• No results found

Influence of kenaf fibre in reinforced concrete beam with circular opening at midspan

N/A
N/A
Protected

Academic year: 2021

Share "Influence of kenaf fibre in reinforced concrete beam with circular opening at midspan"

Copied!
23
0
0

Loading.... (view fulltext now)

Full text

(1)

INFLUENCE OF KENAF FIBRE IN

REINFORCED CONCRETE BEAM WITH

CIRCULAR OPENING AT MIDSPAN

NOOR ALEEZA NADHIRAH ABDILLAH

B. ENG(HONS.) CIVIL ENGINEERING

(2)

SUPERVISOR’S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our* opinion, this thesis/project* is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering

_______________________________ (Supervisor’s Signature)

Full Name : DR. SHARIFAH MASZURA BINTI SYED MOHSIN Position : SENIOR LECTURER

Date : 25 June 2018

(3)

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

_______________________________ (Student’s Signature)

Full Name : NOOR ALEEZA NADHIRAH BINTI ABDILLAH ID Number : AA14170

(4)

INFLUENCE OF KENAF FIBRE IN REINFORCED CONCRETE BEAM WITH CIRCULAR OPENING AT MIDSPAN

NOOR ALEEZA NADHIRAH BINTI ABDILLAH

Thesis submitted in fulfillment of the requirements for the award of the

Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

(5)

ACKNOWLEDGEMENTS

Thanks to ALLAH s.w.t for giving me a good health to complete my final year project. I worked hard to ensure that this final report can express how much knowledge I gained during my final year in Universiti Malaysia Pahang. Without his blessed I will not be able to complete this project on time and successfully.

My special thanks to the most helpful supervisor, Dr. Sharifah Maszura binti Syed Mohsin for the valuable guidance, encourage, idea, moral support and advices to finish this report. Hence, I want to take this opportunity to express my gratitude to all staff in laboratory concrete for helping me while in the laboratory.

Not be forgotten to my parents for always supporting me and also my course mates for their availabilities discussing the topic related to our field and experience of this project. I appreciate their services in encouraging me and never give up on stimulating word in order for me.

(6)

ABSTRAK

Tesis ini berkaitan dengan penyiasatan eksperimen terhadap prestasi rasuk konkrit bertetulang dengan pembukaan pada jarak pertengahan ditambah dengan gentian kenaf. Rasuk konkrit bertetulang dengan pembukaan menghasilkan retak yang lebih tinggi yang juga menimbulkan pesongan yang berlebihan di bawah beban perkhidmatan. Satu eksperimen telah dilakukan untuk mengkaji penggunaan potensi gentian kenaf boleh menyebabkan pengurangan ketara dalam tetulang ricih konvensional dan memenuhi keperluan untuk kekuatan dan kemuluran dengan mempertimbangkan campuran konkrit berdasarkan pecahan isipadu 0%, 1% dan 2 % kandungan gentian kenaf dalam konkrit. Natrium hidroksida digunakan untuk merawat gentian kenaf. Mampatan konkrit dan ujian lenturan dijalankan untuk mengkaji kekuatan mampatan, kapasiti beban beban, kemuluran dan penyerapan tenaga. Empat rasuk kerja eksperimen telah diuji; satu rasuk konkrit bertetulang tanpa pembukaan, satu rasuk konkrit bertetulang dengan pembukaan Vf = 0% dan dua rasuk konkrit bertetulang dengan Vf = 1% dan Vf = 2% pembukaan masing-masing. Semua lapan belas specimen kiub telah diuji sehingga gagal dalam mesin mampatan dan mendapati bahawa kekuatan mampatan merosot diikuti dengan peningkatan gentian kenaf dalam konkrit. Bagi rasuk, kapasiti penyimpanan beban maksimum menurun dalam kandungan gentian.

(7)

ABSTRACT

This thesis deals with experimental investigation on the performance of reinforced concrete beams with opening at mid-span added with kenaf fibres. Reinforced concrete beam with opening creates more cracking which also give rise to excessive deflection under service load. An attempt has been made to investigate the potential use of kenaf fibres can result in a significant reduction in conventional shear reinforcement and satisfied the requirement for strength and ductility by considering the concrete mix was based on the volume fraction of 0%, 1% and 2% of kenaf fibre content in concrete. Sodium hydroxide was used to treat kenaf fibres. Concrete compression and flexural tests were conducted for studying the compressive strength, load carrying capacity, ductility and energy absorption. Four beams experimental works were tested; one control reinforced concrete beam with no opening, one reinforced concrete beams with Vf=0% opening and two reinforced concrete beams with Vf=1% and Vf=2% opening respectively. All eighteen cubes specimen were tested until it failed in compression machine and found that the compressive strength deteriorated followed by the increasing of kenaf fibre in concrete. As for the beams, the maximum load carrying capacity decrease in fibre content.

(8)

TABLE OF CONTENT DECLARATION TITLE PAGE ACKNOWLEDGEMENTS ii ABSTRAK iii ABSTRACT iv TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

INTRODUCTION 13

1.1 Background of Research 13 1.2 Problem Statement 14 1.3 Aim and Objective 15

1.4 Scope of Study 15 1.5 Significant of Study 16 LITERATURE REVIEW 18 2.1 Introduction 18 2.2 Natural Fibre 18 2.2.1 Kenaf Fibre 19 2.2.2 Bamboo Fibre 20

(9)

2.3 Fibre Reinforced Concrete (FRC) 21 2.3.1 Disadvantages of Fibre Reinforced Concrete 22 2.3.2 Advantages of Fibre Reinforced Concrete 22 2.4 Reinforced Concrete Beam with Circular Opening 22 2.5 Cracking Effect of Kenaf Fibre on the Beam Strength 23

2.6 Overview 24

RESEARCH METHODOLOGY 25

3.1 Preparation of Concrete Ingredients 25

3.1.1 Cement 25

3.1.2 Coarse Aggregate 26 3.1.3 Fine Aggregate 26

3.1.4 Water 27

3.1.6 Formwork 28

3.1.7 Reinforcement Steel Bar 28 3.1.8 Polyvinyl Chloride (PVC) 29 3.1.9 Sodium Hydroxide (NaOH) 29

3.1.10 Kenaf Fibre 30

3.2 Flowchart 31

3.3 Preparation of Fibre Reinforced Concrete Beam 32

3.4 Test Procedure 32

3.4.1 Loading Arrangement 33 3.5 Result to be Obtain 33 3.6 Data Processing Method 34

(10)

4.1 Introduction 36

4.2 Slump Test 36

4.3 Compressive Strength Test 37 4.4 Flexural Strength Test 39

4.4.1 Ratio 41

4.4.2 Cracking Pattern and Failure Mode of Beams 42

4.5 Summary 44

CONCLUSION 45

5.1 Conclusions 45

5.2 Recommendation 46

REFERENCE 47

APPENDIX A SAMPLE APPENDIX 1 52

(11)

LIST OF TABLES

Table 3.1 Concrete mix details for 1 m3 of concrete mix 25 Table 3.2 Specification of steel bar and kenaf fibre. Error! Bookmark not

defined.

Table 3.3 Details of beam samples 32 Table 4. 1 Summary of Flexural Test Results 41 Table 4. 2 Mode failure of the beam 44

(12)

LIST OF FIGURES

Figure 1. 1 An ordinary beam with circular openings. 14 Figure 2.1 Typical image of (A) kenaf plantation and (B) kenaf fibre 20 Figure 2.2 Natural bamboo fibre 21 Figure 2.3 Processing of bamboo fibres 21 Figure 2.4 Flexural failure modes of (a) control and (b) 1.2% KFRC prisms 24 Figure 3.1 Orang Kuat Ordinary Portland Cement (OPC) 26 Figure 3.2 Crushed stone 26

Figure 3.3 Sand 27

Figure 3.4 Superplasticizer 28

Figure 3.5 Plywood 28

Figure 3.6 Steel bar (R6 and Y12) 29 Figure 3.7 Polyvinyl Chloride 29 Figure 3.8 Sodium Hydroxide (NaOH) 30 Figure 3.9 Kenaf fibre 30 Figure 3.10 Specimen arrangement for experimental work 33 Figure 3.11 Cross section of beam specimen with longitudinal steel

reinforcement 33

Figure 3.12 Compression strength test machine. 34 Figure 3.13 Flexural strength test machine. 34 Figure 4. 1 Slump Test Result 36

Figure 4. 2 Slump 37

Figure 4. 3 The different values of compressive strength test according to the types of mixture concrete. 38 Figure 4. 4 Failure mode of concrete cube after compression test for 7 days. 38 Figure 4. 5 Failure mode of concrete cube after compression test for 28 days. 39 Figure 4. 6 Load deflection curves for normal reinforced concrete beam and

control reinforced concrete beam with opening. 40 Figure 4. 7 Load deflection curves for Vf=0%, Vf=1% and Vf=2% reinforced

concrete beam. 40

Figure 4. 8 Ratio of maximum load to that of the control reinforced concrete beam versus kenaf fibre volume fraction graph. 41 Figure 4. 9 Ratio of load at yield to that of the control reinforced concrete beam

versus kenaf fibre volume fraction graph. 42 Figure 4. 10 Ratio of ductility ratio to that of the control reinforced concrete

(13)

Figure 4. 11 Failure mode and crack pattern of control reinforced concrete beam. 43 Figure 4. 12 Failure mode and crack pattern of kenaf fibre reinforced concrete

beam Vf=0%. 43

Figure 4. 13 Failure mode and crack pattern of kenaf fibre reinforced concrete

beam Vf=1%. 43

Figure 4. 14 Failure mode and crack pattern of kenaf fibre reinforced concrete

(14)

LIST OF SYMBOLS NaOH Pmax Py Pu δy δu δpmax µ mm Vf Sodium Hydroxide Maximum load capacity Load at yield

Ultimate load failure Deflection at yield Ultimate deflection Maximum deflection Ductility Milimeter Volume of Fraction

(15)

LIST OF ABBREVIATIONS

FRC Fibre Reinforced Concrete KFRC

RC OPC PVC

Kenaf Fibre Reinforced Concrete Reinforced Concrete

Ordinary Portland Cement Polyvinyl Chloride

(16)

13

INTRODUCTION

1.1 Background of Research

Research for the beams with an opening started from 1960 (Aykac, Kalkan, Dundar, & Can, 2014). Reinforced concrete structures are becoming increasingly important in construction industry (Ghernouti et al., 2014). In (‘Design of Reinforced Concrete Beams With Openings’, 2016), based on normal construction, openings are required to accommodate where the utility allows passing through the structure like water supply, sewage, air-conditioning, electricity, telephone, and computer network. These may reduce the story heights of buildings and weight of concrete beams as it improves the demand on the supporting frame both under gravity loading which results in major cost saving (Stresses, 2014). For example, the installation system can be done by constructing the beam with opening and without adding another opening beam above the ordinary beam.

Many factors could be necessary to strengthen and repair a structure. The use of fibre reinforced concrete (FRC) materials in flexural strengthening of reinforced concrete beams has been investigated quite extensively in the past. (Brandt, 2008)

In addition, there are possibilities concrete in cracking and crushing and act differently in compression and tension due to load applied. The behaviour of reinforced concrete beam without opening will be different with reinforced concrete beam with opening. Recent findings that the presence of an opening in the reinforced concrete beam leads to many problems in the beam behaviour such as the beam can create more cracking around the opening, reduction in the beam stiffness, increasing in deflection and decreasing in the beam strength (Al-sheikh, 2014).

(17)

14

Beam openings can be vary in shapes, sizes and normally located near to the supports where the shear is dominant. Hence, in order to provide chords with sufficient concrete area, openings must be located on the concrete beams to develop ultimate compression blocking flexure and sufficient depth in providing effective shear reinforcement (Stresses, 2014). The reinforcement around the opening in addition to the reduction of ultimate strength will induce greater deflections in the beam (Ahmed et al., 2014).

Figure 1. 1 An ordinary beam with circular openings. Source: Yusof (2014)

1.2 Problem Statement

Behaviours of reinforced concrete still have many issues that need to be discussed in order to solve the problems. Based on the background that had been conducted, reinforced beam with opening creates more cracking because of stress concentration.

The main crack appears at the mid-span and the failure is caused by flexural cracks at the ultimate load which is quite similar to the solid beam without opening. It can also be derived that the behaviour of the beams with circular opening with diameter less than 24% of the depth of the beam is same as the solid beams without opening.

The stiffness of beams after cracking is considerably affected by openings. The reduced stiffness of the beam may also give rise to excessive deflection under service load without considering the size and location of the opening. Deflection is caused by many sources, for example loads and construction error. Deflection is usually caused by

(18)

15

internal loading such bending moment and axial force. Factors that will affect deflections in beam are errors in the deflection computation of flexural member, loading of flexural member, flexural stiffness and shrinkage in flexural member.

1.3 Aim and Objective

The main objective of the research is to study the different strength of beam between without opening and the effects of additional fibre in concrete beam with an opening at the centre of the beam. Different percentage amount of fibre affecting the cracking behaviour will be investigated as well. Kenaf fibre will be added into the mixture of concrete. To be specific, the further study was done by the following objectives:

i. To study the strength of the reinforced concrete beam with opening located at mid span and structural behaviour of reinforced concrete beams.

ii. To investigate the effects of the volume fraction (Vf = 0%, Vf = 1%, Vf = 2%) kenaf fibre content in concrete beam.

1.4 Scope of Study

• The dimension of the beam is 150 mm width x 400mm height x 1200 mm length.

• Six experimental work reinforced concrete beams will be conducted; two for control reinforced concrete beam, four reinforced concrete opening beam with various volume fraction of kenaf fibre.

• The opening diameter of circular shape which locate at the centre of the beam is 100mm.

• The length for kenaf fibre is 30mm each with the range 0.1mm to 3mm of diameter.

• The percentage volume fraction of kenaf fibre in concrete are Vf = 0%, Vf=1% and Vf=2%.

• For both primary and secondary bar, the reinforcement steel bar will be installed with the size of 2Y12.

(19)

47 REFERENCE

Abdullah, S. et al. (2016) ‘Factors that affect the mechanical properties of kenaf fiber reinforced polymer: A review’, Construction and Building Materials. Elsevier Ltd, 10(4–5), pp. 2159–2175. doi: 10.1016/j.conbuildmat.2014.11.043.

Abdullah, S., Teknologi, U. and Abdullah, S. (2016) ‘InCIEC 2015’, (June). doi: 10.1007/978-981-10-0155-0.

Agbaje, G. O., Saka, J. O. and Adeyeye, A. A. (2008) ‘Influence of agronomic practices on yield and profitability in kenaf (Hibiscus cannabinus L.) fibre cultivation’,

African Journal of Biotechnology, 7(5), pp. 565–574. Available at: http://www.academicjournals.org/AJB.

Ahmed, A. S. (2012) ‘Behavior of Simply Supported Reinforced Concrete Beam with Edge Opening , With and Without Repairing Abstract : 2- General Description of Cracking Behavior for Beams Loaded in Shear plus Flexure ’:, 16(1).

Ahmed, S. et al. (2014) ‘Effects of Opening on the Behavior of Reinforced Concrete Beam Effects of Opening on the Behavior of Reinforced Concrete Beam’, (July 2016). doi: 10.9790/1684-11275261.

Akil, H. M. et al. (2011) ‘Kenaf fiber reinforced composites: A review’, Materials & Design. Elsevier Ltd, 32(8–9), pp. 4107–4121. doi:

10.1016/j.matdes.2011.04.008.

Al-sheikh, S. A. (2014) ‘Flexural behaviour of RC beams with opening’, Concrete Research Letters, 5(2), pp. 812–824.

Alsaeq, H. M. (2014) ‘Enhancing the Structural Behavior of R . C . Deep Abstract ’:, (2).

(20)

48

Amiri, S. and Masoudnia, R. (2011) ‘Investigation of the Oppening Effects on the Behavior of Concrete Beams Without Additional Reinforcement in Opening Region Using Fem Method’, 5(5), pp. 617–627. doi:

10.13140/RG.2.1.2108.1041.

Arunakanthi, E. (2016) ‘Experimental Studies On Fiber Reinforced Concrete ( FRC )’, 7(5), pp. 329–336.

Aykac, B. et al. (2014) ‘Flexural behavior and strength of reinforced concrete beams with multiple transverse openings’, ACI Structural Journal, 111(2), pp. 267– 277. doi: 10.14359/51686442.

Bharath, V. R. R., Ramnath, B. V. and Manoharan, N. (2015) ‘Kenaf Fibre Reinforced Composites : A Review’, ARPN Journal of Engineering and Applies Sciences, 10(13), pp. 5483–5485. doi: 10.1016/j.conbuildmat.2014.11.043.

Brandt, A. M. (2008) ‘Fibre reinforced cement-based ( FRC ) composites after over 40 years of development in building and civil engineering’, 86, pp. 3–9. doi: 10.1016/j.compstruct.2008.03.006.

‘Design of Reinforced Concrete Beams With Openings’ (2016), (February 2014).

Dewi, S. M., Wijaya, M. N. and N, C. R. (2017) ‘The Use of Bamboo Fiber in

Reinforced Concrete Beam to Reduce Crack’, 020003. doi: 10.1063/1.5003486.

Elsaid, A. et al. (2011) ‘Mechanical properties of kenaf fiber reinforced concrete’,

Construction and Building Materials. Elsevier Ltd, 25(4), pp. 1991–2001. doi: 10.1016/j.conbuildmat.2010.11.052.

Ghernouti, Y. et al. (2014) ‘Strengthening of concrete beams by CFRP : Experimental study and finite element analysis’, pp. 47–57.

(21)

49

Hauhnar, L. et al. (2017) ‘Behavior Of Reinforced Concrete Beams With Circular Opening In The Flexural Zone Strengthened By Steel’, 8(5), pp. 303–309.

Husain, P. H. M. (2017) ‘Experimental Investigation of Reinforced Concrete’,

International Research Journal of Engineering and Technology(IRJET), 4(6), pp. 824–827. Available at: https://irjet.net/archives/V4/i6/IRJET-V4I6141.pdf.

Jain, D. and Kothari, a (2012) ‘Hair Fibre Reinforced Concrete’, 1(June), pp. 128–133.

Journal, I. and Engineering, C. (2016) ‘A review on fiber reinforced concrete’, (December), pp. 1–8.

Jun (2014) ‘Faculty of Civil Engineering’, Faculty of Civil Engineering Home page, (July), pp. 75–138. Available at: http://www.fg.um.si/eng/Pages/default.aspx.

K, N. A. et al. (2014) ‘Jurnal Teknologi Tensile Behaviour of Kenaf Fiber Reinforced Polymer Composites’, 3, pp. 11–15.

Kala, T. F. (2016) ‘Assessment of L / D Ratio of Eco Fibre - Bamboo as a

Reinforcement Material in Concrete Assessment of L / D Ratio of Eco Fibre - Bamboo as a Reinforcement Material in Concrete’, (October). doi:

10.21817/ijet/2016/v8i5/160805421.

Kayode, C. O. and Ogunleti, D. O. (no date) ‘Evaluation of Time of Compost Application on the Growth , Nutrient Uptake and Seed Yield of Kenaf ( Hibiscus cannabinus L ) By’.

Mahjoub, R., Yatim, J. M., Mohd Sam, A. R. and Raftari, M. (2014) ‘Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites’, Materials and Design. Elsevier Ltd, 64, pp. 640–649. doi: 10.1016/j.matdes.2014.08.010.

(22)

50

Mahjoub, R., Yatim, J. M., Mohd Sam, A. R. and Hashemi, S. H. (2014) ‘Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications’, Construction and Building Materials. Elsevier Ltd, 55, pp. 103– 113. doi: 10.1016/j.conbuildmat.2014.01.036.

Mohsin, S. M. S. et al. (2016) ‘Behaviour of reinforced concrete beams with kenaf and steel hybrid fibre’, ARPN Journal of Engineering and Applied Sciences, 11(8), pp. 5385–5390.

Mondal, S. (2011) ‘Strengthening and rehabilitation of reinforced concrete beams with opening.’, International Journal of …, 2(1), pp. 127–138. doi:

10.6088/ijcser.00202010098.

Onuaguluchi, O. and Banthia, N. (2016) ‘Plant-based natural fi bre reinforced cement composites : A review’, Cement and Concrete Composites. Elsevier Ltd, 68, pp. 96–108. doi: 10.1016/j.cemconcomp.2016.02.014.

Osman, B. H. et al. (2017) ‘Shear behavior of Reinforced Concrete (RC) beams with circular web openings without additional shear reinforcement’, KSCE Journal of Civil Engineering, 21(1), pp. 296–306. doi: 10.1007/s12205-016-0387-7.

Pacheco-Torgal, F. and Jalali, S. (2011) ‘Cementitious building materials reinforced with vegetable fibres: A review’, Construction and Building Materials, 25(2), pp. 575–581. doi: 10.1016/j.conbuildmat.2010.07.024.

Rai, A. and Joshi, Y. P. (2014) ‘Applications and Properties of Fibre Reinforced Concrete’, 4(5), pp. 123–131.

Saba, N., Paridah, M. T. and Jawaid, M. (2015) ‘Mechanical properties of kenaf fibre reinforced polymer composite: A review’, Construction and Building Materials. Elsevier Ltd, 76, pp. 87–96. doi: 10.1016/j.conbuildmat.2014.11.043.

(23)

51

Sadiqul Hasan, N. M. et al. (2015) ‘Investigation into the suitability of kenaf fiber to produce structural concrete’, Advanced Materials Letters, 6(8), pp. 731–737. doi: 10.5185/amlett.2015.5818.

Sen, T. and Reddy, H. N. J. (2011) ‘Various Industrial Applications of Hemp , Kinaf , Flax and Ramie Natural Fibres’, 2(3).

Stresses, T. S. (2014) ‘Behavior of Reinforced Concrete’, 8(7), pp. 1–13.

Suharty, N. S. et al. (2016) ‘Effect of Kenaf Fiber as a Reinforcement on the Tensile, Flexural Strength and Impact Toughness Properties of Recycled

Polypropylene/Halloysite Composites’, Procedia Chemistry. Elsevier Ltd., 19, pp. 253–258. doi: 10.1016/j.proche.2016.03.102.

Vamshi, K. and Rao, J. V. (2014) ‘Experimental study on behavior of fiber reinforced concrete for rigid pavements’, 11(4), pp. 49–53.

Verma, A. and Singh, V. K. (2016) ‘Human Hair: A Biodegradable Composite Fiber–A Review’, International Journal of Waste Resources, 6(2). doi: 10.4172/2252-5211.1000206.

Yusof et al. (2014) ‘Effects Of Circular Openings In Rc Deep Beams At Top Faculty of Civil Engineering and Earth Resources’, Construction and Building Materials. Elsevier Ltd, 2(2), pp. 127–138. doi: 10.1016/j.conbuildmat.2014.11.043.

Zdanowicz, Ł. and Wojdak, R. (2013) ‘Structural Analysis Of A Failured Rc Beam With Openings In A Building Under Construction’.

Figure

Figure 1. 1  An ordinary beam with circular openings.

References

Related documents

For example, the reversal strategy based on returns in formation month 0 and holding period being month 1, yields significant risk-adjusted profits of between 0.5 to 0.63 percent

Most traders/investors would want some kind of minimum exposure time before you can pull your order out or replace/update the order, because it's a natural thing: if you place

Even though it is rare, copper redhorse biology is well known, two significant spawning grounds have been identified in the Richelieu River, rearing grounds have been identified,

In addition to rest homes, they represent continuing care retirement communities, skilled nursing facilities, assisted living residences, senior housing, home health services,

The high prevalence of hearing loss among BTD patients suggests that parents of BTD children (diagnosed at birth) should pay special attention to auditory

In this paper, the analytical methods accounting for time and frequency domain, agreement, correlation coefficient and geometrical distribution were utilized to process

From the above analysis of the SEM and EDAX results, it can be concluded that R-SiC SiO2 can retain the natural and graceful pore structure of rattan, but most of R-SiC Si was

The soda pulps from graminaceus plant prepared according to the method in soda pulping experiment section were carboxymethylated and their solubility in water was tested (Table 2)..