• No results found

(2RS,5RS,6RS) Ethyl 4 hydr­­oxy 2,6 di p tolyl 5 p tolyl­sulfanyl 1,2,5,6 tetra­hydro­pyridine 3 carboxyl­ate

N/A
N/A
Protected

Academic year: 2020

Share "(2RS,5RS,6RS) Ethyl 4 hydr­­oxy 2,6 di p tolyl 5 p tolyl­sulfanyl 1,2,5,6 tetra­hydro­pyridine 3 carboxyl­ate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2007). E63, o1375–o1376 doi:10.1107/S1600536807007167 Sureshet al. C

29H31NO3S

o1375

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

(2

RS

,5

RS

,6

RS

)-Ethyl 4-hydroxy-2,6-di-

p

-tolyl-5-

p

-tolylsulfanyl-1,2,5,6-tetrahydropyridine-3-carboxylate

J. Suresh,aR. Suresh Kumar,b S. Perumalband S. Natarajanc*

a

Department of Physics, The Madura College, Madurai 625 011, India,bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, andcDepartment of Physics, Madurai

Kamaraj University, Madurai 625 021, India

Correspondence e-mail: s_natarajan50@yahoo.com

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.043 wRfactor = 0.146

Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 2 February 2007 Accepted 12 February 2007

#2007 International Union of Crystallography All rights reserved

The polysubstituted piperidine enol ring in the title compound, C29H31NO3S, adopts a twisted half-chair

confor-mation. The crystal structure is stabilized by van der Waals and weak C—H interactions. An intramolecular O— H O interaction generates anS(6) graph-set motif.

Comment

Piperidines are of paramount importance due to the large number of biologically active compounds containing this unit (Schneider, 1996). Piperidones possess analgesic, anti-inflam-matory (Richardoet al., 1979), central nervous system (CNS) depressant and local anaesthetic activities (Perumal et al., 2001). Substituted piperidones are valuable synthetic inter-mediates for the preparation of various alkaloids and phar-maceuticals (Wang et al., 1992). Piperidones have also been used as key chiral intermediates in the preparation of a large number of natural and synthetic compounds with significant anticancer (Fleetet al., 1990) and anti-HIV activities (Winkler

et al., 1989). This prompted us to perform the synthesis of polysubstituted piperidones. The present work reports the X-ray crystallographic study of one such substituted piper-idone,viz. (I), which exists in the enol form.

The piperidine enol ring of (I) (Fig. 1) adopts a twisted half-chair conformation, as indicated by the puckering parameters

Q= 0.524 (4) A˚ ,= 127.1 (3) and ’= 161.0 (4)(Cremer &

Pople, 1975). The bond distances (Table 1) show the conju-gation of S1 with the p-tolyl ring and O3 with C7–O2. The piperidone ring has three chiral C atoms C2, C5 and C6. Of the eight possible stereoisomers, the ones present in this structure areS,S,Sand its enantiomerR,R,R.

In the crystal structure of (I), except for two weak C— H interactions (Table 2), there are neither intermolecular hydrogen bonds, nor any significant–stacking interactions and molecules are separated by normal van der Waals distances.

Experimental

(2)

4-[(4-methylphenyl)sulfanyl]-3-oxo-butanoate (0.5 g, 2 mmol) and freshly distilledp-methylbenzaldehyde (0.47 ml, 4 mmol) was added and the mixture was warmed on a water bath for 5 min and then set aside at room temperature. The preci-pitate was filtered and recrystallized from ethanol (yield: 0.47 g, 50%; m.p. 410–411 K).

Crystal data

C29H31NO3S Mr= 473.61

Monoclinic,I2=a a= 12.7293 (7) A˚

b= 10.4916 (12) A˚

c= 39.6468 (10) A˚

= 96.990 (11)

V= 5255.5 (7) A˚3

Z= 8

MoKradiation

= 0.15 mm1 T= 293 (2) K 0.180.160.12 mm

Data collection

Nonius MACH-3 four-circle diffractometer

Absorption correction: scan (Northet al., 1968)

Tmin= 0.969,Tmax= 0.982

5261 measured reflections

4639 independent reflections 2240 reflections withI> 2(I)

Rint= 0.037

3 standard reflections frequency: 60 min intensity decay: none

Refinement

R[F2> 2(F2)] = 0.043 wR(F2) = 0.146 S= 1.00 4639 reflections 316 parameters

H atoms treated by a mixture of independent and constrained refinement

max= 0.36 e A˚ 3

min=0.37 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

C5—S1 1.830 (3) C7—O2 1.227 (3) C7—O3 1.357 (4)

C8—O3 1.439 (4) C51—S1 1.781 (3)

N1—C2—C3—C4 19.5 (3) C21—C2—C3—C4 108.5 (3) C21—C2—C3—C7 76.1 (3) C2—C3—C4—C5 3.4 (4) C3—C4—C5—C6 7.9 (4)

[image:2.610.313.562.69.250.2]

C4—C5—C6—N1 40.7 (3) C4—C5—C6—C61 160.8 (2) C3—C2—N1—C6 57.0 (3) C61—C6—N1—C2 167.6 (2) C5—C6—N1—C2 68.6 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

Cg1 andCg2 are the C51–C56 and C21–C26 ring centroids, respectively.

D—H A D—H H A D A D—H A

O1—H1A O2 0.82 1.98 2.680 (4) 143 C26—H26 Cg1 0.93 2.95 3.698 (3) 139 C55—H55 Cg2i

0.93 2.95 3.878 (3) 174

Symmetry code: (i)xþ1;yþ3 2;zþ

1 2.

The N-bound H atom was located in a difference Fourier map and its positional parameters were refined. O- and C-bound H atoms were placed at calculated positions, with C—H = 0.93–0.98 A˚ and O—H = 0.82 A˚ , and allowed to ride on their carrier atoms, withUiso(H) =

1.2Ueq(C,N) for CH2, CH and NH groups, and 1.5Ueq(C,O) for CH3

and OH groups.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement:CAD-4 EXPRESS; data reduction:XCAD4(Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97

(Sheldrick, 1997); program(s) used to refine structure:SHELXL97

(Sheldrick, 1997); molecular graphics:PLATON(Spek, 2003); soft-ware used to prepare material for publication:SHELXL97.

The authors thank the UGC for the SAP programme and the DST for the FIST programme. JS thanks the UGC and the management of the Madura College, Madurai, for providing a teacher fellowship. SP thanks CSIR, New Delhi, for a major research project.

References

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Enraf–Nonius (1994).CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The

Netherlands.

Fleet, G. W. J., Ramsden, N. G. & Witty, D. R. (1990).Tetrahedron,45, 319–326. Harms, K. & Wocadlo, S. (1996).XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351–

359.

Perumal, R. V., Adiraj, M. & Shanmugapandian, P. (2001).Indian Drugs,38, 156–159.

Richardo, G. J., Juan, B. C., Mario, R. A., Roldan, M. & Peinado, C. R. (1979).

Fernando Spen.47, 168—172.

Schneider, M. J. (1996). InAlkaloids: chemical and biological perspectives, Vol. 10, edited by S. W. Pelletier, pp. 155–157. Oxford: Pergamon.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

[image:2.610.45.297.562.612.2]

Wang, C. L. & Wuorola, M. A. (1992).Org. Prep. Proc. Int.24, 585–, 587. Winkler, D. A. & Holan, G. J. (1989).J. Med. Chem.32, 2084–2089.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2007). E63, o1375–o1376

supporting information

Acta Cryst. (2007). E63, o1375–o1376 [https://doi.org/10.1107/S1600536807007167]

(2

RS

,5

RS

,6

RS

)-Ethyl 4-hydroxy-2,6-di-

p

-tolyl-5-

p

-tolylsulfanyl-1,2,5,6-tetra-hydropyridine-3-carboxylate

J. Suresh, R. Suresh Kumar, S. Perumal and S. Natarajan

(2RS,5RS,6RS)-Ethyl 4-hydroxy-2,6-di-p-tolyl-5-p-tolylsulfanyl- 1,2,5,6-tetrahydropyridine-3-carboxylate

Crystal data

C29H31NO3S

Mr = 473.61

Monoclinic, I2/a a = 12.7293 (7) Å

b = 10.4916 (12) Å

c = 39.6468 (10) Å

β = 96.990 (11)°

V = 5255.5 (7) Å3

Z = 8

F(000) = 2016

Dx = 1.197 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 2–25°

µ = 0.15 mm−1

T = 293 K Block, colourless 0.18 × 0.16 × 0.12 mm

Data collection

Nonius MACH-3 four-circle diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.969, Tmax = 0.982 5261 measured reflections

4639 independent reflections 2240 reflections with I > 2σ(I)

Rint = 0.037

θmax = 25.0°, θmin = 2.0°

h = −14→15

k = −1→12

l = −14→47

3 standard reflections every 60 min intensity decay: none

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.146

S = 1.00 4639 reflections 316 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0693P)2 + 2.001P] where P = (Fo2 + 2Fc2)/3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C2 0.45209 (19) 0.1153 (2) 0.09155 (7) 0.0488 (6)

H2 0.4374 0.0465 0.0749 0.059*

C3 0.5714 (2) 0.1288 (2) 0.09768 (7) 0.0510 (7)

C4 0.6229 (2) 0.1383 (2) 0.12970 (8) 0.0557 (7)

C5 0.5659 (2) 0.1433 (2) 0.16078 (7) 0.0585 (7)

H5 0.5784 0.0605 0.1720 0.070*

C6 0.4455 (2) 0.1549 (2) 0.15219 (7) 0.0521 (7)

H6 0.4279 0.2430 0.1456 0.063*

C7 0.6305 (2) 0.1220 (3) 0.06915 (9) 0.0651 (8)

C8 0.6172 (3) 0.1197 (4) 0.00845 (9) 0.0882 (11)

H8A 0.6283 0.0322 0.0018 0.106*

H8B 0.6857 0.1613 0.0124 0.106*

C9 0.5503 (3) 0.1857 (4) −0.01877 (10) 0.1007 (12)

H9A 0.5369 0.2710 −0.0117 0.151*

H9B 0.4844 0.1410 −0.0236 0.151*

H9C 0.5856 0.1882 −0.0388 0.151*

C21 0.39232 (19) 0.2320 (2) 0.07651 (6) 0.0474 (6)

C22 0.2966 (2) 0.2148 (3) 0.05642 (8) 0.0680 (8)

H22 0.2732 0.1327 0.0508 0.082*

C23 0.2355 (3) 0.3180 (4) 0.04463 (9) 0.0834 (10)

H23 0.1717 0.3037 0.0311 0.100*

C24 0.2663 (3) 0.4414 (3) 0.05238 (9) 0.0753 (9)

C25 0.3625 (3) 0.4579 (3) 0.07159 (8) 0.0712 (9)

H25 0.3865 0.5402 0.0769 0.085*

C26 0.4247 (2) 0.3554 (3) 0.08331 (7) 0.0593 (7)

H26 0.4899 0.3701 0.0961 0.071*

C27 0.1938 (3) 0.5527 (4) 0.04086 (11) 0.1205 (16)

H27A 0.2325 0.6311 0.0442 0.181*

H27B 0.1350 0.5541 0.0539 0.181*

H27C 0.1681 0.5430 0.0172 0.181*

C51 0.5961 (2) 0.4097 (3) 0.16969 (7) 0.0559 (7)

C52 0.5131 (3) 0.4864 (3) 0.17575 (9) 0.0788 (9)

H52 0.4666 0.4596 0.1907 0.095*

C53 0.4982 (3) 0.6039 (3) 0.15978 (10) 0.0855 (11)

(5)

supporting information

sup-3 Acta Cryst. (2007). E63, o1375–o1376

C54 0.5649 (3) 0.6471 (3) 0.13754 (8) 0.0706 (8)

C55 0.6480 (2) 0.5696 (3) 0.13191 (8) 0.0671 (8)

H55 0.6947 0.5965 0.1170 0.080*

C56 0.6642 (2) 0.4528 (3) 0.14776 (8) 0.0624 (8)

H56 0.7216 0.4028 0.1436 0.075*

C57 0.5500 (4) 0.7758 (3) 0.12013 (11) 0.1141 (14)

H57A 0.6101 0.8289 0.1272 0.171*

H57B 0.4871 0.8155 0.1262 0.171*

H57C 0.5436 0.7642 0.0959 0.171*

C61 0.3834 (2) 0.1171 (2) 0.18070 (7) 0.0542 (7)

C62 0.4034 (2) 0.0057 (3) 0.19947 (7) 0.0643 (8)

H62 0.4602 −0.0457 0.1955 0.077*

C63 0.3408 (3) −0.0297 (3) 0.22379 (8) 0.0712 (9)

H63 0.3567 −0.1042 0.2361 0.085*

C64 0.2549 (3) 0.0424 (3) 0.23048 (7) 0.0685 (8)

C65 0.2345 (3) 0.1527 (3) 0.21165 (8) 0.0758 (9)

H65 0.1769 0.2032 0.2154 0.091*

C66 0.2980 (2) 0.1890 (3) 0.18747 (8) 0.0672 (8)

H66 0.2827 0.2641 0.1754 0.081*

C67 0.1854 (3) 0.0030 (4) 0.25703 (8) 0.0932 (11)

H67A 0.1200 0.0495 0.2536 0.140*

H67B 0.2210 0.0214 0.2793 0.140*

H67C 0.1711 −0.0867 0.2551 0.140*

N1 0.4145 (2) 0.0707 (2) 0.12301 (6) 0.0514 (6)

O1 0.73162 (18) 0.1402 (3) 0.13714 (7) 0.1051 (8)

H1A 0.7588 0.1304 0.1196 0.158*

O2 0.72698 (16) 0.1173 (2) 0.06965 (6) 0.0831 (7)

O3 0.56696 (15) 0.1217 (2) 0.03906 (6) 0.0751 (6)

S1 0.61819 (7) 0.26291 (8) 0.19199 (2) 0.0750 (3)

H1 0.348 (2) 0.067 (2) 0.1201 (6) 0.049 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C2 0.0459 (15) 0.0443 (15) 0.0574 (17) −0.0040 (12) 0.0107 (12) −0.0061 (13)

C3 0.0458 (15) 0.0388 (14) 0.0694 (19) 0.0030 (12) 0.0110 (14) 0.0002 (14)

C4 0.0425 (15) 0.0363 (15) 0.086 (2) 0.0043 (12) 0.0000 (15) 0.0017 (14)

C5 0.0604 (18) 0.0407 (15) 0.0712 (19) −0.0012 (13) −0.0044 (15) 0.0029 (14)

C6 0.0595 (17) 0.0395 (14) 0.0563 (17) 0.0012 (13) 0.0024 (13) 0.0017 (13)

C7 0.0568 (19) 0.0480 (17) 0.091 (2) 0.0027 (15) 0.0118 (18) −0.0013 (16)

C8 0.077 (2) 0.108 (3) 0.087 (3) −0.001 (2) 0.037 (2) −0.008 (2)

C9 0.114 (3) 0.107 (3) 0.084 (3) −0.012 (3) 0.023 (2) −0.003 (2)

C21 0.0418 (14) 0.0488 (16) 0.0528 (15) −0.0029 (12) 0.0104 (12) −0.0002 (13)

C22 0.0569 (18) 0.065 (2) 0.079 (2) −0.0058 (16) −0.0024 (16) 0.0004 (17)

C23 0.0538 (19) 0.101 (3) 0.091 (3) 0.006 (2) −0.0079 (17) 0.019 (2)

C24 0.072 (2) 0.074 (2) 0.082 (2) 0.0197 (19) 0.0194 (18) 0.0223 (19)

C25 0.079 (2) 0.0535 (18) 0.081 (2) 0.0028 (17) 0.0126 (18) 0.0095 (16)

(6)

C27 0.112 (3) 0.117 (3) 0.136 (4) 0.059 (3) 0.026 (3) 0.049 (3) C51 0.0594 (17) 0.0484 (16) 0.0586 (17) −0.0060 (14) 0.0019 (14) −0.0077 (14)

C52 0.075 (2) 0.071 (2) 0.097 (2) −0.0102 (19) 0.0321 (18) −0.014 (2)

C53 0.074 (2) 0.058 (2) 0.128 (3) 0.0128 (18) 0.024 (2) −0.015 (2)

C54 0.076 (2) 0.0503 (18) 0.084 (2) 0.0023 (17) 0.0039 (18) −0.0079 (17)

C55 0.075 (2) 0.0518 (18) 0.076 (2) −0.0083 (16) 0.0176 (16) −0.0053 (16)

C56 0.0541 (17) 0.0521 (18) 0.081 (2) 0.0009 (14) 0.0096 (16) −0.0092 (16)

C57 0.144 (4) 0.058 (2) 0.137 (4) 0.017 (2) 0.004 (3) 0.010 (2)

C61 0.0598 (17) 0.0457 (16) 0.0557 (17) −0.0016 (14) 0.0017 (13) −0.0020 (13) C62 0.0684 (19) 0.0578 (18) 0.0669 (19) 0.0105 (15) 0.0091 (16) 0.0090 (16)

C63 0.083 (2) 0.069 (2) 0.0601 (19) −0.0010 (18) 0.0046 (17) 0.0121 (16)

C64 0.073 (2) 0.079 (2) 0.0533 (18) −0.0083 (19) 0.0040 (15) −0.0072 (17)

C65 0.071 (2) 0.082 (2) 0.077 (2) 0.0142 (18) 0.0177 (18) −0.0032 (19)

C66 0.073 (2) 0.0593 (18) 0.070 (2) 0.0118 (17) 0.0106 (17) 0.0079 (16)

C67 0.095 (3) 0.119 (3) 0.069 (2) −0.013 (2) 0.0229 (19) 0.004 (2)

N1 0.0488 (14) 0.0435 (13) 0.0617 (15) −0.0027 (11) 0.0056 (12) −0.0008 (11)

O1 0.0735 (16) 0.0908 (18) 0.147 (2) 0.0100 (14) −0.0015 (15) 0.0041 (19)

O2 0.0493 (12) 0.0905 (17) 0.1127 (18) 0.0116 (12) 0.0229 (12) 0.0049 (14)

O3 0.0566 (12) 0.0958 (16) 0.0769 (15) −0.0003 (11) 0.0254 (11) −0.0089 (13)

S1 0.0887 (6) 0.0617 (5) 0.0689 (5) −0.0147 (4) −0.0135 (4) 0.0031 (4)

Geometric parameters (Å, º)

C2—N1 1.466 (3) C27—H27A 0.9600

C2—C3 1.516 (3) C27—H27B 0.9600

C2—C21 1.525 (4) C27—H27C 0.9600

C2—H2 0.9800 C51—C52 1.372 (4)

C3—C4 1.360 (4) C51—C56 1.377 (4)

C3—C7 1.434 (4) C51—S1 1.781 (3)

C4—O1 1.379 (3) C52—C53 1.388 (5)

C4—C5 1.505 (4) C52—H52 0.9300

C5—C6 1.533 (4) C53—C54 1.374 (5)

C5—S1 1.830 (3) C53—H53 0.9300

C5—H5 0.9800 C54—C55 1.375 (4)

C6—N1 1.471 (3) C54—C57 1.517 (4)

C6—C61 1.509 (4) C55—C56 1.381 (4)

C6—H6 0.9800 C55—H55 0.9300

C7—O2 1.227 (3) C56—H56 0.9300

C7—O3 1.357 (4) C57—H57A 0.9600

C8—O3 1.439 (4) C57—H57B 0.9600

C8—C9 1.465 (5) C57—H57C 0.9600

C8—H8A 0.9700 C61—C66 1.376 (4)

C8—H8B 0.9700 C61—C62 1.392 (4)

C9—H9A 0.9600 C62—C63 1.375 (4)

C9—H9B 0.9600 C62—H62 0.9300

C9—H9C 0.9600 C63—C64 1.381 (4)

C21—C26 1.375 (4) C63—H63 0.9300

(7)

supporting information

sup-5 Acta Cryst. (2007). E63, o1375–o1376

C22—C23 1.381 (4) C64—C67 1.513 (4)

C22—H22 0.9300 C65—C66 1.381 (4)

C23—C24 1.377 (5) C65—H65 0.9300

C23—H23 0.9300 C66—H66 0.9300

C24—C25 1.372 (5) C67—H67A 0.9600

C24—C27 1.524 (4) C67—H67B 0.9600

C25—C26 1.383 (4) C67—H67C 0.9600

C25—H25 0.9300 N1—H1 0.84 (2)

C26—H26 0.9300 O1—H1A 0.8200

N1—C2—C3 108.5 (2) H27A—C27—H27B 109.5

N1—C2—C21 113.0 (2) C24—C27—H27C 109.5

C3—C2—C21 115.5 (2) H27A—C27—H27C 109.5

N1—C2—H2 106.4 H27B—C27—H27C 109.5

C3—C2—H2 106.4 C52—C51—C56 118.4 (3)

C21—C2—H2 106.4 C52—C51—S1 119.9 (2)

C4—C3—C7 120.0 (3) C56—C51—S1 121.6 (2)

C4—C3—C2 121.1 (2) C51—C52—C53 120.5 (3)

C7—C3—C2 118.7 (3) C51—C52—H52 119.8

C3—C4—O1 123.9 (3) C53—C52—H52 119.8

C3—C4—C5 122.8 (2) C54—C53—C52 121.6 (3)

O1—C4—C5 113.3 (3) C54—C53—H53 119.2

C4—C5—C6 112.9 (2) C52—C53—H53 119.2

C4—C5—S1 113.90 (19) C53—C54—C55 117.2 (3)

C6—C5—S1 111.53 (19) C53—C54—C57 122.2 (3)

C4—C5—H5 105.9 C55—C54—C57 120.6 (3)

C6—C5—H5 105.9 C54—C55—C56 121.8 (3)

S1—C5—H5 105.9 C54—C55—H55 119.1

N1—C6—C61 108.4 (2) C56—C55—H55 119.1

N1—C6—C5 107.0 (2) C51—C56—C55 120.5 (3)

C61—C6—C5 114.4 (2) C51—C56—H56 119.7

N1—C6—H6 109.0 C55—C56—H56 119.7

C61—C6—H6 109.0 C54—C57—H57A 109.5

C5—C6—H6 109.0 C54—C57—H57B 109.5

O2—C7—O3 120.2 (3) H57A—C57—H57B 109.5

O2—C7—C3 127.5 (3) C54—C57—H57C 109.5

O3—C7—C3 112.3 (3) H57A—C57—H57C 109.5

O3—C8—C9 109.6 (3) H57B—C57—H57C 109.5

O3—C8—H8A 109.8 C66—C61—C62 117.0 (3)

C9—C8—H8A 109.8 C66—C61—C6 120.0 (3)

O3—C8—H8B 109.8 C62—C61—C6 122.9 (3)

C9—C8—H8B 109.8 C63—C62—C61 121.2 (3)

H8A—C8—H8B 108.2 C63—C62—H62 119.4

C8—C9—H9A 109.5 C61—C62—H62 119.4

C8—C9—H9B 109.5 C62—C63—C64 121.8 (3)

H9A—C9—H9B 109.5 C62—C63—H63 119.1

C8—C9—H9C 109.5 C64—C63—H63 119.1

(8)

H9B—C9—H9C 109.5 C63—C64—C67 121.9 (3)

C26—C21—C22 117.2 (3) C65—C64—C67 121.0 (3)

C26—C21—C2 123.8 (2) C66—C65—C64 121.1 (3)

C22—C21—C2 118.9 (2) C66—C65—H65 119.4

C23—C22—C21 120.9 (3) C64—C65—H65 119.4

C23—C22—H22 119.6 C61—C66—C65 121.8 (3)

C21—C22—H22 119.6 C61—C66—H66 119.1

C24—C23—C22 121.9 (3) C65—C66—H66 119.1

C24—C23—H23 119.1 C64—C67—H67A 109.5

C22—C23—H23 119.1 C64—C67—H67B 109.5

C25—C24—C23 117.0 (3) H67A—C67—H67B 109.5

C25—C24—C27 122.5 (4) C64—C67—H67C 109.5

C23—C24—C27 120.5 (3) H67A—C67—H67C 109.5

C24—C25—C26 121.6 (3) H67B—C67—H67C 109.5

C24—C25—H25 119.2 C2—N1—C6 113.2 (2)

C26—C25—H25 119.2 C2—N1—H1 108.7 (17)

C21—C26—C25 121.4 (3) C6—N1—H1 107.8 (18)

C21—C26—H26 119.3 C4—O1—H1A 109.5

C25—C26—H26 119.3 C7—O3—C8 117.6 (2)

C24—C27—H27A 109.5 C51—S1—C5 103.59 (13)

C24—C27—H27B 109.5

N1—C2—C3—C4 −19.5 (3) S1—C51—C52—C53 176.8 (3)

C21—C2—C3—C4 108.5 (3) C51—C52—C53—C54 0.1 (5)

N1—C2—C3—C7 155.9 (2) C52—C53—C54—C55 −0.5 (5)

C21—C2—C3—C7 −76.1 (3) C52—C53—C54—C57 −179.5 (3)

C7—C3—C4—O1 −1.0 (4) C53—C54—C55—C56 0.2 (5)

C2—C3—C4—O1 174.4 (3) C57—C54—C55—C56 179.2 (3)

C7—C3—C4—C5 −178.8 (2) C52—C51—C56—C55 −1.0 (4)

C2—C3—C4—C5 −3.4 (4) S1—C51—C56—C55 −177.1 (2)

C3—C4—C5—C6 −7.9 (4) C54—C55—C56—C51 0.6 (4)

O1—C4—C5—C6 174.1 (2) N1—C6—C61—C66 −102.8 (3)

C3—C4—C5—S1 −136.4 (2) C5—C6—C61—C66 137.9 (3)

O1—C4—C5—S1 45.6 (3) N1—C6—C61—C62 72.4 (3)

C4—C5—C6—N1 40.7 (3) C5—C6—C61—C62 −46.9 (4)

S1—C5—C6—N1 170.42 (17) C66—C61—C62—C63 −0.5 (4)

C4—C5—C6—C61 160.8 (2) C6—C61—C62—C63 −175.7 (3)

S1—C5—C6—C61 −69.5 (3) C61—C62—C63—C64 0.7 (5)

C4—C3—C7—O2 3.9 (4) C62—C63—C64—C65 −0.2 (5)

C2—C3—C7—O2 −171.6 (3) C62—C63—C64—C67 179.5 (3)

C4—C3—C7—O3 −175.7 (2) C63—C64—C65—C66 −0.5 (5)

C2—C3—C7—O3 8.8 (3) C67—C64—C65—C66 179.8 (3)

N1—C2—C21—C26 92.8 (3) C62—C61—C66—C65 −0.2 (4)

C3—C2—C21—C26 −32.9 (4) C6—C61—C66—C65 175.2 (3)

N1—C2—C21—C22 −83.2 (3) C64—C65—C66—C61 0.7 (5)

C3—C2—C21—C22 151.0 (3) C3—C2—N1—C6 57.0 (3)

C26—C21—C22—C23 −1.8 (4) C21—C2—N1—C6 −72.4 (3)

(9)

supporting information

sup-7 Acta Cryst. (2007). E63, o1375–o1376

C21—C22—C23—C24 −0.4 (5) C5—C6—N1—C2 −68.6 (3)

C22—C23—C24—C25 2.0 (5) O2—C7—O3—C8 −1.8 (4)

C22—C23—C24—C27 −176.1 (3) C3—C7—O3—C8 177.9 (3)

C23—C24—C25—C26 −1.4 (5) C9—C8—O3—C7 −149.9 (3)

C27—C24—C25—C26 176.5 (3) C52—C51—S1—C5 102.3 (3)

C22—C21—C26—C25 2.3 (4) C56—C51—S1—C5 −81.7 (2)

C2—C21—C26—C25 −173.8 (3) C4—C5—S1—C51 62.6 (2)

C24—C25—C26—C21 −0.7 (5) C6—C5—S1—C51 −66.6 (2)

C56—C51—C52—C53 0.7 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1A···O2 0.82 1.98 2.680 (4) 143

C26—H26···Cg1 0.93 2.95 3.698 (3) 139

C55—H55···Cg2i 0.93 2.95 3.878 (3) 174

Figure

Figure 1

References

Related documents

Because RNF8 was highly expressed in bladder cancer cells and participated in the DDR after radiotherapy (Figure 1), to determine the extent of the contribution of RNF8 to

Hemoglobin concentration, Red cell indices: (PCV) Packed cell volume, (MCV) Mean Corpuscular Volume, (MCH) Mean Corpuscular Hemoglobin, (MCHC) Mean Corpuscular

Also, the concerning the effect of nanosystem on the encapsulation efficiency of diclofenac sodium, results showed that the EE% had higher values in the case of niosomes than in

We compare two different types of extraction patterns for automatically deriving semantic information from text: lexical patterns, built from words and word class information,

We compare our model using random ( H-LSTM ) and pre-trained word embeddings ( HP-LSTM ) against the best model of the SemEval-2016 Aspect- based Sentiment Analysis task (Pontiki

The mean score of sub- groups of NHP except pain and emotion subgroups, were significantly higher in PD patients than in the control group.. The mean FIQ levels, the scores of all

However, examining the contagion effects generated by the European sovereign debt crisis shows that only the dynamic conditional correlations of the Greek stock market and

The pro- posed tree-based model is deterministic but takes a step towards global optimization by widening the search space to include all necessary words con- nected by