• No results found

Air particulate matter pollution in Ulaanbaatar, Mongolia: determination of composition, source contributions and source locations

N/A
N/A
Protected

Academic year: 2021

Share "Air particulate matter pollution in Ulaanbaatar, Mongolia: determination of composition, source contributions and source locations"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

Atmospheric Pollution Research

www.atmospolres.com

Air

particulate

matter

pollution

in

Ulaanbaatar,

Mongolia:

determination

of

composition,

source

contributions

and

source

locations

Perry

K.

Davy

1

,

Gerelmaa

Gunchin

2

,

Andreas

Markwitz

1

,

William

J.

Trompetter

1

,

Bernard

J.

Barry

1

,

Dagva

Shagjjamba

2

,

Sereeter

Lodoysamba

2

1

InstituteofGeologicalandNuclearSciences,NationalIsotopeCentre,P.O.Box31–312,LowerHutt,NewZealand

2

NationalUniversityofMongolia,IkhSurguuliingudamj–1,Ulaanbaatar,Mongolia

ABSTRACT

Ulaanbaatar,thecapitalcityofMongoliaissubjecttohighairparticulatematterpollutionepisodesduringwinterand duringduststormeventsinspringandautumnthathavesevereimplicationsforthehealthoftheexposedpopulation. Thispaperpresentstheresultsoffine(PM2.5)andcoarse(PM10–2.5)particulatemattermonitoringinUlaanbaatarfrom 2004to2008andreceptormodellingtodeterminethesourcescontributingtoparticulatematterpollution.IonBeam Analysiswasusedtodetermineelementalconcentrationsinthetwosizefractionsandblackcarbonwasmeasured withalightreflectancedevice.Masscontributionstoambientparticleconcentrationsfromemissionsourceswere estimatedbypositivematrixfactorisationandairmassback–trajectoryanalysiswasusedtoassessprobablesource locations.Theresultsshowthatcrustalmattersourcesaretheprimarycontributorstothecoarseparticlefraction. Combustionsources(coalcombustion,biomassburning,andmotorvehicles)dominatethefinefractionofparticulate matterintheUlaanbaatarairshed,primarilyfromlocalemissionsourcesbutforestfirestothenorthcanbea significantcontributortobiomassburningconcentrationsattimes.Analysisofseasonaldifferencesshowedthatcoal combustionprocesseswerelargelyresponsibleforfineparticleairpollutionepisodesduringwinter.Temporaltrends showanincreaseinthecoalcombustioncontributionsoverthemonitoringperiod.Wesuggestthatthisislinkedto theincreaseintheUlaanbaatarpopulationandaconsequentincreaseintheuseofcoalforpowergenerationand domesticheatingpurposes.

Keywords: Airpollution Particulatematter IBA Positivematrixfactorisation Receptormodelling Mongolia ArticleHistory: Received:27May2010 Revised:25August2010 Accepted:09September2010 CorrespondingAuthor: PerryK.Davy Tel:+64Ͳ4Ͳ570Ͳ4688 Fax:+64Ͳ4Ͳ570Ͳ4657 EͲmail:[email protected] ©Author(s)2011.ThisworkisdistributedundertheCreativeCommonsAttribution3.0License. doi:10.5094/APR.2011.017

1.

Introduction

This paperpresentstheresults ofair particulatematter

samplingfromOctober2004toApril2008atUlaanbaatar,the

capitalcityofMongolia(Figure1).ThemonitoringinUlaanbaatar

waspartofawiderprogrammerunundertheauspicesofthe

InternationalAtomicEnergyAgency(IAEA)(Markwitz2005;Hopke

etal.,2008).Ulaanbaatar(population1million)issituatedina

largedomevalleysurroundedbymountainsandsubjecttofreezing

conditions and temperature inversions during winter months

(December–February). This work presents PM2.5 and PM10–2.5 monitoringresultsandreceptormodellingusingpositivematrix

factorisation(PMF)toapportionsourcecontributionstoeachof

thesizefractions.AirparticulatematterpollutioninUlaanbaatar

canbeextremeattimeswithbothPM2.5orPM10–2.5exceeding 200μgmо3.

Anumberofemissioninventorieshavebeenpreparedforthe

Ulaanbaatarairshed(NAMHEM,2007;Guttikunda,2007)inorder

to quantifysourceemissionsandcontributions toparticulate

matterairpollutioninthecity.However,somesourcessuchas

fugitivedustfromduststormsandlocaldustgeneratingactivities

oremissionsfromdomesticuseoffuelsforheatingandcooking

aredifficulttoquantifyperseortheemissionsfactorsandactivity

estimateshaveahighuncertaintyassociated(>50%).Thereceptor

modellingapproach fillsthese knowledgegapsand provides

informationonthekeysourcescontributingtoparticulatematter

concentrationsinUlaanbaatar.

2.

Experimental

2.1.Samplecollectionandanalyticalmethods

PM2.5andPM10–2.5sampleswerecollectedonatwo–day–per– weekbasis(MondaysandWednesdays)fromOctober2004toApril

2008attheNationalUniversityofMongoliaairqualitymonitoring

site,4kilometerseastofthecentreofUlaanbaatarasshownin

Figure1b(latitude47914deg,longitude106972deg,1300m

abovesealevel).Thefineandcoarseparticlesizefractionswere

collectedwithaGENTsampler(Maenhautetal.,1993).The

samplerconsistsofaPM10impactor–typesizeselectiveinletand stackedfilterunitassemblyconnectedtoapumpandgasmeter.

Thestackedfilterunit(SFU)ismadeupoftwofiltersinseries,the

topfilter(polycarbonate)collectstheparticulatesizefraction

between10micronsand2.5micronsinaerodynamicdiameter

(PM10–2.5orcoarsefraction),thebottomfilter(polycarbonate) collectsparticulatematter2.5micronsandlessinaerodynamic

diameter(PM2.5orfinefraction).TheperformanceoftheSFUand thesizeselectiveinlethasbeenassessedagainstotherparticle

(2)

Figure1.Mapshowing(a)Ulaanbaatar,Mongoliaand(b)locationofmonitoringsitein Ulaanbaatar(Ì).Source:GoogleEarth(www.google.com).

werecollectedfora24hourperiod,butonsomedaysitwasnot

possibletocollectthesampleovertheentire24hoursasthehigh

particulatematterconcentrationsleadtofilterclogging.Thus,the

samplerwasoperatedalternatingtimeonandtimeoff(e.g.,1hon

followedby1hoff)overthecourseofthe24hoursperiodto

providearepresentativesampleforthatday.Gravimetricanalysis

was carried out at the National University of Mongolia,

Ulaanbaatarandresultsreportedasmicrogramsofparticulate

matterpercubicmetreofairsampled(LODa5μgmо3;uncertainty

estimatedat±10%).

IonBeamAnalysis(IBA)wasusedtomeasuretheconcenͲ

trationsofelementswithatomicnumberaboveneoninparticulate

matteronthesize–resolvedfiltersamplesfromUlaanbaatar.IBA

measurementsforthisstudywerecarriedoutattheNewZealand

IBAFacilityoperatedbytheInstituteofGeologicalandNuclear

Sciences(GNS)inGracefield,LowerHutt(Trompetteretal.,2005).

Blackcarbon(BC)concentrationsonfiltersweredetermined

bylightreflectionusingaM43DDigitalSmokeStainReflectometer.

Blackcarbonhasbeenstudiedextensivelybutitisstillnotclearto

whatextentitiseitherelementalcarbon[graphitic,C(0)],high

molecularweightrefractoryweightorganicspeciesoracomͲ

binationofboth(Jacobsonetal.,2000).Forcombustionsources

suchaspetrolanddieselfuelledvehiclesandbiomassburning

elemental(orgraphiticcarbon)andorganiccarboncompounds

(OC)aretheprincipleaerosolcomponentsemitted(Jacobsonet

al.,2000;Fineetal.,2001;Watsonetal.,2002;Salmaetal.,2004).

Theabsorptionandreflectionofvisiblelightonparticlesinthe

atmosphereorcollectedonfiltersisdependentontheparticle

concentration,density,refractiveindexandsize.Foratmospheric

particles,BCisthemosthighlyabsorbingcomponentinthevisible

lightspectrumwithverymuchsmallerabsorptioncomingfrom

soil,sulphateandnitrate(Horvath,1993;Horvath,1997).Hence,to

thefirstorderitisassumedforthepurposesofthisstudythatall

thelightabsorptionbyparticlesonfiltersisduetoBC.

2.2.Receptormodelling

ReceptormodellingandapportionmentofPMmassbyPMF

wasperformedusingthePMF2program(Paatero,1997).With

PMF, sources are constrained to have non–negative species

concentrations,nosamplecanhaveanegativesourcecontribution

anderrorestimatesforeachobserveddatapointareusedas

point–by–pointweights.Thisfeatureisadistinctadvantage,inthat

itcanaccommodatemissingandbelowdetectionlimitdatathatis

acommonfeatureofenvironmentalmonitoringresults(Songet

al.,2001).Thesignal–to–noiseratioforanindividualelemental

measurementcanhaveasignificantinfluenceonareceptormodel

andmodellingresults.Fortheweakest(closesttodetectionlimit)

speciesthevariancemaybeentirelyduetonoise(Paateroand

Hopke,2002).PaateroandHopke(2003)stronglysuggestdown– weightingordiscardingnoisyvariables(asmeasuredbytheir

signal–to–noiseratio)thatarealwaysbelowtheirdetectionlimitor

speciesthathavealotofuncertaintyintheirmeasurements

relativetothemagnitudeoftheirconcentrations.Thereforethe

datawerescreenedbytheirsignal–to–noiseratio(S/Nratio).

VariableswithverylowS/Nratios(ч0.2)wereexcludedfromthe

analysis, while weak variables (0.2чS/Nч2) were down– weighted.Rotationalfreedominsolutionswereexploredand

controlledusingFPEAK(PaateroandHopke,2002)andobserving

theeffectontheQvalues(chi–squared),G–vectorplotsand

residualplots(Paateroetal.,2005).Onlythosesolutionsthatcould

berelatedtophysicalsourceswereconsideredacceptable.

2.3.Backtrajectoriesandpotentialsourcecontributionfunction

analysis

TheHYSPLIT(HYbrid Single–ParticleLagrangianIntegrated

Trajectory)modelisthenewestversionofacompletesystemfor

computingsimpleairparceltrajectoriestocomplexdispersionand

depositionsimulations(DraxlerandRolph,2003).Usingaglobal

meteorologicaldatasetHYSPLITcomputestheadvectionofasingle

pollutantparticle,orsimplyitstrajectory.Forthepurposeofthis

study,HYSPLIThasbeenusedtocalculatethe96–hourback

trajectoriesofairparcelsforsampledaysofinterestinorderto

examine long–range atmospheric transport processes and

determine potential particulate matter source locations. The

potentialsourcecontributionfunction(PSCF)analysiscalculates

theprobablesourcelocationsforthosesourcesconsideredtobe

impacting at a receptor site from long–range transport of

pollutants.Ifatrajectoryendpointliesintheijthcell,theairparcel

(3)

assumestocollectPMemittedinthecellandtransportsalongthe

trajectory to the monitoring site. PSCFij is the conditional

probabilitythatanairparcelthatpassedthroughtheijthcellhada

highconcentrationuponarrivalatthemonitoringsite:

ܲܵܥܨ௜௝ൌ

݉௜௝

݊௜௝ (1)

wherenijisthetotalnumberofendpointsthatfallintheijthcell,

mijisthenumberofendpointsthatexceededthethreshold

criterion(inthisstudy,theaverageconcentrationofeachspecies

wasusedforthethresholdcriterion).

PSCFdescribesthespatialdistributionofprobablegeographiͲ

calsourcelocations.GridcellswhichhavehighPSCFvaluesarethe

potentialsourceareaswhoseemissionsarelikelytocontributeto

particulatematterconcentrationsatthemonitoringsite.Fora

secondaryaerosolpollutant,ahighPSCFareamayalsoinclude

areaswheresecondaryparticleformationisenhanced(Begumet

al.,2005).

3.

Results

and

Discussion

3.1.ParticulatematterconcentrationsinUlaanbaatar

Coarseandfineparticleconcentrationswerecombinedto

provideameasureofambientPM10concentrationsatUlaanbaatar (Figure2a).Particulatematterconcentrationswerefoundtobe

dominatedbythecoarsefraction(Figure2b)whichwerehigher

duringspring(March–May)andautumn(September–NovemͲ

ber).Fineparticleconcentrationspeakedduringwinter(December

–February).Notethatnomonitoringwascarriedoutduringthe

summer(April–August)of2005.

Particulatematterconcentrationswerefoundtobeextremely

highattimeswithmaximumPM10concentrationsmeasuredat 1100μgmо3andmanydayswhereconcentrationswereabove

300μgmо3,however,theremaybesomeuncertaintyintheGENT

gravimetric mass at such extreme concentrations (i.e.

>600μgmо3)duetothepotentialforfilterclogging.Thecoarse

particlefractiongenerallydominatedPM10buthighPM2.5values wererecordedduringwintermonthswithPM2.5valuesoftenover 100μgmо3.Withsuch highparticulatematterconcentrations

presentintheUlaanbaatarurbanareatherearelikelytobe

significanthealthimplicationsfortheexposedpopulation.

3.2.PM102.5dataanalysis

Atotalof224(91%oftotalsamplescollected)particulate

mattersampleswereincludedinthereceptormodellinganalyses

ofUlaanbaatarcoarseparticledata.Whilemorethan25elemental

constituentsweredetectedabovetheirrespectiveLOD,16species

wereselectedforPMFmodelling(PM102.5,BC,Na,Mg,Al,Si,P,S, Cl,K,Ca,Ti,Mn,Fe,Cu,Zn)asotherelementswereonlypresentin

afewsamplesand/ortheS/Nratiowaslowerthan0.2.Table1

presents the mean, standard deviation, median, maximum,

minimum,andnumberofsamplesaboveLODandS/Nratiofor

individualspecies.

Differentsourcenumbers(3Ͳ9)wereusedforderivingPMF

solutionsandtheeffectsontheQvalues(andQvalueasafunction

ofFPEAK),residualmatricesandGͲspaceplotswereobservedto

determinetheoptimalnumberofprimarycontributingsourcesto

ambientcoarseparticleconcentrations.Themeasuredcoarsemass

wasincludedasanindependentvariableinPMFmodellingto

circumventtheneedformultiplelinearregressiontoapportion

mass(KimandHopke,2006).Thederivedsourceprofileswere

comparedtomeasuredsourceprofilesand/orthosereportedin

other studies to ensure they made physical sense. A fourͲ

sourcemodelwasfoundtobethemostappropriatesolution

(FPEAK=Ͳ0.2)which,onaverageexplained86%ofthegravimetric

mass.Figure3showsthecomparison(r2=0.88)betweenpredicted

(PMF) PM102.5 and measured (gravimetric) PM102.5 concenͲ trations.Theaveragemasscontributionsofeachofthesourcesto

ambientcoarseparticleconcentrationsareshowninTable2and

theelementalsourceprofilesarepresentedinFigure4.

The first source profile was identified as airborne soil

originatingfromcrustalmatterastheprofileisdominatedbyAl

andSialongwithCa,TiandFe.TheSi:Alratiowasfoundtobe

2.6:1,typicalofcrustalmattercomposition(aluminosilicates)(Lide,

1992).Asecondcrustalmattersource,labelledasSoil2,hasalso

beenidentifiedasoriginatingfromcrustalmatterandtheprimary

distinctionbetweenthetwosoilprofilesisthattheSoil2source

hasasignificantlyhigherBCcomponent.Wesuggestthatthe

differencebetweenthetwocrustalmattersourcesismostlikely

Figure2.ParticulatematterconcentrationsatUlaanbaatar:(a)PM10;(b)PM2.5;(c)PM102.5.

(4)

Table1.SummarystatisticsforPM102.5andelementalconcentrationsatUlaanbaatar

ngmͲ3 ArithmeticMean StdDev Median Maximum Minimum LOD #Samples>LODa S/N

PM102.5 143000 122000 110000 955000 5000 Ͳ Ͳ Ͳ BC 4401 3394 3550 25617 483 300 224 3.1 Na 843 829 614 4434 0 400 173 0.3 Mg 936 769 736 4781 70 72 195 0.5 Al 5524 4832 3800 23436 191 40 223 3.4 Si 13579 10877 10696 61060 507 30 224 26.0 P 211 285 130 2087 0 61 189 0.6 S 1458 1659 965 13831 129 30 224 15.1 Cl 331 244 264 1284 34 27 224 6.0 K 1760 1441 1340 7813 72 25 224 18.0 Ca 4604 3443 3616 20023 257 25 224 20.6 Ti 298 324 197 2981 7 17 224 8.1 Mn 80 66 60 364 3 14 224 3.1 Fe 3338 2707 2493 14214 116 16 224 1.0 Cu 21 38 9 372 0 18 126 0.4 Zn 99 180 58 2415 0 16 211 2.5 a Limitofdetection

Figure3.Plotofpredicted(PMF)PM102.5massconcentrationsversus

measured(gravimetric)PM102.5massconcentrations.

Table2.AveragesourcemasscontributionstoPM102.5atUlaanbaatar

Source PM10Ͳ2.5massμgmͲ3 Soil1 42.5(3.0)a Combustion 11.9(0.7) Soil2 54.5(4.0) Roaddust 13.9(1.9) a Standarddeviation

thesourcelocation,withtheSoil2sourceoriginatingmorelocally

inUlaanbaatarwherethereislikelytobeagreaterconcentration

ofsettledcombustionparticlesandcoaldustsmixedintothe

crustalmatter,hencethehigherpresenceofBCinthesource

profile.Analysisshowsthatthetwosoilsourcesarecorrelated

(r2=0.8).However,athreefactorPMFsolutionwhichessentially

combinedthetwocrustalmattersourcesyieldsunsatisfactory

results,primarilyduetoahighQvalueandsignificantskewsinthe

residualplots(morehighlypositiveornegativeforanumberof

elements) particularly for Al, Si, K, Ca and Fe, the major

contributingelementstocrustalmatter.

Interestingly,thethirdfactorhasbeenidentifiedasacoal

combustionsourcecontributionforthecoarsefractionandthis

containsthemajorityofblackcarbonandasignificantsulphur

component.Thetime–seriesplotsofthepersamplemasscontribͲ

utionspresentedinFigure5showthatthePM10Ͳ2.5coalburning

Figure4.ElementalsourceprofilesderivedbyPMFforPM102.5samples

(predicted±SD).

sourcecontributionspeakedduringwinterindicatingthatitwas

likelytobeduetoemissionsfromlocalcoalcombustionsources.

Whiletheemissionofparticlesfromcombustionsourcesare

primarilyinthesubͲmicrometerrange(Hedbergetal.,2002)there

islikelytobesomeagglomeration,condensationorimpactionof

thefinefractionontocoarserparticles(and/orontothecoarse

filteroftheSFU)toprovideameasurablecontributiontothe

coarsefractionsample.Thefourthsourcehasbeenidentifiedasa

localroaddustcomponentasthisprofilecontainsBCandmostof

thezincalongwithelementstypicalofcrustalmatter.Mongoliais

understoodtohavephasedouttheuseofleadedpetroloverthe

pastfewyears(UNEP,2008)andleadwasonlydetectedabovethe

LOD(a100ngmͲ3)inafewofthe coarseparticulatematter

samples.FurtherdiscussionisprovidedinSection3.4.

Figure5 showsthedominance ofcrustalmattersource

contributionstothecoarseparticlefractionatUlaanbaatarwith

combinedmaximumconcentrationsupto460μgmо3.Figure6

showsthatthecrustalmattercontributionsarehighestduring

springandautumnwithsignificantcontributionsduringwinter

fromtheSoil2crustalmattersource.Thetemporalvariationsin

crustal mattercontributions areconsistent with precipitation

patternsinUlaanbaatarasmostrainfallsduringsummeranda

consequentsuppressionofdustgeneration.Spring,autumnand

winterinMongoliaaregenerallydrywithspringandautumnthe

windiestseasons(Xuanetal.,2004). y = 0.79x R2 = 0.74 0 200 400 600 800 1000 0 200 400 600 800 1000 PM10-2.5 Gravimetric mass (Pg m -3 ) PM 10 -2 .5 P M F m ass (P g m -3)

(5)

Figure5.ContributiontimeseriesofresolvedsourcesforPM102.5atUlaanbaatar.

Figure6.SeasonalsourcemasscontributionstoPM10Ͳ2.5atUlaanbaatar.

3.3.PM2.5dataanalysis

Atotalof232fineparticulatemattersampleswereincludedin

thereceptormodellinganalysesofUlaanbaatardata.Whileatotal

of25elementalconstituentsweredetectedabovetheirrespective

LOD,15specieswereselectedforPMFmodelling(PM2.5,BC,Na, Mg,Al,Si,P,S,Cl,K,Ca,Ti,Mn,Fe,Cu,andZn)asotherelements

wereonlypresentinafewsamplesand/ortheS/Nratiowaslow.

Table3presentsthemean,standarddeviation,median,maximum,

minimum,andnumberofsamplesaboveLODandS/Nratiofor

individualspecies.

ThesourceprofilesforthePM2.5datawerederivedinthe samewayasforthePM10Ͳ2.5data.AsevenͲsourcemodelwas found to offer the most appropriate solution after rotation

(FPEAK=Ͳ0.6).Figure7showsthecomparisonbetweenmodelled

(PMF)PM2.5andmeasuredPM2.5concentrations(r2=0.89).The averagemasscontributionsofeachofthesourcestoambientfine

particleconcentrationsareshowninTable4andtheelemental

sourceprofilesarepresentedinFigure8.Thederivedsource

profileswerecomparedtomeasuredsourceprofilesand/orthose

reportedinotherstudiestoensuretheymadephysicalsense. Table3.SummarystatisticsforPM2.5andelementalconcentrationsatUlaanbaatar

ngmͲ3

ArithmeticMean StdDev Median Maximum Minimum LOD #Samples>LODa

S/N PM2.5 46000 51000 28 000 400 000 6 000 Ͳ Ͳ Ͳ BC 7290 10454 4 242 94 206 680 300 232 2.75 Na 290 425 112 2 642 0 500 88 0.13 Mg 326 276 235 2 083 31 80 200 0.62 Al 1150 1224 745 7 627 0 44 227 0.81 Si 2305 1740 1 871 10 554 129 33 232 17.20 P 79 106 42 773 0 62 157 0.24 S 1969 3978 900 40 079 125 31 232 17.55 Cl 139 133 88 849 12 28 232 2.14 K 324 239 243 1 558 35 22 232 7.00 Ca 789 559 652 3 194 50 19 236 11.92 Ti 37 33 28 156 0 15 191 0.27 Mn 15 14 11 65 0 11 178 0.18 Fe 523 388 416 2 150 26 10 232 0.62 Cu 10 29 3 373 0 13 105 0.21 Zn 44 54 30 400 0 14 213 0.55 a Limitofdetection 0 10 20 30 40 50 60 70 80 S o il 1 Combu s ti o n S o il 2 R o ad du st M a ss co nt ri b u ti o n t o P M 10-2. 5 (P g m -3) Winter Spring Summer Autumn

(6)

Figure7.Plotofpredicted(PMF)PM2.5massconcentrationsversus

measured(gravimetric)PM2.5massconcentrations.

Table4.AveragesourcemasscontributionstoPM2.5atUlaanbaatar

Source PM2.5massμgmͲ3 Soil 5.0(0.4)a Coalcombustion1 12.3(0.8) Coalcombustion2 11.6(1.8) Motorvehicles 1.9(0.6) Biomassburning 1.1(0.2) Roaddust 3.0(0.4) Zinc 0.6(0.3) a Standarddeviation

Thefirstsourceprofilewasidentifiedasthefinefractionof

airbornesoiloriginatingfromcrustalmatterastheprofilecontains

themajorityofAlandSiwithanSi:Alratioofapproximately2.5:1.

Thesecondfactor,andhighestsourcecontributor,wasidentified

asacoalburningsourceasitwasdominatedbyblackcarbonwith

a significant sulphur component as found in otherreceptor

modellingstudies(Mukaietal.,1993;Mukaietal.,2001;Songet

al.,2006).Thethirdfactorwasalsoattributedtocoalcombustion

sourcesbutwithalessersulphurcomponentandsomedifferences

in minor elemental species present in the source profile

composition.Wesuggesttherearetwodistinctcoalcombustion

sourcetypespresentintheUlaanbaatarairshedwithdiffering

combustion characteristics. Further discussion is provided in

Section3.4.Thefourthsourcehasbeenidentifiedasoriginating

from motor vehicles as a similar separation of elemental

componentsassociatedwithfineparticlemotorvehicleemissions

hasbeenreportedelsewhere(Mizohataetal.,1995;Schaueretal.,

2006;Wahlinetal.,2006).Thefifthsourcerepresentsbiomass

burningcontributionstoPM2.5ambientmassconcentrationsdue totheassociationofblackcarbonandpotassiumintheprofile.

WoodburningforcookingisusedallyearinUlaanbaatarbutthere

wasalsoevidencethatforestfireeventstothenorthoftheregion

can contribute at certain times. The sixth factor has been

attributedtofinerfractionofairborneroaddustandtheseventh

sourceextractedfromthePMFanalysiscontainedadistinctZn

componenttotheelementalsignature.Itwouldappearfromthe

PSCFanalysisthatthisoriginatestothewestofUlaanbaatar.

ThetemporalvariationsonsourcecontributionstoPM2.5are presentedinFigure9.Notethatthescalesforthecoalcombustion

sourcesareanorderofmagnitudehigherthantheotherplots.

Thetemporalvariationinsourcecontributionsshowsthatcoal

combustion peaks during winter (December–February) in

Ulaanbaatar. Seasonal contributions by PM2.5 sources are presentedinFigure10.PeakcontributionsfromthePM2.5crustal matterandroaddustsourcesoccurredduringspringandautumn

commensuratewithdriestseasonsasdidthebiomassburning

source.

3.4.Discussion

Crustalmattersources.ThefactoranalysisofPM10Ͳ2.5andPM2.5 fractionshasshownthatcrustalmattersourcesaresignificant

contributors to air particulate matter concentrations at

Ulaanbaatar,primarilydominatingthecoarsefraction.Wehave

identifiedtwocoarsefractioncrustalmatterelementalprofiles

(Soil1andSoil2)andsuggestthattheyoriginatefromdifferent

sourceareasbasedontheBCcontentandotherelementsinthe

profile.ThecrustalmatterelementalprofilesderivedbyPMFwere

compared to actual soil samples collected in and around

Ulaanbaatar (Markwitz et al., 2008). Markwitz et al. (2008)

collected crustal matter samples from sand dunes, open

countrysideandurbanlocations(samplelocationsanddescriptions

areprovidedinthereference).Thecrustalmattersampleswere

then compressed into discs and elemental concentrations

determinedbyIBAatGNS.Duetothenatureofthesamples,BC

wasnotmeasuredinthatstudy.Figure11presentselemental

profiles(asthepercentageofthetotalmeasuredelementalmass)

forelementscommontothecrustalmattersamplescollectedby

Markwitzetal.(2008)andthosederivedfromthecoarseandfine

PMFanalysisinthisstudy.

Figure8.ElementalsourceprofilesderivedbyPMFforPM2.5samples(predicted±SD).

y = 0.71x R2 = 0.78 0 100 200 300 400 500 0 100 200 300 400 500 PM2.5 Gravimetric mass (Pg m -3 ) PM 2. 5 PM F m a ss (P g m -3)

(7)

Figure9.ContributiontimeseriesofresolvedsourcesforPM2.5atUlaanbaatar(notethedifferenceinscaleforcoalcombustionsources).

Figure10.SourcecontributionstoPM2.5byseasonatUlaanbaatar.

Figure11showsthatthesandsampleshavethehighestSi:Al

ratioandalowerironandcalciumcontentinaccordancewiththe

highersilicacontentofsand.Thecityandcountrycrustalmatter

samples have a similar composition to each other. The air

particulatemattercrustalmatterprofilesderivedbyPMFallhavea

lowerSi:Alratiothanthecrustalmattersourcesamples,most

likelyduetoparticlesizefractionationofthemineralsmakingup

crustalmatterwithaluminosilicatespresentinthefinefractions.

TheseresultsindicatethattheSoilsourcesarelargelyderivedfrom

thetransportoffineloessratherthansandasobservedbyZhang

etal.(2003).

MasscontributionstoPM10Ͳ2.5fromtheSoil1component weregenerallyhigherthanSoil2andprobablyrepresentdust

source areas from the Ulaanbaatar, surrounding countryside

environsandlongͲrangetransport.TheSoil2dustsourcehasbeen

identifiedasmorelocalisedtotheUlaanbaatarurbanareaduetoa

significantBCcomponentandthepresenceofPandCuinthe

elemental soil source profile. Analyses of air mass back– trajectoriesusingHYSPLIT(DraxlerandRolph,2003)indicatea

distinctwesterlydirectionalcomponentforsampledayswhere

there was a significant Soil 2 contribution but little or no

contributionfromtheSoil1source.Westofthemonitoringsite,

acrossUlaanbaatar,aretwolargecoalfiredpowerstationsas

indicatedinFigure12.Associatedwiththepowerstationsarelarge

stockpilesofcoalandslagdumpsthatarelikelytobesignificant

sourcesoffugitivedustemissionsandmayaccountfortheBC

observedintheSoil2elementalprofile.Otherurbansourceareas

offugitive dusts such as construction, excavations andland

clearance,unsealedyardsandroadsarealsolikelytocontributeto

themix. Figure11.ElementalprofilesforcrustalmattersourcesamplesandthosederivedforcoarseandfineairparticulatemattersamplesbyPMF. 0 5 10 15 20 25 30 35 So il Co a l c om b us ti on 1 Co a l c om b us ti on 2 R oa d dus t M o to r v e h ic le s B io m ass bu rni ng Zin c M ass co nt ri b u ti o n (P g m -3) Winter Spring Summer Autumn 0 20 40 60 80 100 Na Al Si S Cl K Ca Ti V Mn Fe Cu Zn P er ce n ta g e o f el em e n ta l m a ss Sand City Country PM10-2.5 Soil 1 PM10-2.5 Soil 2 PM2.5 Soil

(8)

Figure12.AerialviewofUlaanbaatarindicatingmonitoringsitelocation()andcoalfiredpowerstationstothewest(source:Googlemaps2008).

Air–massbacktrajectoriesforpeakSoil1andSoil2source

contributions indicate source areas to the west and north

respectively.NorthwestwindspeakduringspringinMongoliadue

tothebreakdownintheSiberianHighPressurezoneafterwinter

(Xuanetal.,2004).Xuanetal.(2004)foundthattheAsianDust

Storm events originate in the deserts of southern

Mongolia/northernChina.Otherstudieshaveshownsourceareas

in western and northwestern China and trajectories across

Mongoliafromthenorthwesttosoutheast(seeforexampleZhang

etal.,2003;Xuanetal.,2004;Songetal.,2006;Wangetal.,2006;

Kim et al., 2007). One peak dust event in Ulaanbaatar as

determinedfromthePMFanalysishasbeencorroboratedwith

satellite imagesand otherobservations in eastern Asiathat

indicatelongͲrangetransportmechanisms.Forexample,theSoil1

sourceshowedapeakconcentrationon6March2006(180μgmо3)

andsatelliteimagery(NASAEarthObservatory)for9March2006

shows the dust storm spreading outover eastern China as

presentedinFigure13.

Itseemsevidentfromthisstudythatsignificantloadingof

dustswerepresentinair–massesarrivingatUlaanbaatarfromthe

westandnorthwestandthatthecrustalmatter,particularlythe

PM2.5fraction(peakconcentrationsatUlaanbaatar20–30μgmо3) canbetransportedconsiderablyfurthertothesoutheastand

arriveatcitiesaffectedbyAsianDustStormeventssuchasBeijing

(Zhangetal.,2005;Songetal.,2006).Figure14showsthePSCF

analysisfor thePM2.5 soil source indicating potentialsource locationsthatincludethedesertsinthesouthofMongolia(Gobi

Desert),centralKazakhstan(BetpaqdalaDesert)tothenorthwest

ofUlaanbaatar,andpossiblytheTaklamakanDesert(Wangetal.,

2008)inChinatothewestofMongolia.

Combustion sources. Combustion sourceswere found to be

significantsourcecontributorstoairparticulatematter,primarily

to PM2.5, at Ulaanbaatar. Cold temperatures and inversion conditionsduringthewinterseverelylimitthedispersionofair

pollutantinUlaanbaatarandthereforehighconcentrationsof

combustionderivedPM2.5arerecordedintheUlaanbaatarairshed. In 2006/2007 approximately 4900000tonnes of coal and

413000tonnesofwoodwereburntinUlaanbaatar(NAMHEM,

2007).Analysisoftemporalvariationsinsourcecontributions

showedthatcoalcombustionsourcesdominateduringwinterdue

theuseofcoalforheatingandpowergeneration.Air–massback– trajectoryanalysesindicatethatpeakcontributionsfromtheCoal

combustion1sourceoccurduringwesterlywindspossiblydueto

emissionsfromthecoalfiredpowerstationstothewest(shownon

theaerialphotographinFigure12)directlyimpactingatthe

monitoringsite.TheCoalcombustion1sourceprofileisdominated

byBCandS(mostlikelypresentassulphatespecies)repreͲ

sentativeofhightemperaturecoalcombustioncharacteristicof

powerstations(Polissaretal.,2001).TheCoalcombustion2

sourcerepresentsemissionsfromcoalfiresusedfordomestic

heating as a significant proportion of the urban population

(120000households)inandaroundUlaanbatarliveinGers(48%)

(traditionalMongolianhouse)orsmallbrickdwellings(52%),both

ofwhichareheatedbysimplesolidfuelappliancesoropenfires

(NAMHEM,2007).Assuch,thesourceprofileisrepresentativeof

lowͲtemperaturecoalcombustionwithsignificantashandcrustal

mattercomponents(Na,Mg,Al,Si)(Zhengetal.,2005).Bothcoal

combustionsourcespeakduringwinterduetodemandforheating

andthesignificanttemperatureinversionconditionseffectively

trappingpollutantsintheUlaanbaatarairshed.SourcecontriͲ

butionstoPM2.5fromcoalcombustionduringwinterappeartobe increasingannually.Someofthevariationisprobablydueto

interannualclimatevariations,however,asignificantincreasein

thePM2.5coalcombustioncontributionsover2007/2008winter periodsuggeststhattheincreasemaybeduetocoalusage.Figure

15presentstheaveragemasscontributionstoPM2.5fromcoal combustionsourcesforeachwinter(December–February)since

monitoringbeganin2004.Furthermonitoringisrequiredtoseeif

thetrendcontinues.

Figure13.Dustcloud(tandiscolouration)spreadingoutoverEasternchina andKoreanPeninsulaon9March2006(source:http://earthobservatory. nasa.gov/NaturalHazards).

(9)

Figure14.PSCFanalysisforPM2.5soilsourcecontributionsshowingpotentialsourcelocations.

Figure15.Averagewinter(December–February)contributionstoPM2.5

fromcoalcombustionsourcesinUlaanbaatar.

The biomass burning source originates primarily from

domesticcookingactivitiesinUlaanbaatarwithpeakcontributions

fromforestfirestothenorthduringspringandautumn.Forest

firesareacommonoccurrenceduringthedryspringandautumn

monthsinMongolia (Nyamjavetal.,2007). Air–mass back– trajectoryanalysisforpeakbiomassburningeventsshowthat

sourceemissionsoriginatenorthofUlaanbaatar.Forexample,a

peakinbiomassburningsourcecontributiontoPM2.5occurredon 20April2006(4μgmо3).Theback–trajectorypresentedinFigure

16showstheairmassarrivingatUlaanbaatarfromthenorthand

satelliterecordsshowsignificantfiresburninginsouthernRussia

andnorthernMongoliaoverthesameperiod(Figure17).

Figure17presentsthesatelliteimageforApril23,2006,

showingthatlargefireswereburninginthefoothillsofthe

mountainsthatseparateRussia(north)fromMongolia(south).The

Moderate Resolution Imaging Spectroradiometer (MODIS) on

NASA’sTerrasatellitecapturedtheimageofthefires(actively

burningareasoutlinedinred)andtheiraccompanyinglargeburn

scars(darkbrown).Thesmokewasblowingsoutheastwardacross

Mongolia(fromhttp://earthobservatory.nasa.gov/NaturalHazards/

view.php?id=16493).

ThezincsourcewasfoundtobeaminorcontributortoPM2.5 inUlaanabaatar.InitiallytheassociationofzincandBCinthe

profilesuggestedthatitmay be dueto twostrokeengine

emissions (Begum et al., 2004). However, few vehicles in

Ulaanbaatararethoughttobepoweredbytwostrokeenginesand

nootherlocalzinccontainingparticulatematteremissionsource

hasbeenidentifiedasyet.ThePSCFanalysisforthezincsource

presentedinFigure18indicatesthatthepotentialsourceareafor

thezincsourcewasnorthwesternChinacentredonUrumchi,the

localprovincialcapital.Thezincsourcemaybeduetolong–range

transportofemissionsfromheavyindustryinthearea(e.g.zinc

miningandsmelting). Figure16.AirmassbackͲtrajectory(24hr)forApril202006(Source:NOAA, HYSPLIT). 0 10 20 30 40 50 60 70 80 90 100 2004/2005 2005/2006 2006/2007 2007/2008 Winter period PM 2. 5 m a ss co nt ri b u ti o n P g m -3

(10)

Figure17.SatelliteimageofforestfiresburninginsouthernRussiaand northernMongoliaon23April2006(source:NASAEarthObservatoryat http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=16493).

4.

Conclusions

ThisstudypresentedtheresultsoffouryearsofPM10Ͳ2.5and PM2.5 monitoring data collected at Ulaanbaatar, Mongolia. Particulatematterconcentrationswerefoundtobeextremelyhigh

at times with maximum PM10 concentrations measured at 1100μgmо3andmanydayswhereconcentrationswereabove

300μgmо3.ThecoarseparticlefractiongenerallydominatedPM10 buthighPM2.5valueswererecordedduringwintermonthswith PM2.5valuesoftenover100μgmо3.Withsuchhighparticulate

matterconcentrationspresentintheUlaanbaatarurbanareathere

arelikelytobesignificanthealthimplicationsfortheexposed

population.Elementalconcentrationswithinparticulatematter

collectedontofiltersweredeterminedbyIBAandfactoranalysis

performedusingPositiveMatrixFactorisation.

Four source contributors were identified for the coarse

particlefractionandsevensourcesderivedforthefineparticle

fraction.Majorsourcescontributingtoparticleconcentrations

werefoundtobecrustalmatter(primarilythecoarsefraction)and

coal combustion sources dominated the fine fraction during

winter.Crustalmattersourceswerefoundtobegeneratedboth

locally(urbandustsources)andtransportedtoUlaanbaatarfrom

thewestandnorthwest,particularlyduringthedryandwindy

monthsofspringandautumn.Duststormeventsinthisregionare

wellknowntogeneratetheAsianDusteventsthataffectmany

partsofeasternandsoutheasternAsiaduringspringandcanbe

transportedoutoverthePacific.

SourcecontributionstoPM2.5weredominatedbyemissions fromcoalcombustionsourceswithtwodistinctsourcetypes,the

first identified as a high–temperature combustion source

originatingfrompowerstationemissionsinthewesternpartof

Ulaanbaatar and the other from coal combustion used for

domesticheatingduringwinter.Themonitoringdatasuggeststhat

masscontributionsfromcoalcombustionsourcesareincreasing.It

wasalsofoundthat,attimes,forestfiresinnorthernMongoliaand

southernRussiacanimpactonairqualityinUlaanbaataranda

long–rangetracesourceofzinccontainingPM2.5particleswas identifiedasoriginatinginnorthwesternChina.

Acknowledgements

ThisprojectwassupportedinpartbytheInternationalAtomic

Energy Agency through the Regional Cooperation Agreement

Programme“RAS/7/015ͲCharacterizationandSourceIdentification

ofParticulateAirPollutionintheAsiaRegion”.

Figure18.PSCFanalysisforthePM2.5zincsourceshowingapotentialsourcelocationinnorthwesternChina(Urumchi)tothewestofMongolia.

(11)

References

Begum,B.A.,Kim,E.,Jeong,C.ͲH.,Lee,D.ͲW.,Hopke,P.K.,2005.Evaluation ofthepotentialsourcecontributionfunctionusingthe2002Quebec forestfireepisode.AtmosphericEnvironment39,3719Ͳ3724.

Begum,B.A.,Kim,E.,Biswas,S.K.,Hopke,P.K.,2004.Investigationof sourcesofatmosphericaerosolaturbanandsemiͲurbanareasin Bangladesh.AtmosphericEnvironment38,3025Ͳ3038.

Draxler,R.R.,Rolph,G.D.,2003.HYSPLIT(HYbridSingleͲParticleLagrangian IntegratedTrajectory)Model,NOAAAirResourcesLaboratory,Silver Spring,MD.

Fine,P.M.,Cass,G.R.,Simoneit,B.R.T.,2001.Chemicalcharacterizationof fineparticleemissionsfromfireplacecombustionofwoodsgrownin thenortheasternUnitedStates.EnvironmentalScienceandTechnology 35,2665Ͳ2675.

Guttikunda,S., 2007. Urban air pollution analysis for Ulaanbaatar, Mongolia.WorldBankConsultantReport,WashingtonDC,USA. Hedberg,E.,Kristensson,A.,Ohlsson,M.,Johansson,C.,Johansson,P.A.,

Swietlicki,E.,Vesely,V.,Wideqvist,U.,Westerholm,R.,2002.Chemical and physical characterization of emissions from birch wood combustioninawoodstove.AtmosphericEnvironment36,4823Ͳ4837. Hopke,P.K.,Cohen,D.D.,Begum,B.A.,Biswas,S.K.,Ni,B.,Pandit,G.G.,

Santoso,M.,Chung,Y.S.,Davy,P.,Markwitz,A.,Waheed,S.,Siddique, N.,Santos,F.L.,Pabroa,P.C.B.,Seneviratne,M.C.S.,Wimolwattanapun, W.,Bunprapob,S.,Vuong,T.B.,Hien,P.D.,Markowicz,A.,2008.Urban airqualityintheAsianregion.ScienceoftheTotalEnvironment404, 103Ͳ112.

Hopke,P.K.,Xie,Y.,Raunemaa,T.,Biegalski,S.,Landsberger,S.,Maenhaut, W.,Artaxo,P.,Cohen,D.,1997.CharacterizationoftheGentstacked filterunitPM10sampler.AerosolScienceandTechnology27,726Ͳ735. Horvath,H.,1997.Experimentalcalibrationforaerosollightabsorption

measurementsusingtheintegratingplatemethod Ͳsummaryofthe data.JournalofAerosolScience28,1149Ͳ1161.

Horvath,H.,1993.Atmosphericlightabsorption Ͳareview.Atmospheric EnvironmentͲPartAGeneralTopics27A,293Ͳ317.

Jacobson,M.C.,Hansson,H.C.,Noone,K.J.,Charlson,R.J.,2000.Organic atmosphericaerosols:reviewandstateofthescience.Reviewsof Geophysics38,267Ͳ294.

Kim,E.,Hopke,P.K.,2006.Characterizationoffineparticlesourcesinthe GreatSmokyMountainsarea.ScienceoftheTotalEnvironment368, 781Ͳ794.

Kim,J.Y.,Ghim,Y.S.,Song,C.H.,Yoon,S.C.,Han,J.S.,2007.Seasonal characteristicsofairmassesarrivingatGosan,Korea,usingfineparticle measurementsbetweenNovember2001andAugust2003.Journalof GeophysicalResearchͲAtmospheres112,art.no.D07202.

Lide,D.R.,1992.CRCHandbookofChemistryandPhysics,CRCPressInc. Maenhaut,W.,Francois,F.,Cafmeyer,J.,1993.The“Gent”StackedFilter

UnitSamplerfortheCollectionofAtmosphericAerosolsinTwoSize Fractions:DescriptionandInstructionsforInstallationandUse.CoͲ ordinatedResearchProgramme:CRPE4.10.08.Vienna,International AtomicEnergyAgency.

Markwitz, A.,2005.AnoverviewoftheRCA/IAEAactivities inthe AustralasianRegionusingnuclearanalysistechniquesformonitoring airpollution.InternationalJournalofPIXE15,271Ͳ276.

Markwitz,A.,Barry,B.,Shagjjamba,D.,2008.PIXEanalysisofsandandsoil fromUlaanbaatarandKarakurum,Mongolia.NuclearInstrumentsand MethodsinPhysicsResearch,SectionB:BeamInteractionswith MaterialsandAtoms266,4010Ͳ4019.

Mizohata,A.,Ito,N.,1995.Quantitativedeterminationoftheairborne particulatemattersourcesbymotorvehiclesusingTTFA.TaikiKankyo Gakkaishi30,243Ͳ55.

Mukai,H.,Furuta,N.,Fujii,T.,Ambe,Y.,Sakamoto,K.,Hashimoto,Y.,1993. CharacterizationofsourcesofleadintheurbanairofAsiausingratios ofstableleadisotopes.EnvironmentalScienceandTechnology27, 1347Ͳ1356.

Mukai,H.,Tanaka,A.,Fujii,T.,Zeng,Y.,Hong,Y.,Tang,J.,Guo,S.,Xue,H., Sun,Z.,Zhou,J.,Xue,D.,Zhao,J.,Zhai,G.,Gu,J.,Zhai,P.,2001. Regionalcharacteristicsofsulfurandleadisotoperatiosinthe atmosphereatseveralChineseurbansites.EnvironmentalScienceand Technology35,1064Ͳ1071.

NAMHEM,2007.EmissionsInventoryforUlaanbaatar.NationalAgencyfor Meteorology, Hydrology, Environmental Monitoring, Mongolian Government.

Nyamjav,B.,Goldammer,J.G.,Uibrig,H.,2007.Theforestfiresituationin Mongolia.InternationalForestFireNews36,46Ͳ66.

Paatero,P.,Hopke,P.K.,Begum,B.A.,Biswas,S.K.,2005.Agraphical diagnosticmethodforassessingtherotationinfactoranalyticalmodels ofatmosphericpollution.AtmosphericEnvironment39,193Ͳ201. Paatero,P.,HopkeP.K.,2003.DiscardingordownweightinghighͲnoise

variablesinfactoranalyticmodels.AnalyticaChimicaActa490,277Ͳ 289.

Paatero,P.,Hopke,P.K.,Song,X.H.,Ramadan,Z.,2002.Understandingand controllingrotationsinfactoranalyticmodels.Chemometricsand IntelligentLaboratorySystems60,253Ͳ264.

Paatero,P.,Hopke,P.K.,2002.Utilizingwinddirectionandwindspeedas independent variables in multilinear receptor modeling studies. ChemometricsandIntelligentLaboratorySystems60,25Ͳ41.

Paatero,P.,1997.LeastsquaresformulationofrobustnonͲnegativefactor analysis.ChemometricsandIntelligentLaboratorySystems37,23Ͳ35. Polissar,A.V.,Hopke,P.K.,Poirot,R.L.,2001.Atmosphericaerosolover

Vermont:chemicalcompositionandsources."EnvironmentalScience andTechnology35,4604Ͳ4621.

Salma,I.,Chi,X.,Maenhaut,W.,2004.Elementalandorganiccarbonin urbancanyonandbackgroundenvironmentsinBudapest,Hungary. AtmosphericEnvironment38,27Ͳ36.

Schauer,J.J.,Lough,G.C.,Shafer,M.M.,Christensen,W.F.,Arndt,M.F., DeMinter,J.T.,Park,J.S.,2006.Characterizationofmetalsemitted frommotorvehicles.ResearchReportHealthEffectsInstitute133,1Ͳ 88.

Song,Y.,Zhang,Y.,Xie,S.Zeng,L.,Zheng,M.,Salmon,L.G.,Shao,M., Slanina,S.,2006.SourceapportionmentofPM2.5inBeijingbypositive matrixfactorization.AtmosphericEnvironment40,1526Ͳ1537. Song,X.H.,Polissar,A.V.,Hopke,P.K.,2001.Sourcesoffineparticle

compositioninthenortheasternUS.AtmosphericEnvironment35, 5277Ͳ5286.

Trompetter,W.J.,Markwitz,A.,Davy,P.,2005.Airparticulateresearch capabilityattheNewZealandionbeamanalysisfacilityusingPIXEand IBAtechniques.InternationalJournalofPIXE15,249Ͳ255.

UNEP,2008.Target2008:GlobalEliminationofLeadedPetrol.AReportof thePartnershipforCleanFuelsandVehicles(PCFV)UnitedNations EnvironmentProgram,Nairobi,Kenya.

Wahlin,P.,Berkowicz,R.,Palmgren,F.,2006.Characterisationoftraffic generated particulate matter in Copenhagen. Atmospheric Environment40,2151Ͳ2159.

Wang,X.,Huang,J.,Ji,M.,Higuchi,K.,2008.VariabilityofEastAsiadust eventsandtheirlongͲtermtrend.AtmosphericEnvironment42,3156Ͳ 3165.

Wang,Y.Q.,Zhang,X.Y.,Arimoto,R.,2006.Thecontributionfromdistant dustsourcestotheatmosphericparticulatematterloadingsatXiAn, Chinaduringspring.ScienceoftheTotalEnvironment368,875Ͳ883. Watson,J.G.,Zhu,T.,Chow,J.C.,Engelbrecht,J.,Fujita,E.M.,Wilson,W.E.,

2002.Receptormodelingapplicationframeworkforparticlesource apportionment.Chemosphere49,1093Ͳ1136.

Xuan,J.,Sokolik,I.N.,Hao,J.,Guo,F.,Mao,H.,Yang,G.,2004.Identification andcharacterizationofsourcesofatmosphericmineraldustinEast Asia.AtmosphericEnvironment38,6239Ͳ6252.

Zhang,R.,Arimoto,R.,An,J.,Yabuki,S.,Sun,J.,2005.Groundobservations ofastrongduststorminBeijinginMarch2002.JournalofGeophysical ResearchͲAtmospheres110,art.no.D18S06.

(12)

Zhang,X.Y.,Gong,S.L.,Shen,Z.X.,Mei,F.M.,Xi,X.X.,Liu,L.C.,Zhou,Z.J., Wang,D.,Wang,Y.Q.,Cheng,Y.,2003.Characterizationofsoildust aerosolinChinaanditstransportanddistributionduring2001ACEͲ Asia:1.Networkobservations.JournalofGeophysicalResearchͲ Atmospheres108,art.no.4261.

Zheng,M.,Salmon,L.G.,Schauer,J.J.,Zeng,L.,Kiang,C.S.,ZhangY.,Cass, G.R.,2005.SeasonaltrendsinPM2.5sourcecontributionsinBeijing, China.AtmosphericEnvironment39,3967Ͳ3976.

References

Related documents

Given this spectral variation with spatial frequency, there is some concern the traditional gray world resampling approach may not address significant features of the image

While their production levels in the Gulf of Mexico decreased by nearly 17 percent, the company reported an overall increase in liquids production of about 26 percent and a

Voiding cystourethrogram (VCUG) is recommended in cases of recurrent ISK fever to exclude vesicoureter reflux, especially if ultrasound results indicate upper

interventions to reduce the sexual risk practice of people who use drugs, including providing male and female condoms, improving access to SRH services, and prevention

In a number of countries (e.g. Hungary), although residential treatment facilities are reported to be open to drug users with a range of needs, residential services are

05/04 Cars Transmission New Automatic Transmission 722.9 NAG2 (7-Speed) Diagnosis, Repair Advanced Training Contents I 1 Contents 05.2004 Title Page Greeting.... System Components

This paper presents the captured benefits of four practical visual systems; visual workplace structuring (the 5S); visual measures (team performance visual boards); visual