 0.005 (4) C15 0.059 (6) 0.060 (6) 0.054 (5) 0.010 (5) 0.012 (5) 0.007 (4) C16 0.048 (5) 0.071 (7) 0.064 (6) −0.003 (5) 0.010 (5) 0.009 (5) C17 0.053 (6) 0.055 (5) 0.059 (5) −0.008 (4) −0.003 (4) 0.004 (4) C18 0.075 (7) 0.047 (5) 0.046 (5) 0.004 (5) 0.001 (4) −0.001 (4) F14 0.077 (4) 0.052 (3) 0.056 (3) 0.000 (3) 0.003 (3) −0.009 (2) F15 0.076 (4) 0.090 (5) 0.077 (4) 0.020 (4) 0.023 (3) −0.010 (4) F16 0.046 (4) 0.114 (7) 0.104 (6) 0.001 (4) 0.017 (4) 0.009 (4) F17 0.069 (4) 0.086 (5) 0.099 (5) −0.023 (4) −0.006 (4) −0.014 (4) F18 0.076 (4) 0.063 (4) 0.067 (3) 0.004 (3) 0.006 (3) −0.019 (3)

Geometric parameters (Å, º)

Pb1—S1 2.971 (2) C7—C12 1.392 (13)

Pb1—S1i 2.971 (2) C7—C8 1.393 (12)

Pb1—S2 3.030 (2) C8—F8 1.345 (11)

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, m1365–m1367

Pb1—S3i 3.036 (2) C9—F9 1.351 (11)

Pb1—S3 3.036 (2) C9—C10 1.376 (16)

Pb2—S2 2.704 (2) C10—F10 1.347 (12)

Pb2—S3 2.721 (2) C10—C11 1.372 (16)

Pb2—S1ii 2.737 (3) C11—F11 1.335 (12)

S1—C1 1.742 (11) C11—C12 1.385 (14)

S1—Pb2iii 2.737 (3) C12—F12 1.344 (11)

C1—C2 1.385 (14) S3—C13 1.746 (9)

C1—C6 1.409 (14) C13—C18 1.389 (13)

C2—F2 1.334 (13) C13—C14 1.394 (13)

C2—C3 1.382 (18) C14—C15 1.356 (14)

C3—F3 1.328 (14) C14—F14 1.367 (11)

C3—C4 1.37 (2) C15—F15 1.344 (12)

C4—F4 1.337 (14) C15—C16 1.369 (16)

C4—C5 1.378 (17) C16—F16 1.321 (12)

C5—F5 1.347 (13) C16—C17 1.381 (15)

C5—C6 1.365 (15) C17—F17 1.331 (12)

C6—F6 1.357 (11) C17—C18 1.375 (15)

S2—C7 1.746 (9) C18—F18 1.356 (11)

S1—Pb1—S1i 180.0 Pb2—S2—Pb1 96.83 (8)

S1—Pb1—S2 93.01 (7) C12—C7—C8 116.0 (8)

S1i—Pb1—S2 86.99 (7) C12—C7—S2 120.4 (7)

S1—Pb1—S2i 86.99 (7) C8—C7—S2 123.6 (7)

S1i—Pb1—S2i 93.01 (7) F8—C8—C9 117.4 (8)

S2—Pb1—S2i 180.0 F8—C8—C7 120.3 (9)

S1—Pb1—S3i 79.50 (7) C9—C8—C7 122.4 (9)

S1i—Pb1—S3i 100.50 (7) F9—C9—C10 119.8 (9)

S2—Pb1—S3i 113.51 (6) F9—C9—C8 120.8 (10)

S2i—Pb1—S3i 66.49 (6) C10—C9—C8 119.4 (9)

S1—Pb1—S3 100.50 (7) F10—C10—C11 119.6 (11)

S1i—Pb1—S3 79.50 (7) F10—C10—C9 119.6 (10)

S2—Pb1—S3 66.49 (6) C11—C10—C9 120.7 (9)

S2i—Pb1—S3 113.51 (6) F11—C11—C10 120.6 (10)

S3i—Pb1—S3 180.0 F11—C11—C12 120.6 (10)

S2—Pb2—S3 75.61 (7) C10—C11—C12 118.8 (10)

S2—Pb2—S1ii 86.56 (8) F12—C12—C11 117.9 (9)

S3—Pb2—S1ii 86.77 (8) F12—C12—C7 119.4 (8)

C1—S1—Pb2iii 103.5 (3) C11—C12—C7 122.7 (9)

C1—S1—Pb1 104.3 (3) C13—S3—Pb2 102.6 (3)

Pb2iii—S1—Pb1 118.29 (10) C13—S3—Pb1 117.6 (3)

C2—C1—C6 115.6 (10) Pb2—S3—Pb1 96.31 (7)

C2—C1—S1 120.0 (8) C18—C13—C14 114.6 (9)

C6—C1—S1 124.4 (7) C18—C13—S3 122.6 (7)

F2—C2—C3 118.4 (11) C14—C13—S3 122.8 (7)

F2—C2—C1 119.2 (11) C15—C14—F14 118.1 (9)

C3—C2—C1 122.5 (11) C15—C14—C13 123.6 (9)

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, m1365–m1367

F3—C3—C2 119.5 (14) F15—C15—C14 121.0 (10)

C4—C3—C2 119.9 (11) F15—C15—C16 119.2 (10)

F4—C4—C3 120.7 (13) C14—C15—C16 119.8 (9)

F4—C4—C5 119.7 (13) F16—C16—C15 121.3 (10)

C3—C4—C5 119.6 (11) F16—C16—C17 119.1 (10)

F5—C5—C6 119.0 (11) C15—C16—C17 119.6 (10)

F5—C5—C4 120.8 (11) F17—C17—C18 119.7 (10)

C6—C5—C4 120.2 (11) F17—C17—C16 121.2 (10)

F6—C6—C5 119.1 (9) C18—C17—C16 119.1 (9)

F6—C6—C1 118.7 (9) F18—C18—C17 118.6 (9)

C5—C6—C1 122.1 (10) F18—C18—C13 118.1 (10)

C7—S2—Pb2 107.7 (3) C17—C18—C13 123.3 (9)

C7—S2—Pb1 117.7 (3)

S1i—Pb1—S1—C1 −173 (18) C7—C8—C9—F9 177.8 (8)

S2—Pb1—S1—C1 −132.1 (3) F8—C8—C9—C10 179.0 (8)

S2i—Pb1—S1—C1 47.9 (3) C7—C8—C9—C10 −1.6 (14)

S3i—Pb1—S1—C1 114.5 (3) F9—C9—C10—F10 −0.5 (14)

S3—Pb1—S1—C1 −65.5 (3) C8—C9—C10—F10 178.9 (9)

S1i—Pb1—S1—Pb2iii 73 (14) F9—C9—C10—C11 −177.8 (9)

S2—Pb1—S1—Pb2iii 113.71 (10) C8—C9—C10—C11 1.6 (15)

S2i—Pb1—S1—Pb2iii −66.29 (10) F10—C10—C11—F11 3.1 (16)

S3i—Pb1—S1—Pb2iii 0.35 (10) C9—C10—C11—F11 −179.6 (10)

S3—Pb1—S1—Pb2iii −179.65 (10) F10—C10—C11—C12 −179.1 (9)

Pb2iii—S1—C1—C2 −143.9 (7) C9—C10—C11—C12 −1.8 (16)

Pb1—S1—C1—C2 91.8 (7) F11—C11—C12—F12 −0.1 (15)

Pb2iii—S1—C1—C6 33.7 (8) C10—C11—C12—F12 −177.9 (9)

Pb1—S1—C1—C6 −90.6 (7) F11—C11—C12—C7 179.8 (9)

C6—C1—C2—F2 179.4 (8) C10—C11—C12—C7 2.0 (15)

S1—C1—C2—F2 −2.7 (12) C8—C7—C12—F12 178.0 (8)

C6—C1—C2—C3 −0.1 (14) S2—C7—C12—F12 −1.9 (12)

S1—C1—C2—C3 177.7 (8) C8—C7—C12—C11 −1.9 (13)

F2—C2—C3—F3 0.9 (15) S2—C7—C12—C11 178.2 (8)

C1—C2—C3—F3 −179.6 (9) S2—Pb2—S3—C13 −158.1 (3)

F2—C2—C3—C4 178.9 (10) S1ii—Pb2—S3—C13 114.7 (3)

C1—C2—C3—C4 −1.5 (16) S2—Pb2—S3—Pb1 −37.95 (6)

F3—C3—C4—F4 −0.1 (17) S1ii—Pb2—S3—Pb1 −125.23 (8)

C2—C3—C4—F4 −178.2 (10) S1—Pb1—S3—C13 54.4 (3)

F3—C3—C4—C5 −179.5 (10) S1i—Pb1—S3—C13 −125.6 (3)

C2—C3—C4—C5 2.5 (17) S2—Pb1—S3—C13 143.2 (3)

F4—C4—C5—F5 0.7 (15) S2i—Pb1—S3—C13 −36.8 (3)

C3—C4—C5—F5 −180.0 (10) S3i—Pb1—S3—C13 −102 (39)

F4—C4—C5—C6 178.9 (9) S1—Pb1—S3—Pb2 −53.29 (8)

C3—C4—C5—C6 −1.8 (16) S1i—Pb1—S3—Pb2 126.71 (8)

F5—C5—C6—F6 0.8 (13) S2—Pb1—S3—Pb2 35.43 (6)

C4—C5—C6—F6 −177.4 (9) S2i—Pb1—S3—Pb2 −144.57 (6)

F5—C5—C6—C1 178.3 (8) S3i—Pb1—S3—Pb2 151 (39)

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, m1365–m1367

C2—C1—C6—F6 178.4 (8) Pb1—S3—C13—C18 26.3 (8)

S1—C1—C6—F6 0.6 (12) Pb2—S3—C13—C14 −51.9 (7)

C2—C1—C6—C5 0.8 (13) Pb1—S3—C13—C14 −156.0 (6)

S1—C1—C6—C5 −176.9 (7) C18—C13—C14—C15 1.4 (13)

S3—Pb2—S2—C7 160.1 (3) S3—C13—C14—C15 −176.5 (7)

S1ii—Pb2—S2—C7 −112.4 (3) C18—C13—C14—F14 −178.8 (8)

S3—Pb2—S2—Pb1 38.09 (7) S3—C13—C14—F14 3.3 (11)

S1ii—Pb2—S2—Pb1 125.62 (7) F14—C14—C15—F15 −0.4 (13)

S1—Pb1—S2—C7 −49.7 (3) C13—C14—C15—F15 179.4 (8)

S1i—Pb1—S2—C7 130.3 (3) F14—C14—C15—C16 −179.7 (9)

S2i—Pb1—S2—C7 50 (9) C13—C14—C15—C16 0.2 (15)

S3i—Pb1—S2—C7 30.1 (4) F15—C15—C16—F16 1.6 (15)

S3—Pb1—S2—C7 −149.9 (4) C14—C15—C16—F16 −179.1 (9)

S1—Pb1—S2—Pb2 64.41 (8) F15—C15—C16—C17 179.3 (9)

S1i—Pb1—S2—Pb2 −115.59 (8) C14—C15—C16—C17 −1.4 (15)

S2i—Pb1—S2—Pb2 165 (9) F16—C16—C17—F17 −0.5 (15)

S3i—Pb1—S2—Pb2 144.27 (6) C15—C16—C17—F17 −178.1 (10)

S3—Pb1—S2—Pb2 −35.73 (6) F16—C16—C17—C18 178.8 (9)

Pb2—S2—C7—C12 144.4 (7) C15—C16—C17—C18 1.1 (15)

Pb1—S2—C7—C12 −107.6 (7) F17—C17—C18—F18 −0.8 (14)

Pb2—S2—C7—C8 −35.5 (8) C16—C17—C18—F18 179.9 (9)

Pb1—S2—C7—C8 72.5 (8) F17—C17—C18—C13 179.8 (9)

C12—C7—C8—F8 −178.8 (8) C16—C17—C18—C13 0.5 (15)

S2—C7—C8—F8 1.1 (12) C14—C13—C18—F18 178.9 (8)

C12—C7—C8—C9 1.7 (13) S3—C13—C18—F18 −3.2 (12)

S2—C7—C8—C9 −178.4 (7) C14—C13—C18—C17 −1.7 (13)

F8—C8—C9—F9 −1.6 (13) S3—C13—C18—C17 176.2 (8)

Figure

Figure 3

References

Related documents

По отношение обаче на актовете, предхождащи решението на факултетния съвет за избор на лице за съответната академична длъжност, съдебната практика често

Spre finele anului 2000, când a trecut valul următor prin băncile moldovenești, ceea ce a dus la micșorarea bugetelor pentru secțiile de programare și tehnice, au fost

Figurative Usage Detection of Symptom Words to Improve Personal Health Mention Detection.. Adith Iyer ♠♣ , Aditya Joshi ♠ , Sarvnaz Karimi ♠ , Ross Sparks ♠ , C´ecile Paris ♠

Our solu- tion enables educators to generate learning videos for vocabulary words very easily: First, we auto- matically create sample scripts for a vocabulary word based on

With small amount of golden labeled data, we propose a neu- ral network classifier for pruning the self-labeled tweets, and train an ironic detector on the less but cleaner

On the x-axis, the running variable is House primary vote share for the female candidate (female candidate vote share minus male candidate vote share in House primaries) and

Informally speaking, during a SynchUVG-DL derivation, the two synchronous productions in a pair of synchronized vectors must be applied at the same time and

Women with a small simple fistula discovered shortly after delivery, or those presenting to a facility with obstructed labor, may be treated conservatively with in- sertion of a