• No results found

Ostrowski and Trapezoid Type Inequalities Related to Pompeiu's Mean Value Theorem With Complex Exponential Weight

N/A
N/A
Protected

Academic year: 2020

Share "Ostrowski and Trapezoid Type Inequalities Related to Pompeiu's Mean Value Theorem With Complex Exponential Weight"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

Inequalities

Volume 11, Number 4 (2017), 947–964 doi:10.7153/jmi-2017-11-72

OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES RELATED TO POMPEIU’S MEAN VALUE THEOREM

WITH COMPLEX EXPONENTIAL WEIGHT

PIETROCERONE, SEVERS. DRAGOMIR ANDEDERKIKIANTY

(Communicated by A. Agli´c Aljinovi´c)

Abstract. We present some inequalities of Ostrowski and trapezoid type with complex exponen-tial weight, for complex-valued absolutely continuous functions. These inequalities are related to Pompeiu’s mean value theorem. Special cases of these inequalities are applied to obtain (i) some approximation results for thefinite Fourier and Laplace transforms; (ii) refinements of the Os-trowski and trapezoid inequalities; and (iii) new OsOs-trowski and trapezoid type inequalities.

1. Introduction

In 1938, Ostrowski [17] proved the following estimate of the integral mean:

THEOREM1. Let f :[a,b]R be continuous on [a,b] and differentiable on

(a,b)with|f(t)|M<for all t(a,b).Then, for any x[a,b], we have

f(x)b1

−a

b

a f(t)dt

⎡ ⎣1

4+

x−a+b

2

b−a

2⎤

M(b−a). (1)

The constant 14 is best possible, in the sense that it cannot be replaced by a smaller quantity.

Inequality (1) is referred to as Ostrowski’s inequality. For its generalisations and related results we refer the readers to Dragomir and Rassias [15]. Another estimate of the integral mean is given by the trapezoid rule as follows.

THEOREM2. (Cerone and Dragomir [7]) Under the assumptions of Theorem1,

we have

(x−a)f(a)+ (bba −x)f(b)b1a b

a f(t)dt

⎡ ⎣1

4+

x−a+b

2

b−a

2⎤

M(b−a),

(2) for any x∈[a,b]. The constant 1

4 is best possible.

Mathematics subject classification(2010): Primary: 26D10, 26D15.

Keywords and phrases: Ostrowski inequality, trapezoid inequality, complex exponential weight, Laplace transform, Fourier transform.

c

, Zagreb

(2)

Inequality (2) is known as the trapezoid inequality. For its generalisations and related results, we refer the readers to Cerone and Dragomir [7].

It is important to note that the bounds in inequalities (1) and (2) are the same. Cerone [6, Remark 1] stated that there is a strong relationship between the Ostrowski and the trapezoidal functionals which is highlighted by the symmetric transformations amongst their kernels.

In 1946, Pompeiu [19] derived a variant of Lagrange’s mean value theorem, known asPompeiu’s mean value theorem(cf. Sahoo and Riedel [21, p. 83]), as given below:

THEOREM3. For every real-valued function f differentiable on an interval[a,b]

not containing0 and for all pairs x1=x2 in[a,b], there exists a pointξ between x1

and x2such that

x1f(x2)−x2f(x1)

x1−x2 =f(ξ)ξf

). (3)

Pompeiu’s mean value theorem is utilised in order to provide another approxima-tion of the integral mean, as given below.

THEOREM4. (Dragomir, 2005 [9]) Let f:[a,b]→Rbe continuous on[a,b]and

differentiable on (a,b) with [a,b] not containing 0. Then for any x∈[a,b], we have the inequality

a+2 f(xx)b1a b

a f(t)dt

b|x|a

⎡ ⎣1

4+

x−a+b

2

b−a

2⎤

f−f. (4)

where(t) =t, t∈[a,b].The constant 1

4 is best possible.

We refer the readers to Popa [20], Pecari´c and Ungar [ˇ 18], Acu and Sofonea [1], and Acu et al. [2] for the generalisations and extensions of Theorem4. Inequalities of Ostrowski type which are related to the Pompeiu’s mean value theorem are given in the papers by Dragomir [10,11]. Further inequalities of Ostrowski and trapezoid types which are related to the Pompeiu’s mean value theorem can be found in Cerone, Dragomir, and Kikianty [8].

Some exponential Pompeiu type inequalities for complex-valued absolutely con-tinuous functions are given in Dragomir [12], with applications to obtain some new Ostrowski type inequalities. We recall the results on the Ostrowski type inequalities, in the next theorem.

THEOREM5. Let f :[a,b]C be an absolutely continuous function on the

in-terval[a,b]andα=β+iγCwithβ >0. Then, for any x∈[a,b]we have

f(x)exp(αb)exp(αa)

α exp(αx)

b

a f(t)dt

(5)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

|β|B1(a,b,x,α)f−αf, f−αf ∈L∞[a,b], q1/q|β|1/q(ba)1/p|Bq(a,b,x,α)|1/qfαfp, fαf Lp[a,b],

p>1, 1

(3)

where

Bq(a,b,x,α) =2

exqβx−a+2b+q1 β

ebqβ+eaqβ 2 −exqβ

,

for q1 and B∞(a,b,x,α):=exp(xβ)(x−a) +β−1[exp(bβ)exp(xβ)].If β =0, then for any x∈[a,b] we have

f(x)exp(iγb)−i exp(iγa)

γ exp(iγx) b

a f(t)dt

(6)

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

1

4+

x−a+b 2 b−a

2(ba)2fi

γf, f−iγf ∈L∞[a,b], bx

b−a

q+1 q +x−a

b−a

q+1

q q

q+1(b−a)

q+1

q fiγfp, fiγf Lp[a,b], p>1, 1

p+1q=1,

(b−a)fiγf1.

In this paper, we give refinements of the inequalities in Theorem5. We also present similar results for trapezoid type inequalities with complex exponential weights.

The paper is organised as follows. We present the main theorems concerning in-equalities with complex weights in Section2. We consider special cases of the main theorems, by choosing x= (a+b)/2, in Section 3. The inequalities involving the p-norms (with imaginary weights) wherep=1 are proven to be sharp.

The Fourier transform has been a principal analytical tool in many fields of re-search, such as probability theory, quantum physics, and boundary-value problems [3]. The approximations of thefinite Fourier transform of different classes of functions have been considered by employing integral inequalities of Ostrowski type. We refer to Bar-nett and Dragomir [4] for the approximations of the Fourier transform of absolutely continuous functions; to Barnett, Dragomir, and Hanna [5] for functions of bounded variation; and to Dragomir, Cho, and Kim [13] for Lebesgue integrable mappings. Us-ing a pre-Gr¨uss type inequality, Dragomir, Hanna, and Roumeliotis [14] obtained some approximations of thefinite Fourier transform for complex-valued functions. We apply the inequalities in Section3to obtain some approximation results for thefinite Fourier and Laplace transforms.

Finally, we provide some refinements of the Ostrowski and trapezoid inequalities in Section4by considering special cases of the main theorems in Section2. We also obtain some new Ostrowski and trapezoid type inequalities.

2. Main theorems

The main results concerning the Ostrowski and trapezoid type inequalities with complex exponential weights are given in this section.

2.1. Ostrowski type inequalities

We recall the definition of the Gamma and incomplete Gamma functions:

Γ(t) =

0 x

t−1e−xdx, and Γ(s,x) =x t

(4)

Throughout the text, for α =β+iγC and 1q<∞, we use the following notation:

Ψ+

q,α(s,t) =e−sβ(qβ) q+1

q [Γ(q+1)Γ(q+1,qβ(t−s))]1q;

and

Ψ−q,α(s,t) =e−tβ(−qβ) q+1

q [Γ(q+1)Γ(q+1,qβ(ts))]1q.

THEOREM6. Let f :[a,b]C be an absolutely continuous function on [a,b],

α=β+iγCand1<p. Let1q<be the H¨older conjugate of p. Ifβ=0, then

fe(x)αx(b−a)− b

a f(t) eαt dt

Ψ+q,α(a,x)f−αf[a,x],p−q,α(x,b)f−αf[x,b],p (7)

Ψ+q,α(a,x) +Ψ−q,α(x,b)f−αf[a,b],p,

for x∈[a,b]. If β=0, then

fe(ixxγ)(b−a) b

a f(t) eitγ dt

(x−a)

q+1 q

(q+1)1q

f−iγf[a,x],p+(b−x) q+1

q

(q+1)q1

f−iγf[x,b],p

(x−a) q+1

q + (b−x)q+q1

(q+1)q1

f−iγf[a,b],p,

(8)

for x∈[a,b]. The inequalities in(8)are sharp.

Proof. We use the Montgomery identity for the absolutely continuous function g:[a,b]→C(cf. Mitrinovi´c, Peˇcari´c, and Fink [16, p. 565]):

g(x)(b−a) b

a g(t)dt= x

a(t−a)g

(t)dt+ b

x (t−b)g

(t)dt, (9)

wherex∈[a,b]. If g(t) = f(t)/eαt, then g(t) = (f(t)αf(t))/eαt; and with this choice ofg, (9) becomes:

f(x)

eαx(b−a)− b

a f(t) eαt dt =

x

a (t−a)

f(t)αf(t)

eαt dt+ b

x (t−b)

f(t)αf(t)

eαt dt.

(5)

Take the modulus of (10) and make use of the H¨older’s inequality to obtain the follow-ing inequalities for 1<p∞and its H¨older’s conjugateq:

fe(x)αx (b−a)− b

a f(t) eαt dt

x

a

(t−a)|e−αt|qdt 1 q

f−αf[a,x],p+

b

x

(b−t)|eαt|qdt 1 q

f−αf[x,b],p

=

x

a(t−a)

qe−tqβdt 1 q

f−αf[a,x],p+

b

x (b−t)

qe−tqβdt 1 q

f−αf[x,b],p.

We evaluate the integral x

a(t−a)

qe−tqβdt=e−aqβ(qβ)−q−1 qβ(x−a)

0 z

qe−zdz

=e−aqβ(qβ)−q−1[Γ(q+1)Γ(q+1,qβ(xa))],

by lettingz= (t−a)qβ, and thus x

a (t−a)

qe−tqβdt 1 q

=e−aβ(qβ)−q+q1[Γ(q+1)Γ(q+1,qβ(xa))]1q =Ψ+ q,α(a,x).

Now, we evaluate the integral b

x (b−t)

qe−tqβdt =e−bqβ(qβ)−q−1 q(−β)(b−x)

0 z

qe−zdz

=e−bqβ(−qβ)−q−1[Γ(q+1)Γ(q+1,qβ(bx))],

by lettingz=(b−t)qβ, and thus b

x (b−t)

qe−tqβdt 1 q

=e−bβ(−qβ)−q+1q [Γ(q+1)Γ(q+1,−qβ(b−x))]1q q,α(x,b), and this proves (7). Ifβ =0, then

fe(x)ixγ (b−a)− b

a f(t) eitγ dt

x

a(t−a) qdt

1 q

f−iγf[a,x],p+

b

x (b−t) qdt

1 q

f−iγf[x,b],p

=(x−a)

q+1 q

(q+1)q1

f−iγf[a,x],p+(b−x) q+1

q

(q+1)q1

f−iγf[x,b],p

(x−a) q+1

q + (bx)q+q1

(q+1)1q

(6)

for anyx∈[a,b].This completes the proof. The sharpness of the inequalities in (8) is given by Proposition1.

In particular, when p=∞ (q=1) in Theorem6, inequalities (7) and (8) take simpler forms as follows:

COROLLARY1. Let f:[a,b]Cbe an absolutely continuous function on [a,b]

andα=β+iγC. If β=0, then we have

f(x)(eαbx−a) b

a f(t) eαt dt

e−aβ[(x−a)β+1]e−xβ

β2 f−αf[a,x],∞

+e−bβ+ [(b−x)β−1]e−xβ

β2 f−αf[x,b],∞ (11)

1

β2

e−aβ+e−bβ+2

a+b 2 −x

β1

e−xβ

f−αf[a,b],∞,

for any x∈[a,b]. If β=0, then we have

f(x)(beixγ−a)− b

a f(t) eitγ dt

12(x−a)2fiγf

[a,x],∞+ (b−x)2f−iγf[x,b],∞ (12)

1

4(b−a)2+

x−a+2b 2

f−iγf[a,b],∞,

for any x∈[a,b]. The constants 1

2 and 14 in(12)are sharp.

The case for the 1-norm is as follows:

THEOREM7. Let f :[a,b]C be an absolutely continuous function on [a,b],

α=β+iγC. Ifβ =0, then

fexx)(b−a)− b

a f(t) eαt dt

(13)

⎧ ⎪ ⎨ ⎪ ⎩

1

βe−(aβ+1)f−αf[a,x],1+ (b−x)e−xβf−αf[x,b],1, β >0 &a+β1 x,

(x−a)e−xβfαf

[a,x],1+1βe−(bβ+1)f−αf[x,b],1,β <0 &b+β1 x,

(x−a)e−xβfαf

[a,x],1+ (b−x)e−xβf−αf[x,b],1, otherwise,

⎧ ⎪ ⎨ ⎪ ⎩

1

βe−(aβ+1)+ (b−x)e−xβ

fαf

[a,b],1, β >0 &a+β1 x,

(x−a)e−xβ+ 1

βe−(bβ+1)

f−αf[a,b],1,β <0 &b+β1 x,

(b−a)e−xβfαf

(7)

for any x∈[a,b]. If β=0, then

fe(ixxγ)(b−a)− b

a f(t) eitγ dt

(x−a)f−iγf[a,x],1+ (b−x)f−iγf[x,b],1

(b−a)f−iγf[a,b],1,

(14)

for any x∈[a,b].

Proof. Take the modulus of (10) and make use of the H¨older’s inequality to obtain:

fe(x)αx (b−a) b

a f(t) eαt dt

sup

t∈[a,x](t−a)e

−tβfαf

[a,x],1+ sup

t∈[x,b](b−t)e

−tβfαf [x,b],1.

Define the functions: A(t) = (t−a)e−tβ fort[a,x] andB(t) = (bt)e−tβ fort [x,b].

Case 1: β >0.We haveB(t) =−e−βt(1+β(bt)). If β>0, thenB(t)0

for all t∈[x,b], thus, the supremum is attained at t=x. We have A(t) =eβt(1 β(t−a)).The stationary point ofAista= (aβ+1)/β.

Case 1a: tax (a+β1 x) , we have A(ta) =−βe−(aβ+1)0; thus, the supremum is attained att=ta.

Case 1b: ta>x(a+β1 >x) , we have 1β(t−a)>1β(x−a)>0, which implies thatA(t)>0 for allt∈[a,x]. Thus, the supremum is attained att=x.

Case 2: β<0.We haveA(t)0 for allt∈[a,x], thus, the supremum is attained att=x. The stationary point ofBistb= (bβ+1)/β.

Case 2a: tbx(b+β1 x) , we have B(ta) =βe−(bβ+1)0; thus, the supre-mum is attained att=tb.

Case 2b: tb<x(b+β1 <x) , we have 0<1+β(b−x)<1+β(t−x), which implies thatB(t)<0 for allt[x,b]. Thus, the supremum is attained att=x. This

completes the proof of (13). If β=0, then

fe(ixxγ)(b−a) b

a f(t) eitγ dt

sup

t∈[a,x](t−a)f iγf

[a,x],1+ sup

t∈[x,b](b−t)f iγf

[x,b],1

(x−a)f−iγf[a,x],1+ (b−x)f−iγf[x,b],1

(b−a)f−iγf[a,b],1.

This completes the proof.

2.2. Trapezoid type inequalities

The proofs for Theorems8,9, and Corollary2below are similar to Theorems6, 7, and Corollary1. We utilise the trapezoid identity for absolutely continuous function g:[a,b]→C

g(b)(b−x) +g(a)(x−a) b

a g(t)dt= b

a (t−x)g

(8)

instead of the Montgomery identity. We omit the proofs.

THEOREM8. Let f :[a,b]→C be an absolutely continuous function on [a,b],

α=β+iγCand1<p. Let1q<be a real number such that 1

p+1q=1. Ifβ=0, then

fe(b)bα (b−x) + f(a)

eaα (x−a)− b

a f(t) eαt dt

Ψ−q,α(a,x)f−αf[a,x],p+Ψ+q,α(x,b)f−αf[x,b],p (16)

Ψ−q,α(a,x) +Ψ+q,α(x,b)f−αf[a,b],p, for any x∈[a,b]. If β=0, then

fe(b)ibγ (b−x) + f(a)

eiaγ (x−a)− b

a f(t) eitγ dt

(x−a)

q+1 q

(q+1)1q

f−iγf[a,x],p+(b−x) q+1

q

(q+1)q1

f−iγf[x,b],p

(x−a) q+1

q + (bx)q+q1

(q+1)q1

f−iγf[a,b],p,

(17)

for any x∈[a,b]. The inequalities in(17)are sharp.

COROLLARY2. Let f:[a,b]→Cbe an absolutely continuous function on [a,b]

andα=β+iγC. If β=0, then we have

fe(b)bα (b−x) + f(a)

eaα (x−a)− b

a f(t) eαt dt

e−xβ+ [(x−a)β−1]e−aβ

β2 f−αf[a,x],∞

+e−xβ[(b−x)β+1]e−bβ

β2 f−αf[x,b],∞ (18)

1

β2

2e−xβ+ [(xa1]e−aβ[(bx+1]e−bβfαf [a,b],∞,

for any x∈[a,b]. If β=0, then we have

fe(ibbγ)(b−x) + f(a)

eiaγ (x−a) b

a f(t) eitγ dt

12(x−a)2fiγf

[a,x],∞+ (b−x)2f−iγf[x,b],∞ (19)

1

4(b−a)2+

x−a+2b 2

f−iγf[a,b],∞,

for any x∈[a,b]. The constants 1

(9)

THEOREM9. Let f :[a,b]→C be an absolutely continuous function on [a,b], α=β+iγC. Ifβ =0, then

fe(b)bα (b−x) + f(a)

eaα (x−a)− b

a f(t) eαt dt

(20)

⎧ ⎪ ⎨ ⎪ ⎩

(x−a)e−aβfαf

[a,x],1+β1e−(xβ+1)f−αf[x,b],1, β >0 &x+1β a, 1

βe−(xβ+1)f−αf[a,x],1+ (b−x)e−bβf−αf[x,b],1,β <0 &x+1β b,

(x−a)e−aβfαf

[a,x],1+ (b−x)e−bβf−αf[x,b],1,otherwise,

⎧ ⎪ ⎨ ⎪ ⎩

(x−a)e−aβ+1

βe−(xβ+1)

f−αf[a,b],1, β >0 &x+β1a,

1

βe−(xβ+1)+ (b−x)e−bβ

fαf

[a,b],1, β <0 &x+β1b,

(x−a)e−aβ+ (bx)e−bβfαf

[a,b],1,otherwise,

for x∈[a,b]. If β=0, then

fe(ibbγ)(b−x) + f(a)

eiaγ (x−a)− b

a f(t) eitγ dt

(x−a)f−iγf[a,x],1+ (b−x)f−iγf[x,b],1

(b−a)f−iγf[a,b],1,

(21)

for x∈[a,b].

REMARK1. Note the similarity of the bounds in Corollaries1and2[also,

Theo-rems6and8, and similarly, Theorems7and9]. Thefirst set of upper bounds in (11) [(7) and (13), respectively] and (12) [(8) and (14), respectively] can be obtained by let-ting a=x, x=b in thefirst term, and x=a, b=x in the second term in (18) [(16) and (20), respectively] and (19) [(17) and (21), respectively].

3. Special cases of the main theorems and approximations of the Laplace and Fourier transforms

One may obtain simpler inequalities from the main theorems, by choosing x= (a+b)/2. These special cases are applied to approximate the Laplace and Fourier transforms. For inequalities involving thep-norms where p=1, the choice ofx= (a+ b)/2 proves that the inequalities are sharp. We summarise the results in this section.

COROLLARY3. Let f:[a,b]→Cbe an absolutely continuous function on[a,b],

α=β+iγCand1<p<. Let q>1 be a real number such that 1

p+1q=1. If β=0, then the following inequalities hold:

fa+b

2

(b−a)

eα(a2+b)

b

a f(t) eαt dt

e−aβ[b−a

2 β+1]e−

a+b

2 β

β2 f−αf[a,a+b

2 ],∞(22)

+e−bβ+ [b−2aβ1]e

a+b

2 β

β2 f−αf[a+b 2 ,b],∞

1

β2

e−aβ+e−bβ2e−a+2bβ

(10)

For the case of the p-norms (1<p<), we have:

fa+b

2

eα(a2+b)

(b−a)

b

a f(t) eαt dt

(23)

Ψ+

q,α

a,a+2b

f−αf[a,a+b

2 ],p

q,α a

+b

2 ,b

f−αf[a+b 2 ,b],p

Ψ+q,α

a,a+2b

−q,α a

+b

2 ,b

f−αf[a,b],p.

For the case of the1-norm, we have:

fa+b

2

eα(a2+b)

(b−a)− b

a f(t) eαt dt

(24) ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1

βe−(aβ+1)f−αf[a,a+b

2 ],1+

b−a

2 e−

a+b

2 βf−αf

[a+b

2 ,b],1, β >0 &a+

1

β x, b−a

2 e−

a+b

2 βf−αf

[a,a+b

2 ],1+

1

βe−(bβ+1)f−αf[a+b

2 ,b],1,β <0 &b+

1

β x, b−a

2 e−

a+b

2 β

fαf

[a,a+2b],1+f

αf [a+2b,b],1

, otherwise,

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1

βe−(aβ+1)+b−2ae−

a+b

2 βf−αf[a,b],1, β >0 &a+1 β x, ba

2 e−

a+b

2 β+ 1

βe−(bβ+1)

f−αf[a,b],1,β <0 &b+β1 x,

(b−a)e−a+b

2 βf−αf[a,b],1, otherwise,

Ifβ=0, then the following inequalities hold:

fa+b

2

(b−a)

eia+2bγ b

a f(t) eitγ dt

1

8(b−a)2

f−iγf[a,a+b

2 ],∞+f

iγf [a+b

2 ,b],∞

14(b−a)2fiγf

[a,b],∞. (25)

For the case of the p-norms (1<p<), we have:

fa+2b

eixγ (b−a)− b

a f(t) eitγ dt

(b−a)q+1q 2(2q+2)q1

f−iγf[a,a+b

2 ],p+f

iγf [a+b

2 ,b],p

(b−a) q+1

q

(2q+2)1q

f−iγf[a,b],p. (26)

For the case of the1-norm, we have:

fa+b

2

eia+b

2 γ (b−a)−

b

a f(t) eitγ dt

b−a 2

f−iγf[a,a+b

2 ],1+f

iγf [a+b

2 ,b],1

(11)

PROPOSITION1. Inequalities(25)and(26)are sharp.

Proof. We show that the constants 18 and 14 in (25) are sharp. We assume that the inequalities hold forA,B>0 instead of 18 and 14, respectively:

fa+b

2

(b−a)

eia+b

2 γ

b

a f(t) eitγ dt

A(b−a)2

f−iγf[a,a+b

2 ],∞+f

iγf [a+b

2 ,b],∞

B(b−a)2f−iγf[a,b],∞.

Letγ=0 and choose f(x) =|x−a+b

2 |on[a,b]. Thus we have (b−a)

2

4 2A(b−a)2

B(b−a)2; which yields A1

8 and B14. It implies that the constants 12 and 14 in

(12) are sharp.

We show that the inequalities in (26) are sharp. We assume the inequalities hold forC,D>0 instead of 12 and 1, respectively:

fa+b

2

eixγ (b−a) b

a f(t) eitγ dt

C(

b−a)q+q1 (2q+2)q1

f−iγf[a,a+b

2 ],p+f

iγf [a+b

2 ,b],p

D(b−a)

q+1 q

(2q+2)1q

f−iγf[a,b],p.

Letγ=0 and take f(x) =|x−a+b

2 | on[a,b], and we now have

(b−a)2

4 2C

(b−a)q+q1

(2q+2)1q

D(b−a) q+1

q

(2q+2)q1 .

Take q→1, then we have (b−4a)2 2C(b−4a)2 D(b−4a)2, which yields C 1

2 and

D1. It implies that the inequalities in (8) are sharp.

Let f:[a,b]K (K=C,R)be a Lebesgue integrable mapping defined on thefi -nite interval[a,b]. LetL(f)andF(f)be theirfinite Laplace and Fourier transforms, respectively, defined by

L(f)(α):= b a f(s)e

αsds, αC,

F(f)(t):= b a f(s)e

−2πitsds, tR.

REMARK2. (Laplace transform approximations) By rewriting abf(s)eαtdt =

L(f)(α) in (22), (23), and (24), we obtain error bounds in terms of the p-norms (1p∞), for the approximation ofL(f)(α) by f(a+b

2 )(b−a)e−

α(a+b)

(12)

REMARK3. (Fourier transform approximations) Let u∈R. Choose γ=2πu in (25), (26), and (27). By rewritingabf(t)e−2πiutdt=F(f)(u), we obtain error bounds in terms of the p-norms(1p∞), for the approximation of F(f)(t)by

f

a+b 2

(b−a)e−iπ(a+b)t.

COROLLARY4. Let f:[a,b]→Cbe an absolutely continuous function on[a,b],

α=β+iγCand1<p<. Let q>1 be a real number such that 1p+1

q=1. If β=0, then the following inequalities hold:

b−2afe(aaα)+ f(b) ebα

b

a f(t) eαt dt

e−

a+b

2 β+ [b−a

2 β1]e−aβ

β2 f−αf[a,a+b 2 ],∞

+e−

a+b

2 β[b−a

2 β+1]e−bβ

β2 f−αf[a+b

2 ,b],∞ (28)

1

β2

2e−a+2bβ−e−aβ−e−bβ+b−a 2 β

e−aβe−bβfαf [a,b],∞.

For the case of the p-norms (1<p<), we have

b−2afe(aaα)+ f(b) ebα

b

a f(t) eαt dt

(29)

Ψ−q,α

a,a+2b

f−αf[a,a+b

2 ],p

+

q,α a

+b

2 ,b

f−αf[a+b 2 ,b],p

Ψ

q,α

a,a+2b

+Ψ+

q,α

a+b 2 ,b

f−αf[a,b],p.

For the case of the1-norm, we have

b−2afe(a)aα + f(b)

ebα

b

a f(t) eαt dt

(30) ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

b−a

2 e−aβf−αf[a,a+b

2 ],1+

1

βe−( a+b

2 β+1)f−αf

[a+b

2 ,b],1, β>0 &x+

1

β a,

1 βe−(

a+b

2 β+1)f−αf

[a,a+b

2 ],1+

b−a

2 e−bβf−αf[a+b

2 ,b],1,β<0 &x+

1

β b, b−a

2

e−aβfαf [a,a+b

2 ],1+e

−bβfαf [a+b

2 ,b],1

, otherwise, ⎧ ⎪ ⎨ ⎪ ⎩

ba

2 e−aβ+β1e−( a+b

2 β+1)f−αf[a,b],1, β >0 &x+1 β a, 1

βe−( a+b

2 β+1)+b−2ae−bβf−αf[a,b],1,β <0 &x+1 β b, b−a

2

e−aβ+e−bβfαf

(13)

Ifβ=0, then the following inequalities hold:

b−2afe(iaaγ)+ f(b) eibγ

b

a f(t) eαt dt

18(b−a)2fiγf

[a,a+b

2 ],∞+f

iγf [a+b

2 ,b],∞

(31)

14(b−a)2fiγf [a,b],∞.

For the case of the p-norms (1<p<), we have

b−2afe(iaaγ)+ f(b) eibγ

b

a f(t) eαt dt

(b−a) q+1

q

2(2q+2)1q

f−iγf[a,a+b

2 ],p+f

iγf [a+b

2 ,b],p

(b−a)

q+1 q

(2q+2)1q

f−iγf[a,b],p.

(32)

For the case of the1-norm, we have

b−2afe(iaaγ)+ f(b) eibγ

b

a f(t) eαt dt

b−2af−iγf[a,a+b

2 ],1+f

iγf [a+b

2 ,b],1

(b−a)f−iγf[a,b],1.

(33)

PROPOSITION2. The inequalities(31)and(32)are sharp.

The proof follows similarly to that of Proposition1; and we omit the proof. It follows from Proposition2that inequalities (19), and (17) are sharp.

REMARK4. (Laplace transform approximations) By rewriting abf(s)eαtdt =

L(f)(α) in (28), (29), and (30), we obtain error bounds in terms of the p-norms (1p∞), for the approximation ofL(f)(α) by b−a

2

f

(a)

eaα +fe(bbα)

.

REMARK5. (Fourier transform approximations) Let u∈R. Choose γ=2πu in

(31), (32) and (33). By rewritingabf(t)e−2πiutdt=F(f)(u), we obtain error bounds in terms of the p-norms(1p∞), for the approximation of F(f)(t)by

b−a 2

f(a) e2aπti+

f(b) e2bπti

(14)

4. Some new and refined Ostrowski and trapezoid type inequalities

Using the results in Section2, we obtain inequalities of Ostrowski and trapezoid type; and we present the result in the following subsections.

4.1. Refinements of Ostrowski’s inequalities

Ifα=0 in Corollary1, Theorems6and7, respectively, then we have refinements for the Ostrowski inequality, as follows:

f(x)(b−a)− b

a f(t)dt

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

1 2

(x−a)2f

[a,x],∞+ (b−x)2f[x,b],∞,

(x−a)q+q1

(q+1)q1 f

[a,x],p+(b−x) q+1

q

(q+1)1q f

[x,b],p, p>1, 1p+1q=1,

(x−a)f

[a,x],1+ (b−x)f[x,b],1,

(34)

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

1

4(b−a)2+

x−a+b

2

2

f [a,b],∞,

(x−a)q+q1+(bx)q+q1

(q+1)1q f

[a,b],p, p>1, 1p+1q=1,

(b−a)f

[a,b],1,

(35)

for anyx∈[a,b]. The constants in cases 1 and 2 in (34) and (35) are sharp (cf. Propo-sition1).

4.2. New Ostrowski type inequalities

Lethα(t) =eαt fort[a,b]. If f(t) =g(t)h

α(t) =g(t)eαt in Theorem6, Corol-lary1, and Theorem7, then we have the Ostrowski inequalities: Ifβ=0, we have

g(x)(b−a)− b

a g(t)dt

Ψ+

q,α(a,x)ghα[a,x],p−q,α(x,b)ghα[x,b],p

Ψ+

q,α(a,x) +Ψ−q,α(x,b)ghα[a,b],p, (36)

wherep>1 and 1p+1

q=1,

g(x)(b−a)− b

a g(t)dt

(37)

e−aβ[(x−a)β+1]e−xβ

β2 ghα[a,x],∞+e

−bβ+ [(bx)β1]e−xβ

β2 ghα[x,b],∞

1

β2

e−aβ+e−bβ+2

a+b 2 −x

β1

e−xβ

(15)

and

g(x)(b−a)− b

a g(t)dt

(38) ⎧ ⎪ ⎨ ⎪ ⎩ 1

βe−(aβ+1)ghα[a,x],1+ (b−x)e−xβghα[x,b],1, β >0 &a+β1 x,

(x−a)e−xβghα

[a,x],1+e−(bβ+1)ghα[x,b],1,β <0 &b+β1 x,

(x−a)e−xβgh

α[a,x],1+ (b−x)e−xβghα[x,b],1, otherwise,

⎧ ⎪ ⎨ ⎪ ⎩ 1

βe−(aβ+1)+ (b−x)e−xβ

ghα[a,b],1, β >0 &a+β1 x,

(x−a)e−xβ+ 1

βe−(bβ+1)

ghα

[a,b],1,β <0 &b+β1 x,

(b−a)e−xβgh

α[a,b],1, otherwise,

forx∈[a,b]. Ifβ =0, then we have

g(x)(b−a)− b

a g(t)dt ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1 2

(x−a)2gh

α[a,x],∞+ (b−x)2ghα[x,b],∞,

(x−a)q+q1

(q+1)q1 g

h

α[a,x],p+(b−x) q+1

q

(q+1)1q g

h

α[x,b],p, p>1, 1p+1q=1, (x−a)ghα[a,x],1+ (b−x)ghα[x,b],1,

(39) ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 1

4(b−a)2+

x−a+b

2

2

ghα [a,b],∞,

(x−a)q+q1+(bx)q+q1

(q+1)1q g

h

α[a,b],p, p>1, 1p+1q=1,

(b−a)ghα

[a,b],1,

(40)

for anyx∈[a,b].

4.3. Refinements of the trapezoid inequalities

Ifα=0 in Corollary2, Theorems8and9, respectively, then we have refinements for the trapezoid inequality as follows:

f(a)(x−a) +f(b)(b−x) b

a f(t)dt

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1 2

(x−a)2f

[a,x],∞+ (b−x)2f[x,b],∞,

(x−a)q+q1

(q+1)q1 f

[a,x],p+(b−x) q+1

q

(q+1)1q f

[x,b],p, p>1, 1p+1q=1,

(x−a)f

[a,x],1+ (b−x)f[x,b],1,

(41) ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1

4(b−a)2+

x−a+b

2

2

f [a,b],∞,

(x−a)q+q1+(bx)q+q1

(+1)1q f

[a,b],p, p>1, 1p+1q=1,

(b−a)f

[a,b],1,

(16)

for anyx∈[a,b]. The constants in cases 1 and 2 in (41) and (42) are sharp (cf. Propo-sition2).

4.4. New trapezoid type inequalities

Lethα(t) =eαt fort[a,b]. If f(t) =g(t)h

α(t) =g(t)eαt in Theorem8, Corol-lary2, and Theorem9, then we have the trapezoid inequalities: If β =0, then we have

g(a)(x−a) +g(b)(b−x)−b

a g(t)dt

Ψ−q,α(a,x)ghα[a,x],p+Ψ+q,α(x,b)ghα[x,b],p (43)

Ψ−q,α(a,x) +Ψ+q,α(x,b)

ghα[a,b],p,

wherep>1 and 1p+1

q=1,

g(a)(x−a) +g(b)(b−x)−b

a g(t)dt

(44)

e−xβ+ [(x−a)β−1]e−aβ

β2 ghα|[a,x],∞+e

−xβ[(bx)β+1]e−bβ

β2 ghα[x,b],∞

1

β2

2e−xβ+ [(x−a)β−1]e−aβ[(bx)β+1]e−bβgh

α[a,b],∞,

and

g(a)(x−a) +g(b)(b−x)− b

a g(t)dt

(45)

⎧ ⎪ ⎨ ⎪ ⎩

(x−a)e−aβgh

α[a,x],1+β1e−(xβ+1)ghα[x,b],1, β >0 &x+1β a, 1

βe−(xβ+1)ghα[a,x],1+ (b−x)e−bβghα[x,b],1,β <0 &x+1β b,

(x−a)e−aβghα

[a,x],1+ (b−x)e−bβghα[x,b],1, otherwise,

⎧ ⎪ ⎨ ⎪ ⎩

(x−a)e−aβ+1

βe−(xβ+1)

gh

α[a,b],1, β >0 &x+β1a,

1

βe−(xβ+1)+ (b−x)e−bβ

ghα

[a,b],1, β <0 &x+β1b,

(x−a)e−aβ+ (bx)e−bβgh

α[a,b],1, otherwise,

forx∈[a,b]. Ifβ =0, then

g(a)(x−a) +g(b)(b−x)− b

a g(t)dt

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

1 2

(x−a)2ghα

[a,x],∞+ (b−x)2ghα[x,b],∞,

(x−a)q+q1

(q+1)q1 g

hα

[a,x],p+(b−x) q+1

q

(q+1)1q g

hα|

[x,b],p, p>1, 1p+1q=1, (x−a)ghα

[a,x],1+ (b−x)ghα[x,b],1,

(17)

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

1

4(b−a)2+

x−a+b

2

2

ghα [a,b],∞,

(x−a)q+q1+(bx)q+q1

(q+1)1q g

hα

[a,b],p, p>1, 1p+1q=1, (b−a)ghα

[a,b],1,

(47)

forx∈[a,b].

Acknowledgement. The authors would like to thank the anonymous referees for valuable suggestions that have been incorporated in thefinal version of the manuscript.

R E F E R E N C E S

[1] A. M. ACU ANDF. D. SOFONEA,On an inequality of Ostrowski type, J. Sci. Arts, no.3(16) (2011), 281–287.

[2] A. M. ACU, A. BABOS¸ANDF. D. SOFONEA,The mean value theorems and inequalities of Ostrowski type, Sci. Stud. Res. Ser. Math. Inform.21(1) (2011), 5–16.

[3] E. O. BRIGHAM,The Fast Fourier Transform and its Applications, Englewood Cliffs, NJ: Prentice-Hall Inc., 1988.

[4] N. S. BARNETT ANDS. S. DRAGOMIR,An approximation for the Fourier transform of absolutely continuous mappings, Proc. 4th Int. Conf. on Modelling and Simulation. Victoria University (2002), 351–355. RGMIA Res. Rep. Coll.5(Supplement) (2002), Article 33.

[5] N. S. BARNETT, S. S. DRAGOMIR ANDG. HANNA,Error estimates for approximating the Fourier transform of functions of bounded variation, RGMIA Res. Rep. Coll.7(1) (2004), Article 11. [6] P. CERONE,On relationships between Ostrowski, trapezoidal and Chebychev identities and

inequali-ties, Soochow J. Math.28(3) (2002), 311–328.

[7] P. CERONE ANDS. S. DRAGOMIR,Trapezoidal-type rules from an inequalities point of view, Hand-book of analytic-computational methods in applied mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2000, 65–134.

[8] P. CERONE, S. S. DRAGOMIR ANDE. KIKIANTY,Ostrowski and Trapezoid Type Inequalities Related to Pompeiu’s Mean Value Theorem, J. Math. Inequal.9(3) (2015), 739–762.

[9] S. S. DRAGOMIR,An inequality of Ostrowski type via Pompeiu’s mean value theorem, J. Inequal. Pure Appl. Math.6(3) (2005), Article 83.

[10] S. S. DRAGOMIR,Another Ostrowski type inequality via Pompeiu’s mean value theorem, General Mathematics21(3) (2013), 3–15

[11] S. S. DRAGOMIR,Inequalities of Pompeiu’s type for absolutely continuous functions with applications to Ostrowski’s inequality, Acta Math. Acad. Paedagog. Nyh´azi. (N.S.)30(1) (2014), 43–52. [12] S. S. DRAGOMIR,Exponential Pompeiu’s type inequalities with applications to Ostrowski’s

inequal-ity, Acta Math. Univ. Comenian. (N.S.)84(1) (2015), 39–50.

[13] S. S. DRAGOMIR, Y. J. CHO ANDS. S. KIM,An approximation for the Fourier transform of Lebesgue integrable mappings, Fixed point Theory and Applications4. Y. J. Cho, J. K. Kim, and S. M. Kong (Eds.), Nova Science Publishers Inc., 2003, 67–76.

[14] S. S. DRAGOMIR, G. HANNA ANDJ. ROUMELIOTIS,A reverse of the Cauchy-Bunyakovsky-Schwarz integral inequality for complex-valued functions and applications for Fourier transform, Bull. Korean Math. Soc.,42(4) (2005), 725–738.

[15] S. S. DRAGOMIR ANDT. M. RASSIAS,Generalisations of the Ostrowski inequality and applications, Ostrowski type inequalities and applications in numerical integration. Kluwer Acad. Publ., Dordrecht, 2002, 1–63.

[16] D. S. MITRINOVIC´, J. E. PECARIˇ C´, A. M. FINK,Inequalities involving functions and their inte-grals and derivatives, Mathematics and its Applications (East European Series)53. Kluwer Academic Publishers Group, Dordrecht, 1991.

(18)

[18] J. PECARIˇ C AND´ S. Uˇ NGAR,On an inequality of Ostrowski type, J. Ineq. Pure Appl. Math.7(4)

(2006), Article 151.

[19] D. POMPEIU,Sur une proposition analogue au th´eor`eme des accroissements finis, Mathematica, Timis¸oara22(1946), 143–146.

[20] E. C. POPA,An inequality of Ostrowski type via a mean value theorem, Gen. Math.15(1) (2007),

93–100.

[21] P. K. SAHOO ANDT. RIEDEL,Mean Value Theorems and Functional Equations, World Scientific, Singapore, New Jersey, London, Hong Kong, 2000.

(Received January 7, 2015) Pietro Cerone

Department of Mathematics and Statistics La Trobe University Bundoora 3086, Australia e-mail:p.cerone@latrobe.edu.au Sever Dragomir School of Engineering and Science Victoria University PO Box 14428, Melbourne 8001, Victoria, Australia, and DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences School of Computer Science and Applied Mathematics University of the Witwatersrand Private Bag X3, 2050 Wits, South Africa e-mail:sever.dragomir@vu.edu.au Eder Kikianty Department of Mathematics and Applied Mathematics University of Pretoria Private bag X20, Hatfield 0028, South Africa e-mail:eder.kikianty@up.ac.za; eder.kikianty@gmail.com

Journal of Mathematical Inequalities www.ele-math.com

References

Related documents

peats one to three be present to interact with Tup1 ( Tzamarias and Struhl 1995). Thus it is possible that no Mig1-Tup1 interaction occurs. Unlike the case with flocculence and

Singh, S.K Barthwal,” Optical, Xray diffraction and magnetic properties of the cobalt substituted nickel crromium ferrite (fe2O4 synthesized using sol-gel auto combustion method” ,

The proposed ANSI/ANS Standard will provide criteria and guidance to select Seismic Design Category (SDC) and Limit State for the SSCs important to safety.. An unmitigated

Various parameters like Handover latency, signalling overhead, performance comparison using tunnelling, packet loss, service disruption time, network lifetime are used

Shiralashetti (2012) stressed that absence of adequate and timely supply of bank finance, limited capital and knowledge, lack of power, low quality inputs, low

Diese Arbeit zeigt, dass durch den kathetergestützten Aortenklappenersatz, auch bei hochbetagten und polymorbiden Patienten mit einer hochgradigen Aortenklappenstenose

Thus, inhibition of early viral protein expression, while preserving early mRNA transcription might be one reason for enhanced cytokine production by cells

Im Hinblick auf die Regulation durch ArgP und Lrp scheint die hauptsächliche physiologische Funktion von LysP die Aufnahme von Lysin für biosynthetische Zwecke zu sein (Ruiz et