• No results found

Assessing Gaps and Needs for Integrating Building Performance Optimization Tools in Net Zero Energy Buildings Design

N/A
N/A
Protected

Academic year: 2021

Share "Assessing Gaps and Needs for Integrating Building Performance Optimization Tools in Net Zero Energy Buildings Design"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatSciVerseScienceDirect

Energy

and

Buildings

jo u rn al h om epa g e :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Assessing

gaps

and

needs

for

integrating

building

performance

optimization

tools

in

net

zero

energy

buildings

design

Shady

Attia

a,b,∗

,

Mohamed

Hamdy

c

,

William

O’Brien

d

,

Salvatore

Carlucci

e

aInterdisciplinaryLaboratoryofPerformance-IntegratedDesign(LIPID),EcolePolytechniqueFederaledeLausanne(EPFL),Switzerland bUniversitéCatholiquedeLouvain-la-Neuve,Architectureetclimat,Louvain-la-Neuve1348,Belgium

cAaltoUniversity,SchoolofEngineering,DepartmentofEnergyTechnology,POBox14400,FI-00076Aalto,Finland dDepartmentofBuildingandCivil&EnvironmentalEngineering,CarltonUniversity,Toronto,Canada

eDipartimentodiEnergia,PolitecnicodiMilano,Milan,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received8January2013 Accepted19January2013 Keywords: Simulation-basedoptimization Zeroenergybuildings Evolutionaryalgorithms Needs Gaps Review Interview

a

b

s

t

r

a

c

t

Thispapersummarizesastudyundertakentorevealpotentialchallengesandopportunitiesfor integrat-ingoptimizationtoolsinnetzeroenergybuildings(NZEB)design.Thepaperreviewscurrenttrendsin simulation-basedbuildingperformanceoptimization(BPO)andoutlinesmajorcriteriaforoptimization toolsselectionandevaluation.Thisisbasedonanalyzinguser’sneedsfortoolscapabilitiesand require-mentspecifications.Thereviewiscarriedoutbymeansofaliteraturereviewof165publicationsand interviewswith28optimizationexperts.Thefindingsarebasedonaninter-groupcomparisonbetween experts.TheaimistoassessthegapsandneedsforintegratingBPOtoolsinNZEBdesign.The find-ingsindicateabreakthroughinusingevolutionaryalgorithmsinsolvinghighlyconstrainedenvelope, HVACandrenewableoptimizationproblems.Simplegeneticalgorithmsolvedmanydesignand oper-ationproblemsandallowedmeasuringtheimprovementintheoptimalityofasolutionagainstabase case.Evolutionaryalgorithmsarealsoeasilyadaptedtoenablethemtosolveaparticularoptimization problemmoreeffectively.However,existinglimitationsincludingmodeluncertainty,computationtime, difficultyofuseandsteeplearningcurve.Somefuturedirectionsanticipatedorneededforimprovement ofcurrenttoolsarepresented.

©2013ElsevierB.V.Allrightsreserved.

1. Introduction

During thecomingyears, thebuildingdesign community at largewillbegalvanizedbymandatorycodesandstandardsthat aimtoreachnetzeroenergybuildings(NZEBs)[1–3].Therecastof theEuropeanPerformanceofBuildingsDirective(EPBD)requires all new buildings to be “nearly zero energy” buildings (nZEB) by2020,includingexisting buildingsundergoingmajor renova-tions.Asbuildingperformanceobjectivesbecomemoreambitious

Abbreviations: AEC,architectural,engineering,construction;ACOA,antcolony optimizationalgorithm;BPO,buildingperformanceoptimization;BPS,building performancesimulation;DOE,DepartmentofEnergy;EPBD,energyperformance buildingdirective;GA,geneticalgorithms;GUI,graphicaluserinterface;HVAC, heating,ventilationandairconditioning;IBPSA,internationalbuildingperformance simulationassociation;IEA,internationalenergyagency;NSGA,non-dominated sortinggeneticalgorithm;NREL,nationalRenewableEnergyLaboratory;nZEB, nearlyzeroenergybuilding;NZEB,netzeroenergybuilding;MPC,modelpredicted control;SQP,sequentialquadraticprogramming;WWR,window-to-wallratio.

Corresponding authorat:EPFL-ENAC-IA-LIPID,Station 16,Lausanne 1015, Switzerland.Tel.:+41216930878;fax:+41216930885.

E-mailaddresses:shady.attia@epfl.ch(S.Attia),Mohamed.hassan@tkk.fi (M.Hamdy),liamobrien@carleton.ca(W.O’Brien),Salvatore.carlucci@polimi.it (S.Carlucci).

andabsolute,thenumberandcomplexityofenergyuse-reducing measures,implementedindesign,andtendtoincrease[3,4].The buildingperformance objectiveshaveraisedthebarof building performance,andwillchangethewaybuildingsaredesignedand operated.Thismeansthatevaluatingdifferentdesignoptionsis becomingmore arduous thaneverbefore. Thebuilding geome-try,envelopeandmanybuildingsystemsinteract,thusrequiring optimizing thecombination ofthebuildingand systems rather thanmerelythesystemsonanindividuallevel[5].Onepromising solutionistouseautomatedmathematicalbuildingperformance optimization(BPO)pairedwithbuildingperformancesimulation (BPS)asameanstoevaluatingmanydifferentdesignoptionsand obtaintheoptimalornearoptimal(e.g.,lowestlife-cyclecost, low-estcapitalcost,andhighestthermalcomfort)whileachievingfixed objectives(e.g.,netzeroenergy)[6–10].

Despite optimisation’s potential in NZEB design, it largely remainsaresearchtoolandhasyettoemergeincommonindustry practice.Asthispaperreports,majorobstaclestoBPOinindustry includelackofappropriatetools,lackofresources(time,expertise), andtherequirementthattheproblembeverywelldefined(e.g., constraints,objectivefunction,and finitelistofdesign options). Theobjectiveofthispaperistodocumentthecurrent state-of-the-artin terms of NZEBoptimization toolsand practice.With

0378-7788/$–seefrontmatter©2013ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.enbuild.2013.01.016

(2)

thisinformationdisseminated,itisanticipatedthatsoftware deve-lopers will be betterinformed of the needsof building design processionals.

Majorcomponentsofthepaperincludealiteraturereviewof morethan150publicationsonBPOandexistingoptimizationtools, followedbytheresultsofaninterviewthatwasusedtogainan understandingof how peoplecurrently use optimizationtools, whichtoolstheyuse,themajorlimitationstheyhaveencountered, andtheirvisionforthefutureofoptimization.Aqualitativestudy design was employed, using semi-structured interviews. Opti-mizationexpertsworkinginacademiaorpracticewererecruited. Expertswereidentifiedasresearcherorprofessionalwhohasat leastthreeormorepublicationsinthefield ofBPO.The partici-pantswereidentifiedfromtheIBPSAInternationalandRegional ConferenceProceedingsbetween1995and2010[11].Asampling frameworkwasdevelopedtoinclude expertsin thestudyfrom Asia,Europeand North America. These groups representedthe rangeofpossibleoptimizationusers,fromresearchersand design-ersconsideringoptimizationinthedesignofnetzeroorhighenergy performancebuildings.Alistofpotentialoptimizationexpertswas created(40potentialexperts)andcirculatedbetweentheIEATask 40Subtaskmembers[3].Everyinterviewedexpertwasaskedto revisethelistandaddanypotentialcandidatetobeinterviewed. Recruitmentcontinueduntilexpertsfromdifferentcountrieshad beenrepresentedandthematicsaturationhadbeenattainedforthe sampleasawhole.Anadditionalgroupofexpertshadbeeninvited duringIBPSA2011ConferenceinSydney.Intotal,28expertswere interviewedbetweenJanuaryandNovember2011.

Theinterviewquestionswereformulatedbytheauthorsand classifiedunderfivecategoriesnamely,background,methodology, output,integrationin design and shortcomings and needs. The questionnaireaimedtoprobetheuser’sexperiencewith compu-tationaloptimizationtoolsandtechniquesforthedesignofNZEBs. Priortointerviewingtheexperts,theauthorssetupapilotstudyto testsandimprovethequestionnairereliabilityandinternalvalidity. Commentsandsuggestionswererequestedfrompeerreviewers. Reviewerswereaskedtorevisethequestionnaireandprovide crit-icalfeedbackinordertooptimizetheclarityandrelevanceofthe questionnaire.

Thescopeof thestudy is limited tonZEBs,NZEBs and high energyperformancebuildings.Thosebuildingtypesareemerging asaquantifiabledesignconceptandpromisingsolutionto minimiz-ingtheenvironmentalimpactofbuildingssector.Thesebuildings, whichminimizeenergyconsumptionandoptimallyuserenewable resources,bothpassivelyandactivelyareusuallydefinedasthose whichexportasmuchenergyastheyimport,overthecourseofa year(alsoknownasnetzerositeenergybyTorcellinietal.[12].The term‘netzero’isusedforidentifyingthosebuildingsconnectedto thegrid.Thegridisusedbothasanidealsourceandanideal stor-agemediumandenergylossesarenottakenintoduringtheenergy supplyfromthegridtothebuilding,andtheenergyfeedingfrom thebuildingintothegrid.Theissuesofmodelling,designand opti-mizationofsuchbuildingsarebeingaddressedbySubtaskB(STB) oftheIEASHCTask40/ECBCSAnnex52[1].

Key resultsoftheinterview indicatethat optimizationtools thatdoexistareprimarilycateredtoresearch,andconsequently, theydonotreflecttheneedsofindustry(fastturn-around,high returnoninvestedtime,easeofuse,shallowlearningcurve, user-friendlyinterfaces).Somefuturedirectionsanticipatedordesired bythosewhoweresurveyedfastercomputing(e.g.,cloud comput-ingandreal-timefeedbackofresults),improvedvisualizationof results,improvedmethodologies(e.g.,automatederror-checking, validation,anduncertaintyanalysis)andstandardizedcostsand performancedatabases.

Thispaperisorganizedintosixsections.Thefirstsection iden-tifiestheresearchproblemwithintheBPOcommunity.Thesecond

section isa literature review thatdefines thesimulation based BPOandillustratedvariousrelatedstudies,methodsandtoolsto supportit.Theliteraturereviewformsthebasisfortheinterview questions.Theinterviewresultsandanalysisarediscussedin Sec-tions3and4.Thefinaltwosectionsarediscussingtheinterview findingsandprovidingfeedbacktotooldevelopersandtothe archi-tectural,engineeringandconstructioncommunities.

2. Literaturereview

Thissectionpresentsthestate-of-the-artwithrespectto build-ingdesignoptimizationtoolsandoptimizationalgorithmscoupled tobuildingsimulationtools. Thecontentisintended toaidthe readerinbetterunderstandingareasofactiveresearchin build-ingoptimizationaswellastoolsandmethodscommonlyusedby researchersandindustry.

2.1. WhatisBPO?

Automatedbuildingperformanceoptimizationisaprocessthat aimsattheselectionoftheoptimalsolutionsfromasetofavailable alternativesforagivendesignorcontrolproblem,accordingtoaset ofperformancecriteria.Suchcriteriaareexpressedas mathemat-icalfunctions,calledobjectivefunctions.Automatedoptimization isacombinationofdifferenttypesofoptimizationalgorithms, set-tingeachalgorithmtooptimizeoneorvariousdesignfunctions. Theoptimizationobjectivesaretoidentifythecostorenergyor environmentalimpacts.

Therefore,anobjectivefunctionisdefinedasamathematical functionsubjectedtooptimization.Optimizationisaprocessthat searches for theoptimalsolution withrespectto theobjective functionstobemaximized orminimized, possiblysubjected to someconstraintsofthedependentvariables.Iftheconstraintsare notspecified,theproblemisdenotedunconstrainedoptimization problem.Aconstraintlimitstheproblemspacetoasubsetof ele-ments[13].Iftheoptimizationproblemaimsatminimizingasingle objectivefunction,itiscalledsingleobjectiveoptimization prob-lem,otherwiseiftheobjectivefunctionsaremorethanone,itis calledmultiobjectiveoptimizationproblem.

Visualizationtechniquesareessentialtofacilitatetheextraction ofrelevant informationregarding performancetrade-offs, prop-agationofuncertaintiesandsensitivityanalysis.Byallowingfor visualizationduringtheoptimizationprocess,itispossibleforthe designertointeractandinformtheoptimizationprocess.

2.2. BriefhistoryofBPO

Automatedoptimizationhasbecomeincreasingly popularin awidevarietyofapplicationdomains,asreflectsabookentirely devotedtothistopic[14].Inthelate1980s,alargegroupof tech-nologicallysavvyengineering,mathematicsandscientificgroups tackled the application of automated optimization in the field AECindustryaimingtooptimizebuildingdesign andoperation. By the end of 1990s decade, many scientific groups that have well-used BPS made a transition and coupledtheir simulation worktomathematicaloptimizationmodels.Through the2000s, thedevelopmentofmathematicalandalgorithmictechniquesand theadvancementofBPStoolsgave waytoBPOtoolsthatcould solvemultiobjectiveoptimizationproblemsofadesign. Mechan-icalandstructuralengineersworkingoncomplexbuildingshave beenamongtheearlyadoptersofBPOtechniques,butarchitects and other engineers now start using these techniques as well. Today,thereis astrongtrendtowardspopulation-basedsearch algorithmssuchasevolutionaryalgorithmsandparticleswarms. Thesealgorithmshavebeenproventobeverysuccessfulin opti-mizingoneormanyperformancecriteriawhilehandlingsearch

(3)

constraintsforlargedesignproblems[15–17].Ithasnowbecome commonpracticeforpopulationsofbuildingsimulationstobe car-riedoutsimultaneouslyonmulti-coreprocessorsanddistributed computingtogreatlyreducethetimeneededforanoptimization study(GenOpt [18],modeFrontier[19],andPhoenixIntegration

[20]).Researchershavefoundsuccessincombiningdeterministic searchesandpopulation-basedsearchestoimprovesearch reso-lutionandthereproducibilityofoptimalsolutionsetsinbuilding designproblems.

2.3. ImportanceofBPO

Inthearchitectural,engineeringandconstruction(AEC) indus-trythereisagrowingresearchtrendforautomatedoptimization approachestobeusedtomapoutandfindpathwaystobuildings designswithdesirablequalities,beitaesthetics,geometry, struc-ture,comfort,energy conservationoreconomic features, rather thanfocusingononeparticularoutcome.Althoughoptimization studiesaremostcommonlyperformedintheearly-designstage, wherethemajorityofdesigndecisionshaveyettobemade, opti-mizationapproachescanbeequallyusefulinthelate-designstages forselectingandfine-tuningcontrolstrategiesandHVACdesign andduringbuildingoperationstobestselectbuildingcontrolbased onmodel-predictivecontrolstrategies[21–24].Themost appropri-atesearchalgorithmsandmodellingapproachesvarydependingon theapplicationarea,butthesuitableapplicationareafor optimiza-tionmethodologiesrelatedtobuildingdesignandcontrolisvast andconstantlyevolving.

Moreover,theuseofoptimizationasameansofprovidinginput toenergypolicy,incentivemeasuresisoneofitsmostimportant usagesintherecentyears.Forexample,usingthebuildingenergy optimizationmodel(BEopt)developedbythenationalrenewable energy laboratory(NREL) to evaluatethe energy and cost sav-ingspotentialfromconstructingmoreefficientnewhomes and netzero-energyhomesintheUSA[25].Alsothisincludesthecall oftheEuropeanCommissionforimplementingamethodologyto calculatecost-optimal levelsin theEPBD framework. European MemberStatesarerequiredtodefinecost-optimallevelsof mini-mumenergyperformanceaccordingtotheirspecificities[26].

2.4. CombinationofBPOandsimulation

Inevitably,optimizationiscoupledtoBPStools.BPStoolsare essentialintheprocessofbuildingdesignaimingtoassesstheir energyperformance,environmentalimpacts,costs,etc.[27,28].A numberofenergysimulationenginesexistandareoftenusedin differentstageofthedesignprocessofabuilding[29,30].Outof the406BPStoollistedontheDOEwebsitein2012,lessthan19 toolsareallowingBPOasshowninTable1andFig.1[31–33].

Whendesignersdecidetoimprovethebuildingperformance, theyusually make estimation for various values of thedesign variablestobemodifiedinthebuildingenvelope,theheating venti-latingandair-conditioning(HVAC)systemandthetypesofenergy generationandrunthesimulationmanytimes.Then,designerswill trytofindtheeffectofthedesignchangesonthesimulationresults andtoconcludearelationbetweenthosevariablesandthe objec-tivesofthesimulation.Thisisaninefficientprocedureintimeand labour.Besides,therelationbetweenthesimulationvariablesand theobjectivesmaynotbesimplyunderstood,especiallywhenthere aremanyparameterstobestudied,andpossiblyduetothe non-linearityoftheproblem.Thereforeabetterdesignisnotalways guaranteed.Toovercomesuchdifficulties,automatedsimulation basedBPOsearchtechniquesareapplied.Progressionsinbuilding simulationtooldevelopmentandincouplingcomplimentaryBPS toolsatrun-timeexpanddomainswhereBPSoptimizationstudies canoccur.

In order to automate and make more efficient the testing andcomparisonofseveraldesignbuildingvariants,anumberof researchershavecoupledenergysimulationtoolswith optimiza-tiontechniquesthroughself-producedtools,commonlybasedon MATLABTM[34],orotherdedicatedsoftware[35].

2.5. Optimizationdesignvariables

Themostcommondesign variablesinBPOstudiesareeither energyrelatedoreconomicrelated.Multipleobjectivescan simul-taneouslybeconsideredthroughweightingstrategiesorbyusing amulti-objectiveoptimizationalgorithmswhichpreserves trade-offsbetweentwoormoreconflictingsearchobjectives[36].Before conductinganoptimizationsearch,firstthedesignermust iden-tifying which input design variables shouldbe includedin the optimizationsearch.Designerscanperformasensitivityanalysis toidentifywhichinputshavethelargestimpactonanobjective. Analternativeistorefertopreviousresearchtoaidin identify-inginfluentialinputvariables.Intherecentyears,severalstudies appliedBPOtechniquesinordertooptimizeaspecificaspectofthe buildingdesignoroperation.Alistfollowsdisaggregatedbythe objectiveoftheoptimization:

•Buildinglayoutandform[37–41].

•Geometry,positionanddensityoffenestration[42]. •Buildingenvelopeandfabricconstructions[15,43–51].

•Daylightingperformance[52,53]andautomatedcontrolofsolar shadings[54,55].

•Naturalventilationstrategies[56,57].

•Shapeandfunctionalstructureofbuildingsaswellasheatsource utilization[58].

•Heating,ventilating,andair-conditioning(HVAC)systemssizing

[59–63].

•HVACsystemcontrolparametersand/orstrategy[64–68]. •Thermalcomfort[69–75].

•HVACsystemconfigurationsynthesis[76,77].

•Managingofenergystorage[78,79]andautomatedmodel cali-bration[80,81]

•SimultaneousoptimizationofbuildingenvelopeandHVAC ele-ments[7,15,16,65,82–90].

•Simultaneous optimization of building construction, HVAC-systemsize,andsystemsupervisorycontrol[91–93].

•Simultaneousoptimizationofbuildingconstruction,HVAC ele-mentsandenergysupplysystemincludingRES[94–98].

AlsoseveralPhDworkapproachedBPOincludingtheworkof Caldas[99],Nielsen [100], Wetter [101], Wang[102], Pedersen

[103],Verbeeck[104],Choudhary[105]andHopfe[106].

However,therearesignificantdisparitiesbetweentheabove BPOapplications.Someofthemapplymulti-objectiveoptimization whiletheothersdosingleobjectiveones.Theimplemented opti-mizationalgorithmsrangefromenumerativetostochasticones. Thesizeandcomplexityoftheaddressedsolutionspacesarequite different.SomestudiesuseddetailedBPStoolswhileothersused simplifiedones.Inordertoreducethesimulationtime,three strate-giesarecommon:

•Customsimplifiedthermalmodelaredevelopedandusedinstead ofexisteddetailedBPSsoftware[77,100,107–109].

•DetailedBPStoolsareusedforsimulatinggeometrically simpli-fiedmodels: e.g.asinglezonemodel isusedforrepresenting onefloorsinglefamilyhouse[85],atwozonesmodelfora two-storyhouse[17],asimplifiedmodelforrepresentinga200m2

house[110],andtworepresentativezonesareusedtoevaluate thethermalperformanceofonefloorinofficebuilding[111].

(4)

Table1

ClassificationofBPOtools.

Simulationbasedoptimization Optimizationpackages Tailormade-programming

Public TRNOPT(2004)

BeOpt(2005) OptiMaison(2005) OptiPlus(2006)

Private/commercial ARDOT(2002) MATLABoptimizationtoolbox(1990) Topgui(1990) C++

Polysun(2006) Phoenixintegration(1995) GenOpt2001 Cygwin

GENEARCH(2008) GAlib(1995) ParadisoEO2003 Java

Lightsolve(2008) modeFrontier(1999) ThermalOpt2011 R

ParaGen(2011) Homer(2000) VisualStudio

ZEBO(2012) DER-CAM(2000)

•DetailedBPStoolsareusedforsimulatingamodelonlyfora rep-resentativeperiod:e.g.,fewdaysareusedasaweathersamples [112,113]and6monthsisusedasarepresentativeperiod[111]

forthewholeyearweatherconditions(temperature,humidity, windspeedandsolarradiation).

2.6. BPOobjectives(single-objectiveandmulti-objective functions)

Generallyspeaking,optimizationcanbeeithersingle-objective ormulti-objectiveaccordingtothenumberofobjectivefunctions thatdefinetheoptimizationproblem.Inthecaseofoptimizinga single-objectivefunction,anoptimumsolutionoftheproblemis eitheritsglobalmaximumorminimum,dependingonthe pur-pose.Ingeneral,itisaconventioninmathematicaloptimization, thatoptimizationproblemsarecommonlydefinedas minimiza-tionsofthequantity,instead,ifanoptimizationproblemconsistsin themaximizationofanobjectivefunction,itissufficienttominimize itsopposite[114].Inmanyrealproblems,itisrequiredtosatisfy simultaneouslymorethanoneobjectivefunction.Suchproblems aredenotedmulti-objectiveoptimizationproblems.

In multi-objective optimization problems, a single solution couldnotbeabletominimize(ormaximize)simultaneouslyeach objectivefunction.Rather,whensearchingforsolutions,onecomes tolimitvariantssuchthat,afurtherimprovementtowardsthe min-imumvalueofoneoftheobjectivefunctioncausesaworsening oftheclosenesstominimumoftheothers.Therefore,theaimof amulti-objective optimizationproblemconsistsin findingsuch variantsandpossiblyinquantifyingthetrade-offinsatisfyingthe

individualobjectivefunctions.Theroleoftheoptimization algo-rithmistoidentifythesolutionswhichlieonthetrade-offcurve, knownastheParetoFrontier,whichisinwords,asetofoptimal solutionsplottedintheformofacurve(namedafterthe Italian-Frencheconomist,VilfredoPareto,seeFig.10.5).Thesesolutionsall havethecharacteristicthatnoneoftheobjectivescanbeimproved withoutprejudicinganother.ThevariantsofaParetoFrontierare definedaselementsthatarebetterthanothersinrelationto,at least,oneobjectivefunctionandsimultaneouslynotworse con-cerningallotherobjectivefunctions.

2.7. AlgorithmsusedinBPO

Optimizationofabuildingasawholeisacomplexproblemdue totheamountofdesignvariablesaswellasthediscrete,non-linear, andhighlyconstrainedcharacteristics.Thepopularoptimization methods for solving multi-objective optimizationproblems are generally classifiedintothreecategories:(1) enumerative algo-rithms,(2)deterministicalgorithms,and(3)stochasticalgorithms. Theenumerativemethodssearchinadiscretespace.They eval-uateallthesolutionsandchoosethebest.Thesealgorithmsare computationallyexpensiveandconsequentlytheyarenotsuitable forexploringwidesolutionspaces.Twotypesofmethodscanbe found:(1)gradientand(2)gradient-freedeterministic.The gra-dientonesusethegradientoftheevaluationfunctionseitherby goingin thedirectionwhere thegradientis thesmallestorby searchingsolutionsthathaveagradientvectorequaltozero.The gradient-freeonessuchasHooke–Jeevesdirectsearch[115], con-structsasequenceofiteratesthatconvergetoastationarypointif

(5)

thecostfunctionissmoothandcoercive.Emmerichetal.[116,117]

usedtheHooke–Jeevealgorithmisusedtominimizetheenergy consumptionconsideringdifferentbuildingscenariosand charac-teristics.Agradient-freesequentialquadraticprogramming(SQP) filteralgorithmisproposedandtestinPedersen’sPhDwork[103]. Thealgorithmcanconvergefastandinastablemanner,aslongas therearenoactivedomainconstraints.

Generally,thedeterministicalgorithms needthat the evalu-ationfunctionshaveparticularmathematicalpropertieslikethe continuityandthederivability[15,82].Therefore,theyarenotthe bestchoiceforhandlingdiscontinuousbuildingandHVAC prob-lemswithhighlyconstrainedcharacteristicsandmulti-objective functions.Ontheotherhand,theadvantageofthestochastic algo-rithmsisthattheydonothavemuchmathematicalrequirements forsolvingtheoptimizationproblem[118].Examplesofstochastic algorithmsthatare designedtodeal withhighly complex opti-mizationproblemsare [119]:annealing [120–122], tabusearch

[123],antcolony [124], particleswarm[125]and genetic algo-rithms[126–128].

Stochasticelementwasaddedtopatternsearchalgorithmfor optimizingthetopologicaldesignofthebracingsystemfora free-formbuilding[129].Antcolonyoptimizationalgorithm(ACO)was usedtosearchforatrade-offbetweenlightintake,thermal per-formance,view,andcostfor apanelledbuildingenvelopefor a mediacentrein Paris[130].Astrengthmulti-objective particle-swarmoptimization(S-MOPSO)wasusedfortheoptimizationof aheating,ventilation,andairconditioning(HVAC)systeminan officebuilding[131].

Insteadof theabove algorithms, thelast 10 years has seen anincreasinginterestinusinggeneticalgorithms(GAs)for opti-mizationof buildingand HVACsystems. TheGAs are themost efficientstochasticalgorithmswhentheoptimizationproblemis notsmoothorwhenthecostfunctionisnoisy[132,133].TheGAs considermany pointsinthesearchspacesimultaneously,not a singlepoint,thus theyhavea reduced chanceofconvergingto localminimum,inwhichotheralgorithmsmayendup[107].The GAswiththeParetoconceptareusedwidelyinenergyand build-ingsstudies[7,16,40,41,47,48,92,94,102,110,134–136].According to the studies of Zitzler [137] and Deb [128], the elitist non-dominatedsorting geneticalgorithm(NSGA-II)seemstobethe mostefficientGAs.TheNSGA-IIisimplementedtofindtrade-off relations betweenenergy consumption and investment cost or thermalcomfortlevelofbuildings[70–72,86,106,111,138,139].The NSGA-II[128]couldbeoneofthemostsuitableoptimization algo-rithmstohandlemulti-objectivemultivariatebuildingandHVAC designproblemswithdiscrete,non-linear,andhighlyconstrained characteristics.Howeverbecauseitsstochasticbehaviour,itcould occasionallyfailtogetclosetothepareto-optimalfront, partic-ularlyiflownumberofevaluationsisimplemented[86,87].The highnumberofiterationsischosentoavoidtheearlybreakdown oftheoptimization[106].Sincebuildingsimulationisoftenvery time-consuming,alargenumberofiterationscouldnotbepractical. Deterministicoptimizationphasesandarchivestrategiesareadded totheoriginalNSGA-IIinordertoperformrapidoptimization– usingalownumberofsimulationruns–and/ortoguarantee opti-malorclose-tooptimalsolutionsetforbuildingdesignproblems

[17,87,98].The proposedalgorithms/approaches (PRGA, GARF, PRGARF,andaNSGA-II)reducetherandombehaviourofthe origi-nalNSGA-IIenhancingtherepeatabilityoftheoptimizationresults.

2.8. ToolsofBPO

AsshowninTable1,BPOtoolscanbeclassifiedintotwomain group’sstand-aloneoptimizationpackagesandsimulationbased optimizationtools.The listof stand-aloneoptimizationtools is notverylong,howeverwechosetopresentthemostfrequently

mentioned tools in literature namely GenOpt®, MATLAB®, modeFrontier® and Topgui®. However, in the past 10 years, severaladvanceshavebeenmadetodevelopbuildingsimulation toolsthat are drivenby feedbackfrom performance objectives. Largelythesetoolsaredirectlytowardsindustrytodramatically decreasetheenergyfootprintofnewbuildings.Considerthemost mentioned two tools in literature that attempt to merge both optimization and simulation techniques developed at national renewableenergylaboratories(NREL):BeOptTMandOpt-E-PlusTM.

2.8.1. GenOpt®

GenOpt® is stand-alone optimization software developed at LawrenceBerkeleyNationalLaboratory(LBNL).GenOptisageneric optimizationprogramme that canbeused withanysimulation programmethathastext-basedinputandoutput,suchas Energy-Plus,DOE-2,IDA-ICE,SPARK,BLAST,TRNSYS,oranyuser-written code[140].Itissuitabletobecoupledwithanytext-based simula-tionprogramme.Thistoolisabletoaccessalibraryofdifferent optimizationalgorithms, and can useeither continuous or dis-cretevariables. Themodularity, flexibility,and ability toselect froma range of optimizationstrategies make GenOpt a robust platform,butitsvisualizationcapabilitiesarelimited.Thetoolis aimedto solveproblems where the objective functionis com-putationallyexpensiveanditsderivativesarenotavailableordo notexist,thusitisnotsuitableforlinearprogrammingproblems, quadraticprogrammingproblemsandproblemswherethe gradi-entoftheobjectivefunctionisavailable.Theindependentvariables can be continuous, discrete or both. Constraints on dependent variables can be implemented using penalty or barrier func-tions.GenOpt® providesmultidimensionalandone-dimensional optimization algorithms. However, its library doesnot include multi-objectivealgorithms.

Thealgorithmsformultidimensionaloptimizationare:(i) gen-eralized pattern search methods for continuous independent variables(thecoordinatesearchalgorithmandtheHooke–Jeeves algorithm),whichcanalsoberunusingmultiplestartingpoints, (ii)discreteArmijogradientforcontinuousindependentvariable, (iii)particleswarmoptimizationalgorithmsforcontinuousand/or discrete independent variables, which can beused in the ver-sionswithinertiaweightorwithconstrictioncoefficientandwith amodificationthatsetthecontinuousindependentvariableson afixedmeshinordertoreducecomputationaltime,(iv)hybrid generalized patternsearchalgorithm withparticleswarm algo-rithmsforcontinuousor/anddiscreteindependentvariables,and (v)simplexalgorithm ofNelder andMeadfor continuous inde-pendentvariables[141,142]. Ontheotherhand,thealgorithms for one-dimensional optimization are: (vi) the golden section intervaldivision and(vii)theFibonaccidivision. GenOpt® auto-maticallyallowsparallelcomputingifthecomputerhasmultiple CPUs,significantlyreducingcomputationaltime[143].The modu-larity,flexibilityandwideavailabilityofoptimizationtechniques makeGenOpt®arobustoptimizationenvironment,butits post-processingcapabilitiesarelimited[47].

InthefieldofBPO,GenOpthasbeenusedbyseveralresearchers includingCoffeyetal.[144,145],CongradacandKulic[107],Corbin etal.[22],Djuricetal.[146,147],Jacobetal.[148],Hasanetal.[85], Kummert[149],Magnieretal.[150,151],Palonenetal.[86],Park etal.[152],Henzeetal.[153],Stephanetal.[57],WetterandWright

[15]andWrightandFarmani[91].

2.8.2. MATLAB

Forlesssimulationeffortsandfeasibleoptimizationresults,it isessentialtodevelopthelinkbetweenexistentbuilding simula-tiontoolsandtrustedoptimizationtools.Inenvironmentaldesign ofbuildings,sincethenumberofdesignvariablesisusuallylarge

(6)

andthetruenatureofsolutionspace(linearornon-linear) can-notbeknown,optimizationtoolhastoprovideaccesstodifferent typesofalgorithmstosuitproblemneeds.Thisaspectisprovided intoMATLABwhichistrustedtoolcomprisesalotofoptimization solversabletodealwithdifferenttypesofoptimizationproblem. Additionally,withthisapproach,theusercanutilizeallMATLAB functionswhichprovidesignificanttoolstoattainandanalysisthe optimalresults

MATLABOptimizationToolboxTM providesa varietyof

algo-rithms for optimization problems. These algorithms solve con-strained and unconstrained continuous and discrete problems. MATLAB includes functions for linear programming, quadratic programming,binaryintegerprogramming,nonlinear optimiza-tion,nonlinearleastsquares,systemsofnonlinearequations,and multi-objectiveoptimization.Thisallowsfindingoptimalsolutions, performingtrade-offanalyses,balancingmultiplebuildingdesign alternatives,andincorporatingoptimizationmethods into algo-rithmsandmodels[34].

InthefieldofBPO,MATLABhasbeenusedbyseveralresearchers includingBucking[9],Choudhary[105],Coffey et al.[144,145], Jacobetal.[148],Hasanetal.[85],Hamdyetal.[87],Henzeetal.

[153],Kummert[149],Parketal.[152],Sheaetal.[130],Wetter

[101],WrightandFarmani[91].

2.8.3. modeFRONTIER

modeFRONTIERisamultidisciplinaryandmulti-objective soft-warethatallowscomplexalgorithmstospottheoptimalresults, evenconflictingwitheachotherorbelongingtodifferentfields. Thetoolbecoupledtodifferentothersoftwarepackagesindifferent input/outputinterchangeformatsincluding:EnergyPlus,ESP-r Flu-ent,andMATLAB.Oncedatahavebeenobtained,theusercanturn totheextensivepost-processingfeaturestoanalyzetheresults.The softwareofferswide-rangingtoolbox,allowingtheusertoperform sophisticatedstatisticalanalysisanddatavisualization.

ThetoolhasbeenusedbyXing[154]findthebestinsulation strategytominimizethespaceconditioningloadofanoffice build-ingwhilekeepingtheinsulationusageatminimum.Alsothetool hasbeenusedbytheunitofbuildingphysicsandsystems, Eind-hovenUniversityofTechnologyintheNetherlands,includingthe workofHoesetal.[138]andLoonenetal.[139].

2.8.4. Topgui

TopguiisaMATLABTMgraphicaluserinterface(GUI)programme

originally developed to be coupled with finite element analy-sis models for executing topology optimization. In the current version,it providesseveralsingle-objective and multi-objective optimization techniques: Hooke–Jeeves algorithm, generalized patternsearchmethods,particleswarmoptimizationalgorithms, evolutionarystrategy, non-dominated sorting geneticalgorithm II(NSGA-II),s-metricselectionevolutionarymulti-objective opti-mizationalgorithm(SMS-EMOA).

InthefieldofBPOandaccordingtotheliteraturereview,Topgui hasbeenusedmainlybyHopfe[106]andEmmerichetal.[116,117]

aimingtoevaluateoptimizationmethodologiesforfuture integra-tioninBPStools.

2.8.5. Opt-E-PlusTM

Opt-E-Plusisatooldeveloped byNRELthatusesEnergyPlus simulationengine.Opt-E-Plusutilizesvarioussearchroutinesto identify optimalbuildings designs for energy usage [155]. The frameworkconsistsofacollectionofEnergyPlusinputandoutput files,systemdirectories,andcomputerroutinesthatuseanXML datamodeltotransferinformationamongthevariouscomponents. Theuserisabletomodifyparametersina.xmlfile,ratherthan directlymodifyingtheEnergyPlusinputfiles.Thisapplication inte-grateswithmultipledatasources,ismodulartoallowdistributed

programming,andsupportsselectionofautomationand optimiza-tionstrategies.Althoughthisisnotastand-aloneoptimizationtool, itisdevelopedtoguidetheuser,throughthecomparisonof vari-ousdesignoptions,towardsthemosteconomicalenergysavings. Thestructureoftheprogrammeismodulartoallowdistributed programming[155].Visualizationofthetradespacehoweveris limited, and itdoesnot supportmultidisciplinary optimization. AlsotheprogrammeisrestrictedtoNorthAmericancontext. Opt-E-PlushasbeenusedbyNRELresearchersandothersincludingthe workofHerrmannetal.[156]andLongetal.[157].

2.8.6. BEoptTM

BEoptTMisatooldevelopedbyNRELandisdesignedtoidentify

optimalbuildingdesignvariantsonthepathtonetzeroenergy target. The software allows the user to select discrete options for various building variables regarding building envelope and HVAC systems and calculates energy savings withrespectto a user-definedreferencecaseoraclimate-specificBuilding Amer-icaBenchmark[158,159].Regardingenergysimulation,BEoptTM

canuseassimulationengineeitherDOE-2[160]orTRNSYS[161]

andtheoptimizationisexecutedbyasequentialsearchtechnique inordertofindthemostcosteffectivecombinationofenergy effi-cientmeasuresandphotovoltaicsystems[8].Thesoftwarerapidly providestheuseradesignspace(orproblemspace);howeverthe proposeddesignspaceandtheselectableobjectivefunctionsare limited.AlsotheprogrammeisrestrictedtoNorthAmerican con-text.

Constructionvariables suchaswindow andwalltypes were usedasinputsforaDOE-2.1energymodelandTRNSYSwasused toimplementsolarmodules.Morerecently,theenergymodelhas beenupdatetouseEnergyPlusforbothbuildingandsolar compo-nentsimulations.AnobjectiveofBEopt’sapproachisnottofocuson onefinaloptimalsolution,butonpathwaystooptimaldesignssuch thattheusercanselectdesignswhichbestsuittheirfinancing avail-ableforthehousingproject.IntegrationwithSketchUp,acomputer aideddesigntools,greatlysimplifythecreationofbuildingmodels usedforbuildingsimulation.Opt-E-Plusisacommercialbuilding optimizationtoolwhichusessequentialsearchesandEnergyPlus forbuildingsimulations.Opt-E-PlusalsointegrateswithSketchUp tocreatebuildingmodelsusedforoptimizationstudies.The appli-cation includesa graphical userinterface(GUI)that allows the usertoselectfrom arange of predefinedand discrete building alternativestobeusedintheoptimizationprocess.BEoptallows theusertorapidlygenerateandvisualizethedesignspacethrough abrowser,butitsflexibilityislimitedasaresultofhaving prede-finedbuildingalternativesanditsinabilitytoconsiderawiderange ofobjectivefunctions.

BEopthasbeenusedbyNRELresearchersandothersincluding theworkofAndersonetal.[162],Givler[163]andPollyetal.[164].

3. Interviewresultsandanalysis

TheprevioussectionwasaliteraturereviewthatdefinedBPO andillustrateditshistory,methods,characteristicandtoolsto sup-portit. Thissectionpresentssomeoftheinterview resultsthat interviewedoptimizationexpertsin2011.Eachinterviewincluded 25questionsavailableinthefinalstudyreport[165].Forthispaper, representativequestionsthatreflectthemostimportantfindings areselected.Thecompleteresultsarepresentedandcanbefoundin thefinalstudyreport[165].Priortoanalysingtheinterviewresults, itisimportanttoquestionthestatisticalsignificanceofthe inter-viewsample.Infact,28participantswereinterviewedfromalistof 40potentialusers.ThelistwasdevelopedbytheIEAtask40 mem-bersandtheinterviewedexpertsthemselves.Thustheinterview sampleishighlyrepresentativeofresearchers.

(7)

Fig.2. Fieldofdisciplineofinterviewedexperts.

3.1. Interviewee’sbackground

Whatisyourmajorfieldofdiscipline(architecture,engineering, computerscienceother)?

28expertswereinterviewedwhere26hadtheirbackground inengineering,2hadtheirbackgroundinphysics,onein architec-tureandoneincomputerscience(Fig.2).Amongthe28experts26 identifiedthemselvesasresearchersand2identifiedthemselves aspractitioners(Fig.2).Theaffiliationoftheinterviewedexperts showsthattheyaremostlylocatedinuniversitiesorresearchlabs intheNorthernHemisphere.Themajorityofintervieweesworkin theUnitedStates(29%),theUK(18%),Canada(14%),Finland(10%), theNetherlands(7%),Germany(3%),Switzerland(3%)andJapan (3%).

Howmanyprojectsorcasestudieshaveyouperformedandhow longdoeseachprojectorcasestudytake?

Inaverage40%ofallinterviewees(11)conductedbetween5 and10optimizationcasesorprojects,32%(9)conductedlessthan5 casesorprojectsand11%(3)conductedbetween10and15 optimi-sationswhileonly14%(4)conductedmorethan15optimisations. Mostintervieweesmentionedthattheystartwiththemodel devel-opmentandcalibrationfollowedbylinkingthesimulationtoolto theoptimizationtool,andthenruntheoptimization.Fig.3shows thetime foreachcase orprojects.Intervieweesmentioned that thedevelopmentandcalibrationofthesimulationmodelsareone ofthetimeconsumingsteps,requiringinaverage2–3weeksof work.However,therunningtimeoftheoptimizationsimulations isthemosttimeconsumingprocessanddependingonthemodel resolutionsthetimerequiredforeverycasevariessignificantly.

Whatkindoftoolsdoyouuseforoptimization(MATLAB,GENOPT, others)?Towhichsimulationtooldoyoucoupleit?

Fig.4revealsthatMATLABtoolboxandGenOptarethemost usedoptimisationstools.Theleftfigureindicatesthatthemost usedsimulationtoolsamongintervieweesis(9)EnegryPlus and (7)IDAICEfollowedby(5)TRNSYSand(3)Esp-r.

3.2. Optimizationmethodology

Whichbuildingtypologieshaveyouusedoptimizationforandin whichclimates?(Residential,offices,retail,institutional)

Fig.5showsthebuildingtypologies,constructiontypesand cli-mateweretheprojectswereoptimized.

Howmanyzones doyouaddress inyour modelwhen running optimisations?Andwhatkindofdesignvariablesdoyousetfor opti-mization?

64%oftheintervieweesusedmulti-zonemodelwhile36%used singlezonesmodels.Intervieweesindicated thatthepreference ofchoicebetweenthesingleandmulti-zonemodellingdepends onthemodelresolution(levelofdetail)andtheexpected inter-actionsbetweentheeachthermalzoneandthesystems.Alsothe multi-zonemodelwasusedtodifferentiatebetweenheatedand non-heatedzonesandbetweenfrequentlyandlessfrequentlyused spacesofthebuilding.

Asshown in Fig. 6, themost optimized design variables by the interviewed experts for NZEBs were systems and controls

(53%)followedbytheenvelope(50%).Theoptimizationofcontrol systemsandinparticularmodelpredictivecontrolwasconsidered asoneofthemostcomplexanddynamicdesignvariables there-fore,designoptimizationwasnecessary.Renewablesystemswere optimizedby50%oftheinterviewees.Thermalstorage,layoutand

(8)

Fig.4.Optimizationtoolsorderbyuse(right)andsimulationtoolsorderedbyuse(left).Thelinethicknessisproportionaltothefrequencyofthepairings.

geometrywasoptimizedby25%oftheintervieweesfollowedby

internalgains(18%).11%oftheexpertsoptimizedoccupancyand 7%optimizedlocationandclimate.TheanalysisofFig.6showsthat themostoptimizeddesignvariableswherelatedesignparameters. Accordingtotheintervieweesthechoiceofthedesignvariablewas basedontheinnovationofthedesignprojectandthecomplexity ofaparticulardesignvariable.

Whatkindofobjectivesdoyousetforoptimization?

Commonoptimizationcriteriain buildingdesign arevarious costssuchas initialcapital costand annualoperating cost,and lifecyclecost, energyconsumption andrecently environmental impact.70%of allintervieweesdo multi-objectiveoptimization versus30%whodosingleobjectiveoptimisations.Regardingthe

objectives,all interviewees(28)choseenergy asthemostused optimizationobjective,while64%(18)chosecost.

Thecostobjectivesincludedthelifecyclecost,initialcost, opera-tionandmaintenancecost.Comfortfollowed(10)asthethirdmost importantobjectivewhilesomeintervieweesindicatedthatthey considercomfortasaconstraintsoIwouldn’tcallitanobjective. AsshowninFig.7carbon(5),lighting(2)andindoorairquality(1) wererankedattheend.

Whatkindofconstraintsdoyousetforoptimization?

AsshowninFig.8,therewasagreementamongmost interview-ees(22)tosetthermalcomfortasthemainconstraintfollowed by cost (18). Interviewees refer to comfort conditions defined bystandards.Therewasanagreementtoconsiderconstrainsas

(9)

Fig.6.Participants’choicesofoptimizationdesignvariables.

Fig.7. Participants’choicesofoptimizationobjectivefunctions.

primarilytodefinethefeasibledomain.Alsopenaltytermsareused intheoptimizationworktobothguidetheoptimizerawayfrom infeasibleregionsandalsotoconsidertheimpactofthermal com-fortboundariesontheoptimization.Constraintsinthiscasewere boundaryorequationbased.

Under which setting you run you optimization what is your methodology?Whatkindofstoppingcriteriadoyousetfor optimiza-tion?

Theanswertothisquestiondependedontheusedalgorithm. Intervieweesindicatedthatsomealgorithmshavestopping crite-riabuiltin,othersrunforaprescribednumberofgenerationsor

Fig.8. Participants’choicesofoptimizationconstraints.

Fig.9. Participants’choicesofoptimizationstoppingcriteria.

simulations.However,asshowninFig.9mostinterviewees(17) setanumberofgenerationsasstoppingcriteriafortheir optimiza-tionwork.Somesetatimelimit(4),ornostoppingcriteriaatall(4) whilefew(3)setanumberofsimulations.

3.3. Output

DoyouhaveGUIforyourownoptimizationtool?Andwhichkind ofoutputanalysisvisualizationdidyoudousingoptimizationtools

(1–14)?

75%ofintervieweesindicatedthattheydonothavean environ-mentorpackagewithaGUIforoutputpostprocessingandanalysis visualization.Mostintervieweesareforcedtoprocessandconvert theoutputdatausingdifferentprocessingtools,suchasDView, Excell,gnuplotorwritingscriptsin MATLAB,in ordertocreate interpretableoutputresults.

Fig.10illustratesthe14mostusedoutputanalysisgraphs.22of theintervieweesusethegraphFig.10.5allowingplottingthe solu-tionspaceusingtheParetoFront.Intervieweesindicatedthatthe ParetoFrontincludemanysolutionthattheycanpickfroma vari-etyofsolutions.ThiswasfollowedbyFig.10.8(15interviewees) thatallowsthevisualizationofenergy,costorcarbonemissionsof differentsolutioncasesrepresentingthebasecaseversusthe opti-mizedcase.AlsoFig.10.4and10.6wasselectedby12interviewees tovisualizetheimpactofanyparametervariation.Ingeneral,every respondenthadhisorherowncustomvisualizationtechniques,for examplelineplots(Fig.10.2)ortimeseries(Fig.10.7)areusedfor controlsandinthecaseofcomfortscatterplots(Fig.10.2)areused.

3.4. Integrationofoptimizationwithdesignprocess

Thispartoftheinterview wasstructuredarounda seriesof openquestions inordertogetmoreinsightsontheintegration ofoptimizationtechniquesinthedesignprocess.Aselectionofthe commentsandtheirfrequencyisclassifiedasfollows:

Whatopportunitiesyouseeinintegratingoptimizationtechniques inNZEBdesignprocess?

AccordingtotheintervieweesBPOhavebeenapplied success-fullyinnumerousNZEBprojects.Howeverthebuildingsimulation communitystillrarelyusesoptimizationandlittleinvestmenthas beenmadetoadvanceBPO.However,intervieweesindicatedthat manyopportunitiesinintegratingsimulationbasedBPOinNZEB designandoperation.Themostmentionedopportunitiesinclude: •SupportthedecisionmakingforNZEBdesign.Theriseofsimulation hasbeendrivenbymany things,includinggovernmentpolicy

(10)

Fig.10. The14differentoutputanalysisvisualizations(1)solutionfitness,(2)solutionsprobabilities,(3)solutionrange,(4)solutionline,(5)solutionspace(ParetoFront), (6)parametricweights,(7)timeseries,(8)solutioncomparison,(9)solutiontree(Dendrom–HaleandLong[166]),(10)lineartradeoff–HopfeandHensen[167]),(11) table,(12)dendrogram(clusteringofvariables– Bucking[9]),(13)fitnessandaveragefitness,and(14)thermalcontourplot).

thatpushesthedesignoflowenergybuildings.Atpresent,any increaseintheuseofoptimizationwillbedrivenbytheextent towhichaidsdesigndecisionmaking.Inthisrespect,oneofthe mostpowerfulformsismulti-objectoptimization,sinceitgives asetofsolutionsthatlieonthetrade-offbetweentwoormore conflictingdesignobjectives.Thetrade-offcanbeusedtoexplore theimpactofsayoflesscapitalinvestmentontheincreasein carbonemissions.Thiskindofinformationbeingusefulin deci-sionmakingofNZEBrequiringlittleeffortandgeneratesdifferent ideasandalternatives.

•Designinginnovativeintegrated NZEBs andthermal (andvisual)

comfortcontrolsystemsaredifficulttodesignbecausetheyinvolve complexsystemsthatinteractdynamically.Optimization algo-rithmcanhelpinfindingtheoptimalandnearoptimalsolutions regardingthedesignandsizingofpassiveandactiveenergy sys-temsandfindingthebalancebetweendemandandproduction. •Achieving cost-effective NZEBs by analyzing and synthesizing

multi-physics systems that may include passive and active facades,lightingcontrols,naturalventilation,HVAC,andstorage ofheatinthebuildingstructurecombiningadvanced technolo-giessuchasmicro-CHP,PV,PVT,solarcollectorsandmicro-wind). The complexity of such systems pose a serious challenge to designersandusingBPOisanopportunityforoptimaland cost-effectivedesign decisionduringbuildingdesign andoperation includingtheexistingbuildingstock.

•Allowoptimalsystemsschedulingthroughmodelpredictivecontrol

(MPC)takingintoaccountthedynamicsofNZEBsystemsand anticipatedfutureenergyload.Whensolvingtheoptimalcontrol problemusingMPCalgorithm,itdeterminenear-optimalcontrol settingsduringdesignandoperationandimprovetheNZEBload matchingproblem.

Howcanitbeintegratedintothedecisionmaking?Howshould optimizationbecome more practically applied during early design phases?

Therewasanagreementamongintervieweesthatpriortoany integrationefforttheremustbefirstcommercialtoolsavailable

withintegratedsimulationandoptimizationthatallowseamless linkbetweenthesimulationmodelandtheoptimizationprocess. Currently,thetimeandknowledgerequiredimplementing sepa-ratesimulationmodelsandoptimizationalgorithmsislimitingthe useofBPOinpractice.However,onthelongtermtheintegration ofBPOcanbeachievedthrough:

•RequiringoptimizationasastandardactivityduringNZEBsdesign and operation. BPO can be integrated and become standard in practice.ConsequentlyBPStool willintegrate optimization techniquesandthenumberofuserswillincreasedramatically. In the coming year, I expect it to be a standard feature in NZEBs.

•Planning optimization early in the design process. BPO should be introduced in early phases of design as part of the inte-grated design process (IDP). The use of optimization should be during schematic design stages. Modelsshould be simple withsomegeometricalzoningsimplification.Usingastandard reference building and testing all kind of technologies can helpinestablishinginitialdesignconceptsandsolutionswhich canhaveanimpactonallstakeholders.Showingresultsfrom the starting point can have a strong impact on cost, energy and thermal comfort and will allow a range of ideas and solutions.

•Informing all building stakeholders on the importance of opti-mization. Comparison studies on buildings with optimization andbuildings withoutoptimizationwillinformdesignersand clients. The optimization community should show designers that the use of optimization tools produce better results. By providing demonstration projects and real physical build-ingsbesidetheoptimizationmodelsforsimulationusers.This will raise the confidence in the optimization and lead to more detailed and accurate and certain optimization models withoperationpattersand hours.Education inacademia and practice has a key in guiding professionals how to perform optimization.

(11)

3.5. Optimizationshortcomings

Whatarethemajorpracticeobstaclesofintegratingoptimization techniquesinNZEBdesign?

Themajorobstaclesofintegratingoptimizationtechniquesin NZEBdesigncanbeclassifiedundertwomaincategories:(1)soft obstaclesand(2)hardobstacles.Themainfoursoftobstaclesand theirfrequencyislistedasfollows:

•LowreturnandthelackofappreciationamongtheAECindustry (19)

•Lackofstandardsystematicapproachtoperformoptimizationin mostcasesresearcherfollowmanydifferentmethodsandad-hoc approacheswithoutastructureandcategorisationinuse(16) •Requirementofhighexpertise(11)

•Lowtrustintheresults(5)

Interviewees’indicatedthatinpractice,thereisalackof aware-nessand confidence ontheuseof optimization.Alsoit is very importantthatusersunderstandtheoptimizationprocess.There isalargeeducationalneedbeforeBPOgetsappliedroutinelyinthe designprocess.

Regardingthe hard or technical obstacles, theinterviewees’ commentsandtheirfrequencyislistedasfollows:

•Uncertaintyofsimulationmodelinput(27) •Longcomputationtime(24)

•Missinginformationoncost,occupancyschedules,etc.(19) •Difficultyofproblemdefinition(objectivesarrangementand

con-straintviolation)(12)

•Missing environments integrating and linkingsimulation and optimizationseamlessly(16)

•Low interoperability and flexibility of models for exchange betweendifferentdesign,construction,simulation,cost estima-tionandoptimizationtools(11)

•LackofenvironmentwithfriendlyGUIallowingpostprocessing andvisualizationtechniques(7)

Interviewees’agreedthatcomputationtimeisverylongandthis mightwellinhibittheinitialtake-upofoptimizationinpractice. Theoptimizationprocessesalsomagnifiestheideaof “rubbish-in-rubbish-out”sinceratherthansimulateasingledesignsolution, theerrorsorinaccuraciesinasimulationareexposedacrossawide rangeofthedesignspace.Thismayleadtoaneedforbetter educa-tionandimproveduserinterfacesforsimulation,aswellasmore workontheuncertaintyassociatedwithsimulationmodels.

Whichtoolswouldyourecommend?

10intervieweesrecommendedGenOpt,6MATLAB,4BeOpt,2 modeFrontierand1Topgui.

Whatfeatureswouldyouliketofindinfuturetools?

Interviewees mentioned many ideas that contrast the hard obstaclesmentionedpreviously.However,somesignificantideas onfuturefeatureofoptimizationtoolsinclude:

•DoingoptimizationinrealtimewithinaBIMmodelandallowing adjustmentonthefly

•Allowingparallelcomputingtoreducecomputationtime •DevelopbetterGUIandmodelthebuildingin3D •Couplesimulationandoptimization

•Connectrealphysicalbuildingcomponentsperformanceto opti-mizationmodelsforbetterinformationoncostandoccupancy etc.

•Allowautomationofbuildingsimulationwithsomedefault tem-platesandstrategies

•Profitfromthegamingindustrybydevelopinginteractive opti-mizationenvironmentsforexampletalkingtoanoraclefriend

orwizardthatguidestheoptimizationprocessforbetterinput qualityanderrordetectionanddiagnostics

4. Discussion

Fromtheinterviewresultsthreethemeswereidentified:the optimizationcontext,thelocusofoptimization,andthefactorsthat inhibittheuptakeofBPOasdecisionsupportinthedesignofNZEBs.

4.1. Summaryofmainfindings

For most interviewed experts evolutionary algorithms were foundasabreakthroughthatcanhelpsolvinghighlyconstrained envelope,HVACandrenewableoptimizationproblems,while con-ventionalalgorithmsjustcouldnotdoit.Simplegeneticalgorithm solvedmanydesign,operationandcontrolproblemswithrelative ease.Evolutionaryalgorithmsareadaptableandverypowerfulin findinggoodsolutions.Itisdifficulttoknowwhethertheyhave foundglobalminima,butthisisnotacriticalflawsolongastheycan measuretheimprovementintheoptimalityofasolutionagainst abasecase.Itisalsoarguedthatthenotionoftryingtofindan optimumisnonsensebecausethereissomuchuncertaintyinthe modellingthatmakesthesimulationrelatestoreality.Itisalso thecasethatoptimizationisnotsomuchaboutfindingthe“best” solution,butasmuchaboutexploringthedesignspacefor alterna-tivesolutions.Evolutionaryalgorithmsarerobustinexploringthe searchspaceforawiderangeofbuildingoptimizationproblems. Unlikemanyotherconventionalorheuristicalgorithms, Evolution-aryAlgorithmsarealsoeasilyadaptedtoenablethemtosolvea particularoptimizationproblemmoreeffectively.Moreover,the riseofsimulationhasbeendrivenbymanythings,including gov-ernmentpolicythatpushesthedesignofNZEBs.Atpresent,any increaseintheuseofoptimizationwillbedrivenbytheextentto whichaidsdesigndecisionmaking.Inthisrespect,oneofthemost powerfulforms optimizationismulti-object optimization,since thisprovidesasetofsolutionsthatlieonthetrade-offbetween twoorconflictingdesignobjectives.Thetrade-offcanbeusedto exploretheimpactofsayoflesscapitalinvestmentontheincrease incarbonemissions(thiskindofinformationbeingusefulin deci-sionmaking).However,decisionsupport,time,knowledge,lackof tools,anduncertaintywerethethemesthatranthroughthe experi-encesoftheinterviewedexperts.Thefactorsthatinhibittheuptake ofBPOarenotonlyrelatedtotheoptimizationtechniquesorthe toolsthemselves,butalsotothesimulationmodelsinputs,causing significantrestrainintheAECindustrytake-up.Interviewees’ opin-ionsaboutBPO,andtheirsubsequentexperiences,werefoundto bemostlyinfluencedbytheirresearchworkandcommunity.From theevidenceavailable,theoptimizationprocessdidnot,ingeneral, seemtobesystematicanddesigncentred,apartfromasmallgroup ofexpertswhousedBPOinrealdesignpractice.

4.2. Strengthsandlimitationsofthestudy

Themethodologyusedinthisstudyliteraturereviewand struc-turedinterviewswasappropriatetogeneratehypothesesfroma largepopulationsample.Verbatimtranscriptionswereundertaken andselectedquotationswerenotedited(Attia,2012).Therewas independentanalysisofthedataandconcordanceinthe identi-ficationofthemes.Thechoiceofsetting,IBPSAandIEA,allowed expertstoberecruitedfrompracticeswhorepresentarangeof NZEBandsimulationgroups.Furthermore,theexpertsformeda representativesampleintermsof theoutcomesrelatedtoBPO. Theexpertsweremadeawareatthebeginningoftheinterviews thattheinterviewerwasaresearcher,architecturalengineerand IEASHCTask40/ECBCSAnnex52members.Whilethisknowledge mayhavebeenhelpfulinallowingexpertstofeelcomfortablein

(12)

anAECsetting,therebyfacilitatingdiscussionsaboutbuilding per-formancerelatedmatters,thisknowledgemayhavehadanimpact onthedata.Specifically,theexpertsmayhavefeltobligedtoalign theirviewswithwhattheyperceivedtobetheestablishedIBPSA standpoint,forinstanceofferingamorepositiveopiniononBPO thantheywouldhavedoneotherwise.

Thenumberoftheexpertgroupmeansthatstatistical represen-tationcannotbeclaimed.Furthermore,itwasnotpossibletoensure thattheexpertrepresentedadesiredbroadrangeofoptimization groups.The samplingstrategywastherefore prospectiverather thanpurposive,anditwould havebeenpreferabletointerview moreexpertswhodeclinedthetestandexpertswhodonotspeak English,asalloftheinterviewedwereEnglishspeakers.Finally,it wouldhavebeenpreferabletointerviewmoreexpertswhowork inpractice.

4.3. Implicationsforpracticeandfutureresearch

Thefindingthat BPO is surroundedbyissues of uncertainty imposesnewobligationsonresearchersandsoftwaredevelopers. Thisinvolvesembracingmoredesign-centredoptimizationworkin additiontosettingsystematicframeworksofperforming optimiza-tionfordesigndecisionsupport,uncertaintyandcommunication, andoptimization-basedbuildingsolutions.Moreover,reliableand accurateinformationonbuildingperformanceiscrucialforexperts tocreaterobustinformeddesignchoices.Optimizationperformed fordesignersneedstoexplaintheimpactsonthedesignquality bothbeforeandaftertheuseofoptimization,andtheassociated uncertaintiesneedtobediscussed.

Furthermore,recognitionis neededthatoptimizationis nec-essaryforcomplexNZEBs.Designersdonotrelyonoptimization sufficientlyduetothelackofpublicdomaindesignpackages inte-grated with open domain, object oriented analysis tools. They are also influenced, often strongly, by the design complexity, limitedtimeandinvestmentpressure.Policymakersmust there-forerespondaccordinglyandrecognizethatBPOdoesnotstartand finishintheresearchlabs.BPOcouldberequiredasa standard activityduringNZEBsdesignandoperationandmadeavailablein arangeofpublicNZEBdesignpractice.Thegreatestpossibilities, however,areaffordedbytheresearchers.Notwithstandingthereal issueofcomputationtimeandtheseamlessintegrationof simula-tionandoptimizationmodelwithdesignmodels.Ultimatelyinthe future,alldesignersparticipatinginthedesign(architects, engi-neers,etc.)willbeinvolvedinusingBPOtechniques.Optimization isaboutpresentingdesignalternativestothedesignerregardless ofwhomtheyare.Soitmightbethatthearchitecthasadifferent setoftoolsanditisadifferentoptimizationmethodologybutthey willnotbeexcludedfromusingoptimization.

Atpresent,theintegrationofBPO intothedesign processis aresearchissue.WhilethissampleofexpertsconfirmsthatBPO willaddvaluetothedesignwedonothavetheproof.Ifwehave solidproofdesignerswillbeverylikelyuseoptimizationtechniques becauseitenhancesthebuildingstheyaredesigning,sotheycan getbetterbuildings.Moreresearchisneededontheexperienceof designerswithBPO.Researchhastoshowdesignersthattheuse ofBPOproduceresultsbetterthantheirdesign.Thiswouldalso allowthedevelopmentofbetterBPOtoolsthatarebothaccurate andsupportthedecisionmaking.

Acknowledgements

TheauthorsexpresstheirthankstoScottBucking,RemiCharon, RuchiChoudhary,BrianCoffey,ChadCorbin,NatasaDjuric,Elaine Hale,MohamedHamdy,AlaHassan,JanHensen,GregorHenze, Les-leyHermann,Pieter-JanHoes,ChristinaHopfe,DirkJacob,Michael

Kummert,NicholasLong,LaurentMagnier,PeterT.May-Ostendorp, MonjurMourshed,TatsuoNagai,MattiPalonen,ChristianStruck, MikaVuolle,WeiminWang,MichaelWetter,JonathanWrightand YiZhangandappreciatetheirvaluablecommentsandfeedback. TheauthorsthankJosefAyoub,NaturalResourcesCanada,Andreas Athienitis, Concordia University and IEA SHC Task40/ECBCS Annex 52, Subtask Bfor comments on earlier versions of this article.

References

[1]IEA.TASK40/Annex52(2008).Towardsnetzeroenergysolarbuildings,IEA SHCTask40andECBCSAnnex52.http://www.ieashc.org/task40/index.html, 2011(accessed10.01.2011).

[2]EuropeanParliamentReportontheproposalforadirectiveoftheEuropean ParliamentandoftheCouncilontheenergyperformanceofbuildings(recast) (COM(2008)0780-C6-0413/2008-2008/0223(COD)),2009.

[3]ASHRAE. AHSRAE Vision 2020, ASHRAE Vision 2020 Ad Hoc Commit-tee. http://www.ashrae.org/doclib/20080226ashraevision2020.pdf, 2008 (accessed10.10.10).

[4]A.Athienitis,etal.,Strategicdesign,optimisation,andmodellingissuesof net-zeroenergysolarbuildings,in:ProceedingofEuroSun2010,Graz,Austria, 2010.

[5]S.Hayter, P.Torcellini,R.B.Hayter, R. Judkoff, TheEnergyDesign Pro-cessforDesigningandConstructingHigh-PerformanceBuildings,in:Clima 2000/Napoli2001WorldCongress,2001.

[6] M.Wetter,GenOpt®,genericoptimisationprogram,in:BuildingSimulation 2001Conference,RiodeJaneiro,Brazil,2001.

[7]R.Charron,A.Athienitis,Theuseofgeneticalgorithmsforanet-zeroenergy solarhomedesignoptimisationtool,in:ProceedingsofPLEA2006 (Confer-enceonPassiveandLowEnergyArchitecture),Geneva,Switzerland,2006. [8]C.Christensen,R.Anderson,etal.BEoptsoftwareforbuildingenergy

opti-misation:featuresandcapabilities.NationalRenewableEnergyLaboratory (NREL)TechnicalReportNREL,TP-550-39929,2006.

[9] S.Bucking,Designoptimisationmethodologyforanearnetzeroenergy demonstrationhome,in:ProceedingofEuroSun2010,Graz,Astria,2010. [10]C.Brown,L.Glicksman,M.Lehar,Towardzeroenergybuildings:optimizedfor

energyuseandcost,in:SIMBuildfourthNationalConferenceofIBPSA-USA, 11–13August2010,NewYorkCity,NY,2010.

[11] IBPSA. The International Building Performance Simulation Association. http://www.ibpsa.org/,2011(accessed01.10.2011).

[12]P.Torcellini,S.Pless,M.Deru,D.Crawley,Zeroenergybuildings:acritical lookatthedefinition,in:ACEEESummerStudy,PacificGrove,CA,2006. [13] J.Snyman,PracticalMathematicalOptimisation—AnIntroductiontoBasic

OptimisationTheoryand ClassicalandNew Gradient-BasedAlgorithms, SpringerScience+BusinessMedia,UniversityofPretoria,Pretoria,South Africa,2005.

[14] A.Carlos,etal.,ApplicationsofMulti-ObjectiveEvolutionaryAlgorithms, WorldScientific,Singapore,2004,ISBN981-256-106-4.

[15]M.Wetter,J.Wright,Acomparisonofdeterministicandprobabilistic opti-misationalgorithmsfornonsmoothsimulation-basedoptimisation,Building andEnvironment39(2004)989–999.

[16]W.Wang,R.Zmeireanu,H.Rivard,Applyingmulti-objectivegenetic algo-rithmsingreenbuildingdesignoptimisation,BuildingandEnvironment40 (11)(2005)1512–1525.

[17]M.Hamdy, A. Hasan,K.Siren, Applying a multi-objectiveoptimisation approachfordesignoflow-emissioncost-effectivedwellings,Buildingand Environment46(2011)(2011)109–123.

[18]M.Wetter,GenOpt,GenericOptimisationProgram,Release3.1.0,Lawrence BerkeleyNationalLaboratory,UniversityofCalifornia,UnitedStates,2011, http://simulationresearch.lbl.gov/GO/(accessed22.01.2012).

[19]modeFontier.ESTEC,multi-objectiveoptimisationanddesignenvironment. http://www.modefrontier.com/homeMF.html,2012(accessed22.01.2012). [20]Phoenix Integration. PHX ModelCenter, Graphical

environ-ment for automation, integration, and design optimisation. http://www.phoenix-int.com/index.php,2012(accessed22.01.2012). [21]P.May-Ostendorp,G.P.Henze, C.D.Corbin,B. Rajagopalan,C.Felsmann,

Model-predictivecontrolof mixed-modebuildingswith ruleextraction, BuildingandEnvironment46(2)(2011)428–437.

[22]C.Corbin,G.Henze,P.May-Ostendorp,Amodelpredictivecontrol optimisa-tionenvironmentforreal-timecommercialbuildingapplication,Journalof BuildingPerformanceSimulation6(2011)2011.

[23]J.Candanedo,A.Athienitis,Predictivecontrolofradiantfloorheatingand transmittedirradianceinaroomwithhighsolargains,ASHRAETransactions 117(2)(2011)235–256.

[24]J.Hensen,LambertsR,BuildingPerformanceSimulationforDesignand Oper-ation,1sted.,SponPress,Oxfordshire,UK,2011,ISBN-10:0415474140. [25]C.Christensen,etal.,BEoptTM:softwareforidentifyingoptimalbuilding

designsonthepathtozeronetenergy,in:ProceedingsofISES2005Solar WorldCongress,Orlando,FL,USA,2005.

[26]BPIE.Cost optimality discussing methodology and challenges with the recastenergyperformanceofbuildingdirective.Thebuildingsperformance

(13)

institute Europe – BPIE, 2010. http://www.bpie.eu/costoptimality.html, 2010(accessed1.06.2011).

[27]G.Augenbroe,Integratedbuildingperformanceevaluationintheearlydesign stages,BuildingandEnvironment27(2)(1992)149–161.

[28]J.Hensen,Towardsmoreeffectiveuseofbuildingperformancesimulationin design,in:Proc.7thInternationalConferenceonDesign&DecisionSupport SystemsinArchitectureandUrbanPlanning,2–5July,TechnischeUniversiteit Eindhoven,2004.

[29]D.Crawley,etal.,Contrastingthecapabilitiesofbuildingenergyperformance simulationprograms,BuildingandEnvironment43(4)(2008)661–673. [30]S.Attia,A.DeHerde,EarlyDesignSimulationToolsforNetZeroEnergy

Buildings:AComparisonofTenTools,InternationalBuildingPerformance SimulationAssociation,Sydney,Australia,2011.

[31] DOE, U.S. Building energy software tools directory. http://apps1.eere. energy.gov/buildings/toolsdirectory/,2012(accessed1.06.2012). [32] M.Wall,GAlib:AC++ClassLibraryofGeneticAlgorithmComponents,

Tech-nicalReport,DepartmentofMechanicalEngineering,MassachusettsInstitute ofTechnology,Cambridge,MA,USA,1996.

[33]S.Attia,etal.,Selectioncriteriaforbuildingperformancesimulationtools: contrastingarchitects’andengineers’needs’,JournalofBuildingPerformance Simulation5(3)(2011)155–169.

[34]MATLAB,MathWorks,ProgrammingEnvironmentforAlgorithm Develop-ment,DataAnalysis, Visualization,andNumericalComputation,Version 6.2,TheMathWorks,Inc.,Natick,MA,2012,http://www.mathworks.com/ products/matlab/(accessed22.01.2012).

[35]Y.Zhang,‘Parallel’EnergyPlusandthedevelopmentofaparametricanalysis tool,in:IBPSABS2009,27–30July,Glasgow,2009,pp.1382–1388. [36]C.Coello,Evolutionarymultiobjectiveoptimisation:ahistoricalviewofthe

field,IEEEComputationalIntelligenceMagazine1(1)(2006)28–36. [37]J.Jo,J.Gero,Spacelayoutplanningusinganevolutionaryapproach,

Arti-ficialIntelligenceinEngineering12(3)(1998)149–162,ISSN0954-1810, 10.1016/S0954-1810(97)00037-X.

[38]J.Gero,V.Kazakov,Evolvingdesigngenesinspacelayoutproblems,Artificial IntelligenceinEngineering12(3)(1998)163–176.

[39]J.Kämpf,D.Robinson,Optimisationofbuildingformforsolarenergy utiliza-tionusingconstrainedevolutionaryalgorithms,EnergyandBuildings42(6) (2010)807–814.

[40]W.Wang,H.Rivard,R.Zmeureanu,Floorshapeoptimisationforgreen build-ingdesign,AdvancedEngineeringInformatics20(2006)363–378. [41] M.Turrin,P.Buelow,R.Stouffs,Designexplorationsofperformancedriven

geometryinarchitecturaldesignusingparametricmodelingandgenetic algo-rithms,AdvancedEngineeringInformatics25(2011)656–675.

[42]J. Wright, M. Mourshed, Geometric optimisation of fenestration, in: IBPSA: 11th International Building Performance Simulation Associa-tion Conference, Glasgow, UK, 2009, http://www.ibpsa.org/proceedings/ BS2009/BS090920927.pdf(accessed22.01.2012).

[43]L.Caldas,L.Norford,Adesignoptimisationtoolbasedonageneticalgorithm, AutomationinConstruction11(2)(2002)173–184.

[44] L.Caldas,etal.,Adesignoptimisationtoolbasedonageneticalgorithm, AutomationinConstruction11(2)(2002)173–184.

[45]L.Caldas,L.Norford,ShapegenerationusingParetogeneticalgorithms: inte-gratingconflictingdesignobjectivesinlow-energyarchitecture,International JournalofArchitecturalComputing1(4)(2003)503–515.

[46]L. Caldas,GENEARCH:an evolution-basedgenerativedesignsystem for sustainablearchitecture,LectureNotesinComputerScience4200(2006) 109.

[47]F. Flager, B. Welle, P. Bansal, G. Soremekun, J. Haymaker, Multi-disciplinary process integration and design optimisation of a class-roombuilding,ITcon14(2008)595–612,http://www.stanford.edu/group/ CIFE/online.publications/TR175.pdf(accessed1.06.2012).

[48]P.Geyer,Component-orienteddecompositionformultidisciplinarydesign optimisationinbuildingdesign,AdvancedEngineeringInformatics23(1) (2009)12–31.

[49] K.Suga,S.Kato,K.Hiyama,StructuralanalysisofPareto-optimalsolution setsformulti-objectiveoptimisation:anapplicationtoouterwindowdesign problemsusingmultipleobjectivegeneticalgorithms,Buildingand Environ-ment45(2010)1144–1152.

[50]G.Rapone,O.Saro,Optimisationofcurtainwallfacadesforoffice build-ingsbymeansofPSOalgorithm,EnergyandBuildings45(2011)(2012) 189–196.

[51]S.Attia,etal.(2012a)Simulation-baseddecisionsupporttoolforearlystages ofzero-energybuildingdesign,energyandbuildings.Availableonline10 February2012,ISSN0378-7788,10.1016/j.enbuild.2012.01.028.

[52]S.Torres,Y.Sakamoto,Facadedesignoptimisationfordaylightwithasimple geneticalgorithm,in:ProceedingsofBuildingSimulation,Beijing,2007. [53]M.Andersen,S.Kleindienst,L.Yi,J.Lee,M.Bodart,B.Cutler,Anintuitive

day-lightingperformanceanalysisandoptimisationapproach,BuildingResearch andInformation36(6)(2008)593–607.

[54]A.Mahdavi,Simulation-basedcontrolofbuildingsystemsoperation,Building andEnvironment36(6)(2001)789–796.

[55]A.Mahdavi,B.Spasojevic,K.Brunner,Elements ofasimulation-assisted daylight-responsiveilluminationsystemscontrolinbuildings,in:Building Simulation2005,NinthInternationalIBPSAConference,15–18August, Mon-treal,2005,pp.693–699.

[56] A.Mahdavi,C.Pröglhöf,in:BuildingSimulation(2005),NinthInternational IBPSAConference,15–18August,Montreal,Canada,Amodel-basedmethod

fortheintegrationofnaturalventilationinindoorclimatesystemsoperation (2005)685–692.

[57]L.Stephan,A.Bastide,E.Wurtz,B.Souyri,Ensuringdesirednaturalventilation ratebymeansofoptimizedopenings,in:Proc.ofthe11-thIBPSAConference, Glasgow,Scotland,2009,pp.2282–2288.

[58]H.Jedrzejuk,W.Marks,Optimisationofshapeandfunctionalstructureof buildingsaswellasheatsourceutilizationexample,Buildingand Environ-ment37(12)(2002)1249–1253.

[59]J.Wright,V.Hanby,Theformulation,characteristics,andsolutionofHVAC systemoptimizeddesign problems,ASHRAETransactions 93(2) (1987) 2133–2145.

[60] J.Wright,HVACoptimisationstudies:sizingbygeneticalgorithm,Building ServicesEngineeringResearchandTechnology17(1)(1996)7–14. [61] Y.Asiedu,etal.,HVACDuctsystemdesignusinggeneticalgorithms,HVAC&R

Research6(2)(2000)149–173.

[62] L. Caldas, L. Norford, Genetic algorithms for optimisation of building envelopesandthedesignandcontrolofHVACsystems,JournalofSolarEnergy Engineering125(2003)343–351.

[63]K.Fong,V.Hanby,etal.,HVACsystemoptimisationforenergymanagement byevolutionaryprogramming,Energy&Buildings38(3)(2006)220–231. [64] W.Huang,N.Lam,Usinggeneticalgorithmstooptimizecontrollerparameters

forHVACsystems,EnergyandBuildings26(1997)277–282.

[65]S.Wang,X.Jin,Model-basedoptimalcontrolofVAVair-conditioningsystem usinggeneticalgorithm,BuildingandEnvironment35(2000)471–487. [66]T.Chow,G.Zhang,etal.,Globaloptimisationofabsorptionchillersystem

bygeneticalgorithmandneuralnetwork,EnergyandBuildings34(2002) 103–109.

[67]J.Clarke,etal.,Simulation-assistedcontrolinbuildingenergymanagement systems,EnergyandBuildings34(2002)(2002)933–940.

[68]D.Kolokotsa,etal.,Geneticalgorithmsoptimizedfuzzycontrollerforthe indoorenvironmentalmanagementinbuildingsimplementedusingPLCand localoperatingnetworks,EngineeringApplicationsofArtificialIntelligence 15(2002)417–428.

[69]K.Fong,V.Hanby,T.Chow,OptimisationofMVACsystemsforenergy man-agementbyevolutionaryalgorithm,Facilities21(10)(2003)223–232. [70] N. Nassif, S. Kajl, R. Sabourin, Two-objective on-line optimisation of

supervisorycontrolstrategy, BuildingServiceEngineering25(3)(2004) 241–251.

[71]N.Nassif,S.Kajl,R.Sabourin,Evolutionaryalgorithmsformulti-objective optimisationinHVACsystemcontrolstrategy,in:ProcessingNAFIPS‘04. IEEEAnnualMeetingoftheFuzzyInformation,vol.1(1),2004,pp.51–56, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01336248(accessed 25.01.2012).

[72] N.Nassif,K.Stainslwa,R.Sabourin,OptimisationofHVACcontrolsystem strategyusingtwo-objectivegeneticalgorithm,HVAC&RResearch11(3) (2005)459–486.

[73]M.Kummert,P.Andre,Simulationofamodel-basedoptimalcontrollerfor heatingsystemsunderrealistichypothesis,in:Proceedingsofthe9thIBPSA Conference,BuildingSimulation2005,IBPSA,2005.

[74]M.Mossolly,K.Ghali,N.Ghaddar,Optimalcontrolstrategyforamulti-zone airconditioningsystemusingageneticalgorithm34(1)(2009)58–66. [75] W.Lee,Y.Chen,Y.Kao,Optimalchillerloadingbydifferentialevolution

algo-rithmforreducingenergyconsumption,EnergyandBuildings43(2–3)(2011) 599–604.

[76]U.Diwekar,I.Grossman,E.Rubin,AnMINLPprocesssynthesizerfor sequen-tialmodularsimulator,Industrial&EngineeringChemicalResearch31(1992) 313.

[77]J.Wright,etal.,EvolutionarysynthesisofHVACsystemconfigurations: algo-rithmdevelopment(RP-1049),HVAC&RResearch14(1)(2008)33–55. [78]G.Henze,etal.,Experimentalanalysisofmodel-basedpredictiveoptimal

controlforactiveandpassivebuildingthermalstorageinventory,HVAC&R Research11(2)(2005)189–214.

[79]G.Henze,M.Krarti,U.S.DepartmentofEnergyCooperativeAgreement DE-FC-26-01NT41255,PredictiveOptimalControlofActiveandPassiveBuilding ThermalStorageInventory,FinalReport.U.S.DepartmentofEnergy Informa-tionBridge.http://www.osti.gov/servlets/purl/894509-GH9Mqf/,2005. [80]S.Liu,G.Henze,Calibrationofbuildingmodelsforsupervisorycontrolof

commercialbuildings,in:Proceedingsofthe9thInternationalBuilding Per-formanceSimulationAssociation(IBPSA)Conference2005,Montreal,Canada, 2005.

[81]S.Liu,G.Henze,Experimentalanalysisofsimulatedreinforcement learn-ing control for active and passive building thermal storageinventory. Part 1: theoretical foundation, Energy and Buildings 38 (2) (2006) 142–147.

[82]M.Wetter,J.Wright,Comparisonofageneralizedpatternsearchandagenetic algorithmoptimisationmethod,in:Proceedingsofthe8thInternational IBPSAConference,Eindhoven,Netherlands,2003,pp.1401–1408. [83]J.Wright,A.Alajmi,Therobustnessofgeneticalgorithmsinsolving

uncon-strainedbuildingoptimisationproblems,in:Proceedingsofthe7thIBPSA Conference:BuildingSimulation,15–18August,Montréal,Canada,2005,pp. 1401–1408.

[84]R.Pardo,etal.Buildingenvelopeoptimisation.12èmesJournées Interna-tionalesdeThermique,Tanger,Maroc,2005.

[85] A.Hasan,M.Vuolle,K.Siren,Minimisationoflifecyclecostofadetachedhouse usingcombinedsimulationandoptimisation,BuildingandEnvironment43 (12)(2008)2022–2034.

References

Related documents

Notes: The left panels show the relationship between the ethnolinguistic fractionalization index, the public expenditure in education per student as a percentage of per capita

In order to improve it, work remains to be done on different areas: (1) the improved understanding of the role of indicators to assess systemic risk and the determinants

Boldface signifies p-value \0.05 or statistically significant Continuous variables are expressed as median (range); categorical variables are expressed as n (%) PTC papillary

U drugom poglavlju detaljnije je razraĊena promocija kao jedan od elemenata marketinškog spleta internetskog marketinga te analiza svih elemenata internetskog

5 Dr Stuart Walker Exeter Component and system reliability in tidal turbine deployments 6 Mr Tom Tosdevin Plymouth Extreme Responses of a Raft Type Wave Energy Converter 7

The present study has made a theoretical contribution to the contact literature within the South African context and based on these findings, future interventions could be

Our findings suggest that whilst transitional object use does not uniquely predict help seeking behaviour beyond attachment type, those children still using transitional objects