• No results found

Inequalities of Hermite-Hadamard type for HG-convex functions

N/A
N/A
Protected

Academic year: 2020

Share "Inequalities of Hermite-Hadamard type for HG-convex functions"

Copied!
17
0
0

Loading.... (view fulltext now)

Full text

(1)

UDC 517.51

S. S. Dragomir

INEQUALITIES OF HERMITE-HADAMARD TYPE FOR HG-CONVEX FUNCTIONS

Abstract. Some inequalities of Hermite-Hadamard type forHG -convex functions defined on positive intervals are given. Appli-cations for special means are also provided.

Key words: convex functions, integral inequalities, HG-convex functions

2010 Mathematical Subject Classification: 26D15, 25D10

1. Introduction. Following [4] (see also [26]) we say that the function f :I ⊂R\ {0} →Ris HA-convex if

f

xy tx+ (1−t)y

≤(1−t)f(x) +tf(y) (1)

for all x, y∈I andt∈[0,1]. If the inequality in (1) is reversed, then f is said to be HA-concave.

If I ⊂ (0,∞) and f is convex and nondecreasing function then f is

HA-convex and if f is HA-convex and nonincreasing function then f is convex.

If [a, b] ⊂ I ⊂ (0,∞) and if we consider the function g : 1b,a1 → R,

defined by g(t) =f 1t, then we can state the following fact [4]:

Lemma 1. The functionf isHA-convex on[a, b]if and only ifgis convex in the usual sense on 1b,1a.

Therefore, as examples of HA-convex functions we can take f(t) = =g 1t, where g is any convex function on1b,a1.

In the recent paper [16] we obtained the following characterization result as well:

c

(2)

Lemma 2. Let f, h : [a, b] ⊂ (0,∞) → R be so that h(t) = tf(t) for

t ∈ [a, b]. Then f is HA-convex on the interval [a, b] if and only if h is convex on[a, b].

Following [4] (see also [26]) we say that the functionf :I ⊂R\ {0} →

→(0,∞) isHG-convex if

f

xy tx+ (1−t)y

≤[f(x)]1−t[f(y)]t (2)

for allx, y ∈I and t∈[0,1]. If the inequality in (2) is reversed, then f is said to beHG-concave.

By the geometric-mean - arithmetic mean inequality we have that any

HG-convex function isHA-convex. The converse is obviously not true. We observe that f :I ⊂R\ {0} →(0,∞) is HG-convex if and only if

the function lnf :I ⊂R\ {0} →Ris HA-convex onI.

Using Lemmas 1 and 2 we have:

Theorem 1. Let f : [a, b] ⊂ (0,∞) → (0,∞) and define the associated functions Gf :

1 b,

1 a

→ R defined by Gf (t) = lnf 1t

and Hf : [a, b] ⊂ ⊂ (0,∞) → R defined by Hf(t) = tlnf(t). Then the following

state-ments are equivalent:

(i) The function f is HG-convex on[a, b]; (ii) The function Gf is convex on 1b,a1; (iii) The function Hf is convex on[a, b].

For a convex function h : [c, d] → R, the following inequality is well

known in the literature as the Hermite-Hadamard inequality

h

c+d 2

≤ 1 d−c

d

Z

c

h(t)dt≤ h(c) +h(d)

2 . (3)

For related results, see [1] – [10], [12] – [28].

Motivated by the above results, we establish in this paper some ine-qualities of Hermite-Hadamard type for HG-convex functions defined on positive intervals. Applications for special means are also provided.

2. Main Results. The following result holds.

Theorem 2. Let f : [a, b]⊂(0,∞)→(0,∞) be an HG-convex function on the interval [a, b]. Then for any λ∈[0,1] we have the inequalities

f

2ab a+b

f

2ab

(1−λ)a+ (λ+ 1)b

1−λ

f

2ab (2−λ)a+λb

λ

(3)

≤exp

ab b−a

b

Z

a

lnf(t) t2 dt

≤ (4)

s

f

ab (1−λ)a+λb

[f(a)]1−λ[f(b)]λ ≤pf(a)f(b).

If we take λ= 12 in (4), then we get

f

2ab a+b

s

f

4ab a+ 3b

f

4ab 3a+b

≤exp

ab b−a

b

Z

a

lnf(t) t2 dt

≤ (5)

s

f

2ab a+b

p

f(a)f(b)≤pf(a)f(b).

The identric mean I(a, b) for two distinct positive numbers a, b is defined by

I(a, b) := 1 e

bb aa

b−1a

while the logarithmic mean is defined by

L(a, b) := b−a lnb−lna.

Theorem 3. Let f : [a, b]⊂(0,∞)→(0,∞) be an HG-convex function on the interval [a, b]. Then

f(L(a, b))≤exp

1 b−a

b

Z

a

lnf(t)dt

≤[f(b)]

(L(a,b)−a)b

(b−a)L(a,b) [f(a)]

(b−L(a,b))a (b−a)L(a,b) .

(6)

(4)

Theorem 4. Let f : [a, b]⊂(0,∞)→(0,∞) be an HG-convex function on the interval [a, b]. Then we have

f

a+b 2

a+b2

≤exp

1 b−a

b

Z

a

tlnf(t)dt

≤

q

[f(b)]b[f(a)]a. (7)

We have the reverse inequalities as well:

Theorem 5. Let f : [a, b]⊂(0,∞)→(0,∞) be an HG-convex function on the interval [a, b]. Then we have

1≤

exp baba b

R

a lnf(t)

t2 dt

!

fa2+abb

≤ (8)

≤exp

1 8

f0 (b) f(b) b

2 f

0

+(a)a2 f(a)

b−a ab

and

1≤

p

f(a)f(b)

exp baba b

R

a lnf(t)

t2 dt

! ≤ (9)

≤exp

1 8

f0 (b) f(b) b

2 f

0

+(a)a2 f(a)

b−a ab

.

The following related result also holds:

Theorem 6. Let f : [a, b]⊂(0,∞)→(0,∞) be an HG-convex function on the interval [a, b]. Then we have

1≤

q

[f(a)]a[f(b)]b

exp b1a b

R

a

tlnf(t)dt

! ≤

f(b) f(a)

18(b−a)

exp

1

8(b−a)

bf0 (b) f(b) −

af+0 (a) f(a)

(5)

and

1≤

exp b1a b

R

a

tlnf(t)dt

!

f a+2ba+b2

f(b) f(a)

18(b−a) exp

1

8(b−a)

bf0 (b) f(b) −

af+0 (a) f(a)

. (11)

From a different perspective we have:

Theorem 7. Let f : [a, b]⊂(0,∞)→(0,∞) be an HG-convex function on the interval [a, b]. Then

exp

ab b−a

b

Z

a

lnf(t) t2 dt

≤

q

f(x) [f(b)] a(b−x)

x(b−a) [f(a)] b(x−a)

x(b−a) (12)

for any x∈[a, b].

If we take in (12),x= a+2b, then we get from (12) that

exp

ab b−a

b

Z

a

lnf(t) t2 dt

≤

s

f

a+b 2

[f(b)]a+ba [f(a)] b

a+b. (13)

3. Proofs. In [15], in order to improve I¸scan’s inequality [26] for

HA-convex functions g : [a, b]⊂(0,∞)→R,

g

2ab a+b

≤ ab b−a

b

Z

a g(t)

t2 dt≤

g(a) +g(b)

2 , (14)

we obtained the following result:

g

2ab a+b

≤(1−λ)g

2ab

(1−λ)a+ (λ+ 1)b

+

+λg

2ab (2−λ)a+λb

≤ ab b−a

b

Z

a g(t)

(6)

≤ 1 2

g

ab (1−λ)a+λb

+ (1−λ)g(a) +λg(b)

≤ g(a) +g(b)

2 , (15)

where λ∈[0,1].

Now, if f : [a, b] ⊂ (0,∞) →(0,∞) is an HG-convex function on the interval [a, b], then g := lnf is HA-convex on [a, b], and by (15) we get

lnf

2ab a+b

≤(1−λ) lnf

2ab

(1−λ)a+ (λ+ 1)b

+

+λlnf

2ab (2−λ)a+λb

≤ ab b−a

b

Z

a

lnf(t) t2 dt≤

≤ 1 2

lnf

ab (1−λ)a+λb

+ (1−λ) lnf(a) +λlnf(b)

≤ lnf(a) + lnf(b)

2 , (16)

that is equivalent to

lnf

2ab a+b

≤ln

f

2ab

(1−λ)a+ (λ+ 1)b

1−λ

f

2ab (2−λ)a+λb

λ!

≤ ab b−a

b

Z

a

lnf(t)

t2 dt≤ln

s

f

ab (1−λ)a+λb

[f(a)]1−λ[f(b)]λ ≤

≤lnpf(a)f(b),

and by taking the exponential we get the desired result (4). We have the following result for HA-convex functions [15]:

Lemma 3. Let g : [a, b]⊂(0,∞)→R be an HA-convex function on the

interval [a, b]. Then

g(L(a, b))≤ 1 b−a

b

Z

a

g(x)dx≤ (L(a, b)−a)bg(b) + (b−L(a, b))ag(a) (b−a)L(a, b) .

(7)

Iff : [a, b]⊂(0,∞)→(0,∞) is anHG-convex function on the interval [a, b], then g := lnf is HA-convex on [a, b], and by (17) we have

lnf(L(a, b))≤ 1 b−a

b

Z

a

lnf(x)dx≤

≤ (L(a, b)−a)blnf(b) + (b−L(a, b))alnf(a) (b−a)L(a, b) =

= ln[f(b)]

(L(a,b)−a)b

(b−a)L(a,b) [f(a)]

(b−L(a,b))a (b−a)L(a,b)

. (18)

By taking the exponential in (18) we get the desired result (6).

We use the following results obtained by the author in [10] and [11]:

Lemma 4. Let h : [α, β] → R be a convex function on [α, β]. Then we

have the inequalities

0≤ h(α) +h(β)

2 −

1 β−α

β

Z

α

h(t)dt≤ 1 8

h0(β)−h+0 (α)(β−α) (19)

and

0≤ 1 β−α

β

Z

α

h(t)dt−h

α+β 2

≤ 1 8

h0(β)−h0+(α)(β−α). (20)

The constant 18 is best possible in (19) and (20).

If ` : [a, b] ⊂ (0,∞) → R is an HA-convex function on the interval

[a, b], then the functiong :1b,a1 →R, g(s) =` 1s

, is convex on1b,a1. Now, by (19) and (20) we have

0≤ g

1 a

+g 1b

2 −

1

1 a −

1 b

1 a

Z

1 b

g(t)dt≤

≤ 1 8

g0

1 a

−g+0

1 b

1 a −

1 b

(8)

and

0≤ 1 1 a − 1 b 1 a Z 1 b

g(t)dt−g

1 a + 1 b 2 ≤ ≤ 1 8

g0

1 a

−g0+

1 b 1 a − 1 b . (22)

We also have

g±0 (s) =`0

1 s − 1 s2 and then

g0

1 a

=−`0+(a)a2 and g+0

1 b

=−`0(b)b2.

From (21) and (22) we have

0≤ `(a) +`(b)

2 −

ab b−a

1 a Z 1 b ` 1 s ds≤ ≤ 1 8

`0(b)b2−`0+(a)a2

b−a ab

(23)

and

0≤ ab b−a

1 a Z 1 b ` 1 s

ds−`

2ab a+b

≤ 1 8

`0(b)b2−`0+(a)a2

b−a ab

. (24)

If we change the variable 1s =u, thends=−du

u2 and (23) and (24) can be written as

0≤ `(a) +`(b)

2 −

ab b−a

b

Z

a `(t)

t2 dt≤

≤ 1 8

`0(b)b2−`0+(a)a2

b−a ab

(9)

and

0≤ ab b−a

b

Z

a `(t)

t2 dt−`

2ab a+b

≤ 1 8

`0(b)b2−`0+(a)a2

b−a ab

. (26)

Iff : [a, b]⊂(0,∞)→(0,∞) is anHG-convex function on the interval [a, b], then `:= lnf is HA-convex on [a, b],and by (25) and (26) we have

0≤lnpf(a)f(b)− ab b−a

b

Z

a

lnf(t) t2 dt≤

≤ 1 8

f0 (b) f(b) b

2 f+0 (a)a2 f(a)

b−a ab

(27)

and

0≤ ab b−a

b

Z

a

lnf(t)

t2 dt−lnf

2ab a+b

≤ 1 8

f0 (b) f(b) b

2 f+0 (a)a2 f(a)

b−a ab

, (28)

and the Theorem 5 is proved.

Iff : [a, b]⊂(0,∞)→(0,∞) is anHG-convex function on the interval [a, b], then Hf is convex on [a, b] and by (19) and (20) we have after appropriate calculations

0≤ln

q

[f(a)]a[f(b)]b− 1 b−a

b

Z

a

tlnf(t)dt≤

≤ 1 8

lnf(b) +bf

0 −(b)

f(b) −lnf(a)−

af+0 (a) f(a)

(b−a) =

= ln

f(b) f(a)

18(b−a)

+1

8(b−a)

bf0 (b) f(b) −

af+0 (a) f(a)

(10)

and

0≤ 1 b−a

b

Z

a

tlnf(t)dt−ln

f

a+b 2

a+b2 !

≤ln

f(b) f(a)

18(b−a) + 1

8(b−a)

bf0 (b) f(b) −

af+0 (a) f(a)

.

These inequalities are equivalent to

0≤ln

    

q

[f(a)]a[f(b)]b

exp b1a b

R

a

tlnf(t)dt

! 

    

≤ln

"

f(b) f(a)

18(b−a)

exp

1

8(b−a)

bf0 (b) f(b) −

af+0 (a) f(a)

#

and

0≤ln

    

exp b1a b

R

a

tlnf(t)dt

!

f a+2b a+b

2

    

≤ln

"

f(b) f(a)

18(b−a)

exp

1

8(b−a)

bf0 (b) f(b) −

af+0 (a) f(a)

#

and by taking the exponential we get the desired results (10) and (11). The following lemma is of interest in itself:

Lemma 5. Let g : [a, b] ⊂ (0,∞) →R be a HA-convex function on the

interval [a, b]. Then

1 2x

g(b)a(b−x) +g(a)b(x−a)

b−a +xg(x)

≥ ab b−a

b

Z

a g(y)

y2 dy (29)

(11)

Proof. Since h(t) = tg(t) for t ∈ [a, b] is convex, then by the gradient inequality for convex functions we have

xg(x)−yg(y)≥ g(y) +yg0(y)(x−y)

for any x, y∈(a, b). This is equivalent to

xg(x)−xg(y)≥yg0(y) (x−y) (30)

for any x, y∈(a, b).

From (30) we have, by division with xy2 >0,that

1

y2g(x)−

1

y2g(y)≥

g0(y) y

1− y x

for any x, y∈(a, b).

Taking the integral mean overy we have

g(x) 1 b−a

b

Z

a 1 y2dy−

1 b−a

b

Z

a g(y)

y2 dy ≥

≥ 1 b−a

b

Z

a

g0 (y) y dy−

1 x

1 b−a

b

Z

a

g0 (y)dy

that is equivalent to

g(x) ab −

1 b−a

b

Z

a g(y)

y2 dy≥

≥ 1 b−a

g(b) b −

g(a)

a +

b

Z

a g(y)

y2 dy

−

1 x

g(b)−g(a) b−a =

= 1

b−a

g(b) b −

g(a) a

+ 1

b−a b

Z

a g(y)

y2 dy−

1 x

(12)

for anyx∈(a, b). This can be written as

1 x

g(b)−g(a) b−a −

1 b−a

g(b) b −

g(a) a

≥ 2 b−a

b

Z

a g(y)

y2 dy− g(x)

ab

or as

1 2

1 b−a

g(b)b−x

xb +g(a) x−a

ax

+ g(x) ab

≥ 1 b−a

b

Z

a g(y)

y2 dy.

This is equivalent to the desired result (29).

Iff : [a, b]⊂(0,∞)→(0,∞) is anHG-convex function on the interval [a, b], then g := lnf is HA-convex on [a, b], and by (29) we have

1 2x

a(b−x) lnf(b) +b(x−a) lnf(a)

b−a +xlnf(x)

≥ ab b−a

b

Z

a

lnf(y) y2 dy

for anyx∈[a, b].

This is clearly equivalent to

ln

q

[f(b)] a(b−x)

x(b−a)[f(a)] b(x−a)

x(b−a)pf(x)

≥ ab b−a

b

Z

a

lnf(y)

y2 dy (31)

for anyx∈[a, b].

If we take the exponential in (31), then we get the desired result (12). 4. Applications. Consider the functionf : [a, b]⊂(0,∞)→(0,∞), f(t) =t. Using the geometric mean - harmonic mean inequality, we have

f

xy tx+ (1−t)y

= xy

tx+ (1−t)y ≤x 1−t

yt = [f(x)]1−t[f(y)]t,

which shows that f is HG-convex on [a, b]. We need the following integrals

1 b−a

b

Z

a

lnf(t)dt= 1 b−a

b

Z

a

(13)

1 b−a

b

Z

a

tlnf(t)dt= 1 b−a

b

Z

a

tlntdt=

= 1

2A(a, b) lnI a

2

, b2= lnhI a2, b2 1

2A(a,b)i

and

b

Z

a

lnf(t) t2 dt=

b

Z

a lnt

t2 dt= b−a

ab ln

I a−1, b−1−1

giving that

ab b−a

b

Z

a

lnf(t)

t2 dt= ln

I a−1, b−1−1.

Now, if we write the inequality (4) for the function f : [a, b] ⊂ (0,∞) → →(0,∞), f(t) =t, we get

H(a, b)≤

2ab

(1−λ)a+ (λ+ 1)b

1−λ

2ab (2−λ)a+λb

λ

I a−1, b−1−1 ≤

s

ab (1−λ)a+λb

a1−λbλ G(a, b), (32)

where H(a, b) := a2+abb is theharmonic mean.

If we use the inequality (6) for f(t) =t, then we have

(L(a, b)≤)I(a, b)≤b(L(a,b)

−a)b (b−a)L(a,b)a

(b−L(a,b))a

(b−a)L(a,b). (33)

If we use the inequality (7) for f(t) =t, t∈[a, b], then we also get

[A(a, b)]A(a,b) ≤I a2, b2 1

2A(a,b)

G bb, aa. (34)

From (8) and (9) for f(t) =t we have

1≤

I a−1, b−1−1

H(a, b) ≤exp

(b−a)2 8ab

!

(35)

and

1≤ G(a, b)

[I(a−1, b−1)]−1 ≤exp

(b−a)2 8ab

!

(14)

From (10) and (11) we also have

1≤ G a

a, bb

[I(a2, b2)]12A(a,b) ≤

b a

18(b−a)

(37)

and

1≤

I a2, b2 1 2A(a,b)

[A(a, b)]A(a,b) ≤

b a

18(b−a)

. (38)

Finally, from (13) we obtain

I a−1, b−1−1≤

q

A(a, b)ba+ba a b

a+b. (39)

Now consider the function f : [a, b]⊂(0,∞)→(0,∞),f(t) = exp (t). Using the harmonic mean-arithmetic mean inequality we have

f

xy tx+ (1−t)y

= exp

xy tx+ (1−t)y

≤exp ((1−t)x+ty) =

= [exp (x)]1−t[exp (y)]t = [f(x)]1−t[f(y)]t

for anyx, y ∈[a, b] and t∈[0,1].

Now, if we use the inequality (4) for theHG-convex functionf : [a, b]⊂ ⊂(0,∞)→(0,∞),f(t) = exp (t), then we get, after suitable calculations, that

H(a, b)≤ 2 (1−λ)ab

(1−λ)a+ (λ+ 1)b +

2λab

(2−λ)a+λb ≤

≤ G

2(a, b)

L(a, b) ≤ 1 2

ab

(1−λ)a+λb + (1−λ)a+λb

≤A(a, b),

for anyλ ∈[0,1].

If we use the inequalities (8) and (9) for the HG-convex function f : [a, b]⊂(0,∞)→(0,∞), f(t) = exp (t), then, by performing the required calculations, we get

0≤ G

2(a, b)

L(a, b) −H(a, b)≤ 1 4

A(a, b)

G2(a, b)(b−a) 2

(40)

and

0≤A(a, b)− G

2(a, b)

L(a, b) ≤ 1 4

A(a, b)

G2(a, b)(b−a) 2

(15)

From the inequality (13) we also have

G2(a, b) L(a, b) ≤

1 2

A(a, b) +ba+ba a b a+b

. (42)

Acknowledgement. The author would like to thank the anonymous referees for valuable comments that have been implemented in the final version of the paper.

References

[1] Alomari M., Darus M. The Hadamard’s inequality for s-convex function.

Int. J. Math. Anal., 2008, vol. 2, no. 13-16, pp. 639–646.

[2] Alomari M., Darus M. Hadamard-type inequalities for s-convex functions.

Int. Math. Forum, 2008, vol. 3, no. 37-40, pp. 1965–1975.

[3] Anastassiou G. A. Univariate Ostrowski inequalities, revisited. Monatsh. Math., 2002, vol. 135, no. 3, pp. 175–189.

[4] Anderson G. D., Vamanamurthy M. K., Vuorinen M.Generalized convexity and inequalities.J. Math. Anal. Appl., 2007, vol. 335, pp. 1294–1308.

[5] Barnett N. S., Cerone P., Dragomir S. S., Pinheiro M. R., Sofo A. Os-trowski type inequalities for functions whose modulus of the derivatives are convex and applications. Inequality Theory and Applications, vol. 2 (Chinju/Masan, 2001), 19–32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll., 2002, vol. 5, no. 2, art. 1 [Online

http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].

[6] Beckenbach E. F.Convex functions.Bull. Amer. Math. Soc., 1948, vol. 54, pp. 439–460.

[7] Bombardelli M., Varoˇsanec S. Properties of h-convex functions related to the Hermite-Hadamard-Fej´er inequalities.Comput. Math. Appl., 2009, vol. 58, no. 9, pp. 1869–1877.

[8] Cristescu G.Hadamard type inequalities for convolution of h-convex func-tions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 2010, vol. 8, pp. 3–11.

[9] Dragomir S. S.On the Ostrowski’s inequality for mappings of bounded va-riation and applications. Math. Ineq. & Appl., 2001, vol. 4, no. 1, pp. 33–40.

(16)

[11] Dragomir S. S.An inequality improving the second Hermite-Hadamard in-equality for convex functions defined on linear spaces and applications for semi-inner products.J. Inequal. Pure Appl. Math., 2002, vol. 3, no. 3, art. 35.

[12] Dragomir S. S. An Ostrowski like inequality for convex functions and ap-plications.Revista Math. Complutense, 2003, vol. 16, no. 2, pp. 373–382.

[13] Dragomir S. S. Operator Inequalities of Ostrowski and Trapezoidal Type.

Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1

[14] Dragomir S. S.Some new inequalities of Hermite-Hadamard type for GA-convex functions. Preprint RGMIA Res. Rep. Coll., 2015, vol. 18, art. 30.

[http://rgmia.org/papers/v18/v18a30.pdf].

[15] Dragomir S. S. Inequalities of Hermite-Hadamard type for HA-convex functions. Preprint RGMIA Res. Rep. Coll., 2015, vol. 18, art. 38.

[http://rgmia.org/papers/v18/v18a38.pdf].

[16] Dragomir S. S. New inequalities of Hermite-Hadamard type for HA-convex functions. Preprint RGMIA Res. Rep. Coll., 2015, vol. 18, art.

41. [http://rgmia.org/papers/v18/v18a41.pdf].

[17] Dragomir S. S., Cerone P., Roumeliotis J., Wang S. A weighted version of Ostrowski inequality for mappings of H¨older type and applications in numerical analysis. Bull. Math. Soc. Sci. Math. Romanie,1999,vol. 42(90), no. 4, pp. 301–314.

[18] Dragomir S. S., Fitzpatrick S. The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math., 1999, vol. 32, no. 4, pp. 687–696.

[19] Dragomir S. S., Fitzpatrick S.The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math., 2000, vol. 33, no. 1, pp. 43–49.

[20] Dragomir S. S., Mond B.On Hadamard’s inequality for a class of functions of Godunova and Levin. Indian J. Math., 1997, vol. 39, no. 1, pp. 1–9.

[21] Dragomir S. S., Pearce C. E. M. On Jensen’s inequality for a class of functions of Godunova and Levin. Period. Math. Hungar., 1996, vol. 33, no. 2, pp. 93–100.

[22] Dragomir S. S., Pearce C. E. M.Quasi-convex functions and Hadamard’s inequality. Bull. Austral. Math. Soc., 1998, vol. 57, pp. 377–385.

[23] Dragomir S. S., Peˇcari´c J., Persson L.-E. Some inequalities of Hadamard type. Soochow J. Math., 1995, vol. 21, no. 3, pp. 335–341.

(17)

[25] El Farissi A.Simple proof and refinement of Hermite-Hadamard inequality. J. Math. Ineq., 2010, vol. 4, no. 3, pp. 365–369.

[26] I¸scan I.Hermite-Hadamard type inequalities for harmonically convex func-tions. Hacettepe Journal of Mathematics and Statistics, 2014, vol. 43, no. 6, pp. 935–942.

[27] Kikianty E., Dragomir S. S. Hermite-Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space. Math. Inequal. Appl., 2010, vol. 13, no. 1, pp. 1–32.

[28] Peˇcari´c J. E., Dragomir S. S.On an inequality of Godunova-Levin and some refinements of Jensen integral inequality.Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), pp. 263– 268, Preprint, 89-6, Univ. ”Babe¸s-Bolyai”, Cluj-Napoca, 1989.

Received April 19, 2017.

In revised form, July 11, 2017. Accepted July 11, 2017.

Published online August 16, 2017.

Mathematics, College of Engineering & Science Victoria University, PO Box 14428

Melbourne City, MC 8001, Australia;

DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics

University of the Witwatersrand,

References

Related documents

The objective of this investigation is to study the effect of high volume of fly ash in the fresh and hardened properties of concrete and to study the flexural response of HVFAC beams

Metastable antiprotonic helium (pHe + ) is an exotic atom consisting of a helium nucleus, an electron in the ground 1s state and an antiproton in a Rydberg state of large principal (

Net present value of after-tax costs and benefits of spotted knrp weed eradication calculated for 3 alternative rates of knapweed spread and forage replacement, on

In this work, we provide new and improved attacks against 22, 23 and 24-step SHA-2 family using a local collision given by Sanadhya and Sarkar (SS) at ACISP ’08.. This is the first

From each of the group of consecutive blocks choose any unused z blocks and merge them to form a merged-block with no inter-block common key.. To deal with remaining blocks that

Die Spaltung des Proteins resultiert nicht in einer Aktivierung des NF- B Signalweges, vielmehr wurde eine Funktion des C-terminalen BCL10 Fragments bei der

The contribution of the capillary endothelium to blood clearance and tissue deposition of anionic quantum dots in vivo:... To assess blood and tissue kinetics, fluorescence

The level of soil disturbance affected the rate and type of plant succession following disturbance. 1); canopy cover values equivalent to grass canopy cover