Atmospheric Pollution Research
www.atmospolres.com
Air
particulate
matter
pollution
in
Ulaanbaatar,
Mongolia:
determination
of
composition,
source
contributions
and
source
locations
Perry
K.
Davy
1
,
Gerelmaa
Gunchin
2
,
Andreas
Markwitz
1
,
William
J.
Trompetter
1
,
Bernard
J.
Barry
1
,
Dagva
Shagjjamba
2
,
Sereeter
Lodoysamba
2
1
InstituteofGeologicalandNuclearSciences,NationalIsotopeCentre,P.O.Box31–312,LowerHutt,NewZealand
2
NationalUniversityofMongolia,IkhSurguuliingudamj–1,Ulaanbaatar,Mongolia
ABSTRACT
Ulaanbaatar,thecapitalcityofMongoliaissubjecttohighairparticulatematterpollutionepisodesduringwinterand duringduststormeventsinspringandautumnthathavesevereimplicationsforthehealthoftheexposedpopulation. Thispaperpresentstheresultsoffine(PM2.5)andcoarse(PM10–2.5)particulatemattermonitoringinUlaanbaatarfrom 2004to2008andreceptormodellingtodeterminethesourcescontributingtoparticulatematterpollution.IonBeam Analysiswasusedtodetermineelementalconcentrationsinthetwosizefractionsandblackcarbonwasmeasured withalightreflectancedevice.Masscontributionstoambientparticleconcentrationsfromemissionsourceswere estimatedbypositivematrixfactorisationandairmassback–trajectoryanalysiswasusedtoassessprobablesource locations.Theresultsshowthatcrustalmattersourcesaretheprimarycontributorstothecoarseparticlefraction. Combustionsources(coalcombustion,biomassburning,andmotorvehicles)dominatethefinefractionofparticulate matterintheUlaanbaatarairshed,primarilyfromlocalemissionsourcesbutforestfirestothenorthcanbea significantcontributortobiomassburningconcentrationsattimes.Analysisofseasonaldifferencesshowedthatcoal combustionprocesseswerelargelyresponsibleforfineparticleairpollutionepisodesduringwinter.Temporaltrends showanincreaseinthecoalcombustioncontributionsoverthemonitoringperiod.Wesuggestthatthisislinkedto theincreaseintheUlaanbaatarpopulationandaconsequentincreaseintheuseofcoalforpowergenerationand domesticheatingpurposes.
Keywords: Airpollution Particulatematter IBA Positivematrixfactorisation Receptormodelling Mongolia ArticleHistory: Received:27May2010 Revised:25August2010 Accepted:09September2010 CorrespondingAuthor: PerryK.Davy Tel:+64Ͳ4Ͳ570Ͳ4688 Fax:+64Ͳ4Ͳ570Ͳ4657 EͲmail:[email protected] ©Author(s)2011.ThisworkisdistributedundertheCreativeCommonsAttribution3.0License. doi:10.5094/APR.2011.017
1.
Introduction
This paperpresentstheresults ofair particulatematter
samplingfromOctober2004toApril2008atUlaanbaatar,the
capitalcityofMongolia(Figure1).ThemonitoringinUlaanbaatar
waspartofawiderprogrammerunundertheauspicesofthe
InternationalAtomicEnergyAgency(IAEA)(Markwitz2005;Hopke
etal.,2008).Ulaanbaatar(population1million)issituatedina
largedomevalleysurroundedbymountainsandsubjecttofreezing
conditions and temperature inversions during winter months
(December–February). This work presents PM2.5 and PM10–2.5 monitoringresultsandreceptormodellingusingpositivematrix
factorisation(PMF)toapportionsourcecontributionstoeachof
thesizefractions.AirparticulatematterpollutioninUlaanbaatar
canbeextremeattimeswithbothPM2.5orPM10–2.5exceeding 200μgmо3.
Anumberofemissioninventorieshavebeenpreparedforthe
Ulaanbaatarairshed(NAMHEM,2007;Guttikunda,2007)inorder
to quantifysourceemissionsandcontributions toparticulate
matterairpollutioninthecity.However,somesourcessuchas
fugitivedustfromduststormsandlocaldustgeneratingactivities
oremissionsfromdomesticuseoffuelsforheatingandcooking
aredifficulttoquantifyperseortheemissionsfactorsandactivity
estimateshaveahighuncertaintyassociated(>50%).Thereceptor
modellingapproach fillsthese knowledgegapsand provides
informationonthekeysourcescontributingtoparticulatematter
concentrationsinUlaanbaatar.
2.
Experimental
2.1.Samplecollectionandanalyticalmethods
PM2.5andPM10–2.5sampleswerecollectedonatwo–day–per– weekbasis(MondaysandWednesdays)fromOctober2004toApril
2008attheNationalUniversityofMongoliaairqualitymonitoring
site,4kilometerseastofthecentreofUlaanbaatarasshownin
Figure1b(latitude47914deg,longitude106972deg,1300m
abovesealevel).Thefineandcoarseparticlesizefractionswere
collectedwithaGENTsampler(Maenhautetal.,1993).The
samplerconsistsofaPM10impactor–typesizeselectiveinletand stackedfilterunitassemblyconnectedtoapumpandgasmeter.
Thestackedfilterunit(SFU)ismadeupoftwofiltersinseries,the
topfilter(polycarbonate)collectstheparticulatesizefraction
between10micronsand2.5micronsinaerodynamicdiameter
(PM10–2.5orcoarsefraction),thebottomfilter(polycarbonate) collectsparticulatematter2.5micronsandlessinaerodynamic
diameter(PM2.5orfinefraction).TheperformanceoftheSFUand thesizeselectiveinlethasbeenassessedagainstotherparticle
Figure1.Mapshowing(a)Ulaanbaatar,Mongoliaand(b)locationofmonitoringsitein Ulaanbaatar(Ì).Source:GoogleEarth(www.google.com).
werecollectedfora24hourperiod,butonsomedaysitwasnot
possibletocollectthesampleovertheentire24hoursasthehigh
particulatematterconcentrationsleadtofilterclogging.Thus,the
samplerwasoperatedalternatingtimeonandtimeoff(e.g.,1hon
followedby1hoff)overthecourseofthe24hoursperiodto
providearepresentativesampleforthatday.Gravimetricanalysis
was carried out at the National University of Mongolia,
Ulaanbaatarandresultsreportedasmicrogramsofparticulate
matterpercubicmetreofairsampled(LODa5μgmо3;uncertainty
estimatedat±10%).
IonBeamAnalysis(IBA)wasusedtomeasuretheconcenͲ
trationsofelementswithatomicnumberaboveneoninparticulate
matteronthesize–resolvedfiltersamplesfromUlaanbaatar.IBA
measurementsforthisstudywerecarriedoutattheNewZealand
IBAFacilityoperatedbytheInstituteofGeologicalandNuclear
Sciences(GNS)inGracefield,LowerHutt(Trompetteretal.,2005).
Blackcarbon(BC)concentrationsonfiltersweredetermined
bylightreflectionusingaM43DDigitalSmokeStainReflectometer.
Blackcarbonhasbeenstudiedextensivelybutitisstillnotclearto
whatextentitiseitherelementalcarbon[graphitic,C(0)],high
molecularweightrefractoryweightorganicspeciesoracomͲ
binationofboth(Jacobsonetal.,2000).Forcombustionsources
suchaspetrolanddieselfuelledvehiclesandbiomassburning
elemental(orgraphiticcarbon)andorganiccarboncompounds
(OC)aretheprincipleaerosolcomponentsemitted(Jacobsonet
al.,2000;Fineetal.,2001;Watsonetal.,2002;Salmaetal.,2004).
Theabsorptionandreflectionofvisiblelightonparticlesinthe
atmosphereorcollectedonfiltersisdependentontheparticle
concentration,density,refractiveindexandsize.Foratmospheric
particles,BCisthemosthighlyabsorbingcomponentinthevisible
lightspectrumwithverymuchsmallerabsorptioncomingfrom
soil,sulphateandnitrate(Horvath,1993;Horvath,1997).Hence,to
thefirstorderitisassumedforthepurposesofthisstudythatall
thelightabsorptionbyparticlesonfiltersisduetoBC.
2.2.Receptormodelling
ReceptormodellingandapportionmentofPMmassbyPMF
wasperformedusingthePMF2program(Paatero,1997).With
PMF, sources are constrained to have non–negative species
concentrations,nosamplecanhaveanegativesourcecontribution
anderrorestimatesforeachobserveddatapointareusedas
point–by–pointweights.Thisfeatureisadistinctadvantage,inthat
itcanaccommodatemissingandbelowdetectionlimitdatathatis
acommonfeatureofenvironmentalmonitoringresults(Songet
al.,2001).Thesignal–to–noiseratioforanindividualelemental
measurementcanhaveasignificantinfluenceonareceptormodel
andmodellingresults.Fortheweakest(closesttodetectionlimit)
speciesthevariancemaybeentirelyduetonoise(Paateroand
Hopke,2002).PaateroandHopke(2003)stronglysuggestdown– weightingordiscardingnoisyvariables(asmeasuredbytheir
signal–to–noiseratio)thatarealwaysbelowtheirdetectionlimitor
speciesthathavealotofuncertaintyintheirmeasurements
relativetothemagnitudeoftheirconcentrations.Thereforethe
datawerescreenedbytheirsignal–to–noiseratio(S/Nratio).
VariableswithverylowS/Nratios(ч0.2)wereexcludedfromthe
analysis, while weak variables (0.2чS/Nч2) were down– weighted.Rotationalfreedominsolutionswereexploredand
controlledusingFPEAK(PaateroandHopke,2002)andobserving
theeffectontheQvalues(chi–squared),G–vectorplotsand
residualplots(Paateroetal.,2005).Onlythosesolutionsthatcould
berelatedtophysicalsourceswereconsideredacceptable.
2.3.Backtrajectoriesandpotentialsourcecontributionfunction
analysis
TheHYSPLIT(HYbrid Single–ParticleLagrangianIntegrated
Trajectory)modelisthenewestversionofacompletesystemfor
computingsimpleairparceltrajectoriestocomplexdispersionand
depositionsimulations(DraxlerandRolph,2003).Usingaglobal
meteorologicaldatasetHYSPLITcomputestheadvectionofasingle
pollutantparticle,orsimplyitstrajectory.Forthepurposeofthis
study,HYSPLIThasbeenusedtocalculatethe96–hourback
trajectoriesofairparcelsforsampledaysofinterestinorderto
examine long–range atmospheric transport processes and
determine potential particulate matter source locations. The
potentialsourcecontributionfunction(PSCF)analysiscalculates
theprobablesourcelocationsforthosesourcesconsideredtobe
impacting at a receptor site from long–range transport of
pollutants.Ifatrajectoryendpointliesintheijthcell,theairparcel
assumestocollectPMemittedinthecellandtransportsalongthe
trajectory to the monitoring site. PSCFij is the conditional
probabilitythatanairparcelthatpassedthroughtheijthcellhada
highconcentrationuponarrivalatthemonitoringsite:
ܲܵܥܨൌ
݉
݊ (1)
wherenijisthetotalnumberofendpointsthatfallintheijthcell,
mijisthenumberofendpointsthatexceededthethreshold
criterion(inthisstudy,theaverageconcentrationofeachspecies
wasusedforthethresholdcriterion).
PSCFdescribesthespatialdistributionofprobablegeographiͲ
calsourcelocations.GridcellswhichhavehighPSCFvaluesarethe
potentialsourceareaswhoseemissionsarelikelytocontributeto
particulatematterconcentrationsatthemonitoringsite.Fora
secondaryaerosolpollutant,ahighPSCFareamayalsoinclude
areaswheresecondaryparticleformationisenhanced(Begumet
al.,2005).
3.
Results
and
Discussion
3.1.ParticulatematterconcentrationsinUlaanbaatar
Coarseandfineparticleconcentrationswerecombinedto
provideameasureofambientPM10concentrationsatUlaanbaatar (Figure2a).Particulatematterconcentrationswerefoundtobe
dominatedbythecoarsefraction(Figure2b)whichwerehigher
duringspring(March–May)andautumn(September–NovemͲ
ber).Fineparticleconcentrationspeakedduringwinter(December
–February).Notethatnomonitoringwascarriedoutduringthe
summer(April–August)of2005.
Particulatematterconcentrationswerefoundtobeextremely
highattimeswithmaximumPM10concentrationsmeasuredat 1100μgmо3andmanydayswhereconcentrationswereabove
300μgmо3,however,theremaybesomeuncertaintyintheGENT
gravimetric mass at such extreme concentrations (i.e.
>600μgmо3)duetothepotentialforfilterclogging.Thecoarse
particlefractiongenerallydominatedPM10buthighPM2.5values wererecordedduringwintermonthswithPM2.5valuesoftenover 100μgmо3.Withsuch highparticulatematterconcentrations
presentintheUlaanbaatarurbanareatherearelikelytobe
significanthealthimplicationsfortheexposedpopulation.
3.2.PM102.5dataanalysis
Atotalof224(91%oftotalsamplescollected)particulate
mattersampleswereincludedinthereceptormodellinganalyses
ofUlaanbaatarcoarseparticledata.Whilemorethan25elemental
constituentsweredetectedabovetheirrespectiveLOD,16species
wereselectedforPMFmodelling(PM102.5,BC,Na,Mg,Al,Si,P,S, Cl,K,Ca,Ti,Mn,Fe,Cu,Zn)asotherelementswereonlypresentin
afewsamplesand/ortheS/Nratiowaslowerthan0.2.Table1
presents the mean, standard deviation, median, maximum,
minimum,andnumberofsamplesaboveLODandS/Nratiofor
individualspecies.
Differentsourcenumbers(3Ͳ9)wereusedforderivingPMF
solutionsandtheeffectsontheQvalues(andQvalueasafunction
ofFPEAK),residualmatricesandGͲspaceplotswereobservedto
determinetheoptimalnumberofprimarycontributingsourcesto
ambientcoarseparticleconcentrations.Themeasuredcoarsemass
wasincludedasanindependentvariableinPMFmodellingto
circumventtheneedformultiplelinearregressiontoapportion
mass(KimandHopke,2006).Thederivedsourceprofileswere
comparedtomeasuredsourceprofilesand/orthosereportedin
other studies to ensure they made physical sense. A fourͲ
sourcemodelwasfoundtobethemostappropriatesolution
(FPEAK=Ͳ0.2)which,onaverageexplained86%ofthegravimetric
mass.Figure3showsthecomparison(r2=0.88)betweenpredicted
(PMF) PM102.5 and measured (gravimetric) PM102.5 concenͲ trations.Theaveragemasscontributionsofeachofthesourcesto
ambientcoarseparticleconcentrationsareshowninTable2and
theelementalsourceprofilesarepresentedinFigure4.
The first source profile was identified as airborne soil
originatingfromcrustalmatterastheprofileisdominatedbyAl
andSialongwithCa,TiandFe.TheSi:Alratiowasfoundtobe
2.6:1,typicalofcrustalmattercomposition(aluminosilicates)(Lide,
1992).Asecondcrustalmattersource,labelledasSoil2,hasalso
beenidentifiedasoriginatingfromcrustalmatterandtheprimary
distinctionbetweenthetwosoilprofilesisthattheSoil2source
hasasignificantlyhigherBCcomponent.Wesuggestthatthe
differencebetweenthetwocrustalmattersourcesismostlikely
Figure2.ParticulatematterconcentrationsatUlaanbaatar:(a)PM10;(b)PM2.5;(c)PM102.5.
Table1.SummarystatisticsforPM102.5andelementalconcentrationsatUlaanbaatar
ngmͲ3 ArithmeticMean StdDev Median Maximum Minimum LOD #Samples>LODa S/N
PM102.5 143000 122000 110000 955000 5000 Ͳ Ͳ Ͳ BC 4401 3394 3550 25617 483 300 224 3.1 Na 843 829 614 4434 0 400 173 0.3 Mg 936 769 736 4781 70 72 195 0.5 Al 5524 4832 3800 23436 191 40 223 3.4 Si 13579 10877 10696 61060 507 30 224 26.0 P 211 285 130 2087 0 61 189 0.6 S 1458 1659 965 13831 129 30 224 15.1 Cl 331 244 264 1284 34 27 224 6.0 K 1760 1441 1340 7813 72 25 224 18.0 Ca 4604 3443 3616 20023 257 25 224 20.6 Ti 298 324 197 2981 7 17 224 8.1 Mn 80 66 60 364 3 14 224 3.1 Fe 3338 2707 2493 14214 116 16 224 1.0 Cu 21 38 9 372 0 18 126 0.4 Zn 99 180 58 2415 0 16 211 2.5 a Limitofdetection
Figure3.Plotofpredicted(PMF)PM102.5massconcentrationsversus
measured(gravimetric)PM102.5massconcentrations.
Table2.AveragesourcemasscontributionstoPM102.5atUlaanbaatar
Source PM10Ͳ2.5massμgmͲ3 Soil1 42.5(3.0)a Combustion 11.9(0.7) Soil2 54.5(4.0) Roaddust 13.9(1.9) a Standarddeviation
thesourcelocation,withtheSoil2sourceoriginatingmorelocally
inUlaanbaatarwherethereislikelytobeagreaterconcentration
ofsettledcombustionparticlesandcoaldustsmixedintothe
crustalmatter,hencethehigherpresenceofBCinthesource
profile.Analysisshowsthatthetwosoilsourcesarecorrelated
(r2=0.8).However,athreefactorPMFsolutionwhichessentially
combinedthetwocrustalmattersourcesyieldsunsatisfactory
results,primarilyduetoahighQvalueandsignificantskewsinthe
residualplots(morehighlypositiveornegativeforanumberof
elements) particularly for Al, Si, K, Ca and Fe, the major
contributingelementstocrustalmatter.
Interestingly,thethirdfactorhasbeenidentifiedasacoal
combustionsourcecontributionforthecoarsefractionandthis
containsthemajorityofblackcarbonandasignificantsulphur
component.Thetime–seriesplotsofthepersamplemasscontribͲ
utionspresentedinFigure5showthatthePM10Ͳ2.5coalburning
Figure4.ElementalsourceprofilesderivedbyPMFforPM102.5samples
(predicted±SD).
sourcecontributionspeakedduringwinterindicatingthatitwas
likelytobeduetoemissionsfromlocalcoalcombustionsources.
Whiletheemissionofparticlesfromcombustionsourcesare
primarilyinthesubͲmicrometerrange(Hedbergetal.,2002)there
islikelytobesomeagglomeration,condensationorimpactionof
thefinefractionontocoarserparticles(and/orontothecoarse
filteroftheSFU)toprovideameasurablecontributiontothe
coarsefractionsample.Thefourthsourcehasbeenidentifiedasa
localroaddustcomponentasthisprofilecontainsBCandmostof
thezincalongwithelementstypicalofcrustalmatter.Mongoliais
understoodtohavephasedouttheuseofleadedpetroloverthe
pastfewyears(UNEP,2008)andleadwasonlydetectedabovethe
LOD(a100ngmͲ3)inafewofthe coarseparticulatematter
samples.FurtherdiscussionisprovidedinSection3.4.
Figure5 showsthedominance ofcrustalmattersource
contributionstothecoarseparticlefractionatUlaanbaatarwith
combinedmaximumconcentrationsupto460μgmо3.Figure6
showsthatthecrustalmattercontributionsarehighestduring
springandautumnwithsignificantcontributionsduringwinter
fromtheSoil2crustalmattersource.Thetemporalvariationsin
crustal mattercontributions areconsistent with precipitation
patternsinUlaanbaatarasmostrainfallsduringsummeranda
consequentsuppressionofdustgeneration.Spring,autumnand
winterinMongoliaaregenerallydrywithspringandautumnthe
windiestseasons(Xuanetal.,2004). y = 0.79x R2 = 0.74 0 200 400 600 800 1000 0 200 400 600 800 1000 PM10-2.5 Gravimetric mass (Pg m -3 ) PM 10 -2 .5 P M F m ass (P g m -3)
Figure5.ContributiontimeseriesofresolvedsourcesforPM102.5atUlaanbaatar.
Figure6.SeasonalsourcemasscontributionstoPM10Ͳ2.5atUlaanbaatar.
3.3.PM2.5dataanalysis
Atotalof232fineparticulatemattersampleswereincludedin
thereceptormodellinganalysesofUlaanbaatardata.Whileatotal
of25elementalconstituentsweredetectedabovetheirrespective
LOD,15specieswereselectedforPMFmodelling(PM2.5,BC,Na, Mg,Al,Si,P,S,Cl,K,Ca,Ti,Mn,Fe,Cu,andZn)asotherelements
wereonlypresentinafewsamplesand/ortheS/Nratiowaslow.
Table3presentsthemean,standarddeviation,median,maximum,
minimum,andnumberofsamplesaboveLODandS/Nratiofor
individualspecies.
ThesourceprofilesforthePM2.5datawerederivedinthe samewayasforthePM10Ͳ2.5data.AsevenͲsourcemodelwas found to offer the most appropriate solution after rotation
(FPEAK=Ͳ0.6).Figure7showsthecomparisonbetweenmodelled
(PMF)PM2.5andmeasuredPM2.5concentrations(r2=0.89).The averagemasscontributionsofeachofthesourcestoambientfine
particleconcentrationsareshowninTable4andtheelemental
sourceprofilesarepresentedinFigure8.Thederivedsource
profileswerecomparedtomeasuredsourceprofilesand/orthose
reportedinotherstudiestoensuretheymadephysicalsense. Table3.SummarystatisticsforPM2.5andelementalconcentrationsatUlaanbaatar
ngmͲ3
ArithmeticMean StdDev Median Maximum Minimum LOD #Samples>LODa
S/N PM2.5 46000 51000 28 000 400 000 6 000 Ͳ Ͳ Ͳ BC 7290 10454 4 242 94 206 680 300 232 2.75 Na 290 425 112 2 642 0 500 88 0.13 Mg 326 276 235 2 083 31 80 200 0.62 Al 1150 1224 745 7 627 0 44 227 0.81 Si 2305 1740 1 871 10 554 129 33 232 17.20 P 79 106 42 773 0 62 157 0.24 S 1969 3978 900 40 079 125 31 232 17.55 Cl 139 133 88 849 12 28 232 2.14 K 324 239 243 1 558 35 22 232 7.00 Ca 789 559 652 3 194 50 19 236 11.92 Ti 37 33 28 156 0 15 191 0.27 Mn 15 14 11 65 0 11 178 0.18 Fe 523 388 416 2 150 26 10 232 0.62 Cu 10 29 3 373 0 13 105 0.21 Zn 44 54 30 400 0 14 213 0.55 a Limitofdetection 0 10 20 30 40 50 60 70 80 S o il 1 Combu s ti o n S o il 2 R o ad du st M a ss co nt ri b u ti o n t o P M 10-2. 5 (P g m -3) Winter Spring Summer Autumn
Figure7.Plotofpredicted(PMF)PM2.5massconcentrationsversus
measured(gravimetric)PM2.5massconcentrations.
Table4.AveragesourcemasscontributionstoPM2.5atUlaanbaatar
Source PM2.5massμgmͲ3 Soil 5.0(0.4)a Coalcombustion1 12.3(0.8) Coalcombustion2 11.6(1.8) Motorvehicles 1.9(0.6) Biomassburning 1.1(0.2) Roaddust 3.0(0.4) Zinc 0.6(0.3) a Standarddeviation
Thefirstsourceprofilewasidentifiedasthefinefractionof
airbornesoiloriginatingfromcrustalmatterastheprofilecontains
themajorityofAlandSiwithanSi:Alratioofapproximately2.5:1.
Thesecondfactor,andhighestsourcecontributor,wasidentified
asacoalburningsourceasitwasdominatedbyblackcarbonwith
a significant sulphur component as found in otherreceptor
modellingstudies(Mukaietal.,1993;Mukaietal.,2001;Songet
al.,2006).Thethirdfactorwasalsoattributedtocoalcombustion
sourcesbutwithalessersulphurcomponentandsomedifferences
in minor elemental species present in the source profile
composition.Wesuggesttherearetwodistinctcoalcombustion
sourcetypespresentintheUlaanbaatarairshedwithdiffering
combustion characteristics. Further discussion is provided in
Section3.4.Thefourthsourcehasbeenidentifiedasoriginating
from motor vehicles as a similar separation of elemental
componentsassociatedwithfineparticlemotorvehicleemissions
hasbeenreportedelsewhere(Mizohataetal.,1995;Schaueretal.,
2006;Wahlinetal.,2006).Thefifthsourcerepresentsbiomass
burningcontributionstoPM2.5ambientmassconcentrationsdue totheassociationofblackcarbonandpotassiumintheprofile.
WoodburningforcookingisusedallyearinUlaanbaatarbutthere
wasalsoevidencethatforestfireeventstothenorthoftheregion
can contribute at certain times. The sixth factor has been
attributedtofinerfractionofairborneroaddustandtheseventh
sourceextractedfromthePMFanalysiscontainedadistinctZn
componenttotheelementalsignature.Itwouldappearfromthe
PSCFanalysisthatthisoriginatestothewestofUlaanbaatar.
ThetemporalvariationsonsourcecontributionstoPM2.5are presentedinFigure9.Notethatthescalesforthecoalcombustion
sourcesareanorderofmagnitudehigherthantheotherplots.
Thetemporalvariationinsourcecontributionsshowsthatcoal
combustion peaks during winter (December–February) in
Ulaanbaatar. Seasonal contributions by PM2.5 sources are presentedinFigure10.PeakcontributionsfromthePM2.5crustal matterandroaddustsourcesoccurredduringspringandautumn
commensuratewithdriestseasonsasdidthebiomassburning
source.
3.4.Discussion
Crustalmattersources.ThefactoranalysisofPM10Ͳ2.5andPM2.5 fractionshasshownthatcrustalmattersourcesaresignificant
contributors to air particulate matter concentrations at
Ulaanbaatar,primarilydominatingthecoarsefraction.Wehave
identifiedtwocoarsefractioncrustalmatterelementalprofiles
(Soil1andSoil2)andsuggestthattheyoriginatefromdifferent
sourceareasbasedontheBCcontentandotherelementsinthe
profile.ThecrustalmatterelementalprofilesderivedbyPMFwere
compared to actual soil samples collected in and around
Ulaanbaatar (Markwitz et al., 2008). Markwitz et al. (2008)
collected crustal matter samples from sand dunes, open
countrysideandurbanlocations(samplelocationsanddescriptions
areprovidedinthereference).Thecrustalmattersampleswere
then compressed into discs and elemental concentrations
determinedbyIBAatGNS.Duetothenatureofthesamples,BC
wasnotmeasuredinthatstudy.Figure11presentselemental
profiles(asthepercentageofthetotalmeasuredelementalmass)
forelementscommontothecrustalmattersamplescollectedby
Markwitzetal.(2008)andthosederivedfromthecoarseandfine
PMFanalysisinthisstudy.
Figure8.ElementalsourceprofilesderivedbyPMFforPM2.5samples(predicted±SD).
y = 0.71x R2 = 0.78 0 100 200 300 400 500 0 100 200 300 400 500 PM2.5 Gravimetric mass (Pg m -3 ) PM 2. 5 PM F m a ss (P g m -3)
Figure9.ContributiontimeseriesofresolvedsourcesforPM2.5atUlaanbaatar(notethedifferenceinscaleforcoalcombustionsources).
Figure10.SourcecontributionstoPM2.5byseasonatUlaanbaatar.
Figure11showsthatthesandsampleshavethehighestSi:Al
ratioandalowerironandcalciumcontentinaccordancewiththe
highersilicacontentofsand.Thecityandcountrycrustalmatter
samples have a similar composition to each other. The air
particulatemattercrustalmatterprofilesderivedbyPMFallhavea
lowerSi:Alratiothanthecrustalmattersourcesamples,most
likelyduetoparticlesizefractionationofthemineralsmakingup
crustalmatterwithaluminosilicatespresentinthefinefractions.
TheseresultsindicatethattheSoilsourcesarelargelyderivedfrom
thetransportoffineloessratherthansandasobservedbyZhang
etal.(2003).
MasscontributionstoPM10Ͳ2.5fromtheSoil1component weregenerallyhigherthanSoil2andprobablyrepresentdust
source areas from the Ulaanbaatar, surrounding countryside
environsandlongͲrangetransport.TheSoil2dustsourcehasbeen
identifiedasmorelocalisedtotheUlaanbaatarurbanareaduetoa
significantBCcomponentandthepresenceofPandCuinthe
elemental soil source profile. Analyses of air mass back– trajectoriesusingHYSPLIT(DraxlerandRolph,2003)indicatea
distinctwesterlydirectionalcomponentforsampledayswhere
there was a significant Soil 2 contribution but little or no
contributionfromtheSoil1source.Westofthemonitoringsite,
acrossUlaanbaatar,aretwolargecoalfiredpowerstationsas
indicatedinFigure12.Associatedwiththepowerstationsarelarge
stockpilesofcoalandslagdumpsthatarelikelytobesignificant
sourcesoffugitivedustemissionsandmayaccountfortheBC
observedintheSoil2elementalprofile.Otherurbansourceareas
offugitive dusts such as construction, excavations andland
clearance,unsealedyardsandroadsarealsolikelytocontributeto
themix. Figure11.ElementalprofilesforcrustalmattersourcesamplesandthosederivedforcoarseandfineairparticulatemattersamplesbyPMF. 0 5 10 15 20 25 30 35 So il Co a l c om b us ti on 1 Co a l c om b us ti on 2 R oa d dus t M o to r v e h ic le s B io m ass bu rni ng Zin c M ass co nt ri b u ti o n (P g m -3) Winter Spring Summer Autumn 0 20 40 60 80 100 Na Al Si S Cl K Ca Ti V Mn Fe Cu Zn P er ce n ta g e o f el em e n ta l m a ss Sand City Country PM10-2.5 Soil 1 PM10-2.5 Soil 2 PM2.5 Soil
Figure12.AerialviewofUlaanbaatarindicatingmonitoringsitelocation()andcoalfiredpowerstationstothewest(source:Googlemaps2008).
Air–massbacktrajectoriesforpeakSoil1andSoil2source
contributions indicate source areas to the west and north
respectively.NorthwestwindspeakduringspringinMongoliadue
tothebreakdownintheSiberianHighPressurezoneafterwinter
(Xuanetal.,2004).Xuanetal.(2004)foundthattheAsianDust
Storm events originate in the deserts of southern
Mongolia/northernChina.Otherstudieshaveshownsourceareas
in western and northwestern China and trajectories across
Mongoliafromthenorthwesttosoutheast(seeforexampleZhang
etal.,2003;Xuanetal.,2004;Songetal.,2006;Wangetal.,2006;
Kim et al., 2007). One peak dust event in Ulaanbaatar as
determinedfromthePMFanalysishasbeencorroboratedwith
satellite imagesand otherobservations in eastern Asiathat
indicatelongͲrangetransportmechanisms.Forexample,theSoil1
sourceshowedapeakconcentrationon6March2006(180μgmо3)
andsatelliteimagery(NASAEarthObservatory)for9March2006
shows the dust storm spreading outover eastern China as
presentedinFigure13.
Itseemsevidentfromthisstudythatsignificantloadingof
dustswerepresentinair–massesarrivingatUlaanbaatarfromthe
westandnorthwestandthatthecrustalmatter,particularlythe
PM2.5fraction(peakconcentrationsatUlaanbaatar20–30μgmо3) canbetransportedconsiderablyfurthertothesoutheastand
arriveatcitiesaffectedbyAsianDustStormeventssuchasBeijing
(Zhangetal.,2005;Songetal.,2006).Figure14showsthePSCF
analysisfor thePM2.5 soil source indicating potentialsource locationsthatincludethedesertsinthesouthofMongolia(Gobi
Desert),centralKazakhstan(BetpaqdalaDesert)tothenorthwest
ofUlaanbaatar,andpossiblytheTaklamakanDesert(Wangetal.,
2008)inChinatothewestofMongolia.
Combustion sources. Combustion sourceswere found to be
significantsourcecontributorstoairparticulatematter,primarily
to PM2.5, at Ulaanbaatar. Cold temperatures and inversion conditionsduringthewinterseverelylimitthedispersionofair
pollutantinUlaanbaatarandthereforehighconcentrationsof
combustionderivedPM2.5arerecordedintheUlaanbaatarairshed. In 2006/2007 approximately 4900000tonnes of coal and
413000tonnesofwoodwereburntinUlaanbaatar(NAMHEM,
2007).Analysisoftemporalvariationsinsourcecontributions
showedthatcoalcombustionsourcesdominateduringwinterdue
theuseofcoalforheatingandpowergeneration.Air–massback– trajectoryanalysesindicatethatpeakcontributionsfromtheCoal
combustion1sourceoccurduringwesterlywindspossiblydueto
emissionsfromthecoalfiredpowerstationstothewest(shownon
theaerialphotographinFigure12)directlyimpactingatthe
monitoringsite.TheCoalcombustion1sourceprofileisdominated
byBCandS(mostlikelypresentassulphatespecies)repreͲ
sentativeofhightemperaturecoalcombustioncharacteristicof
powerstations(Polissaretal.,2001).TheCoalcombustion2
sourcerepresentsemissionsfromcoalfiresusedfordomestic
heating as a significant proportion of the urban population
(120000households)inandaroundUlaanbatarliveinGers(48%)
(traditionalMongolianhouse)orsmallbrickdwellings(52%),both
ofwhichareheatedbysimplesolidfuelappliancesoropenfires
(NAMHEM,2007).Assuch,thesourceprofileisrepresentativeof
lowͲtemperaturecoalcombustionwithsignificantashandcrustal
mattercomponents(Na,Mg,Al,Si)(Zhengetal.,2005).Bothcoal
combustionsourcespeakduringwinterduetodemandforheating
andthesignificanttemperatureinversionconditionseffectively
trappingpollutantsintheUlaanbaatarairshed.SourcecontriͲ
butionstoPM2.5fromcoalcombustionduringwinterappeartobe increasingannually.Someofthevariationisprobablydueto
interannualclimatevariations,however,asignificantincreasein
thePM2.5coalcombustioncontributionsover2007/2008winter periodsuggeststhattheincreasemaybeduetocoalusage.Figure
15presentstheaveragemasscontributionstoPM2.5fromcoal combustionsourcesforeachwinter(December–February)since
monitoringbeganin2004.Furthermonitoringisrequiredtoseeif
thetrendcontinues.
Figure13.Dustcloud(tandiscolouration)spreadingoutoverEasternchina andKoreanPeninsulaon9March2006(source:http://earthobservatory. nasa.gov/NaturalHazards).
Figure14.PSCFanalysisforPM2.5soilsourcecontributionsshowingpotentialsourcelocations.
Figure15.Averagewinter(December–February)contributionstoPM2.5
fromcoalcombustionsourcesinUlaanbaatar.
The biomass burning source originates primarily from
domesticcookingactivitiesinUlaanbaatarwithpeakcontributions
fromforestfirestothenorthduringspringandautumn.Forest
firesareacommonoccurrenceduringthedryspringandautumn
monthsinMongolia (Nyamjavetal.,2007). Air–mass back– trajectoryanalysisforpeakbiomassburningeventsshowthat
sourceemissionsoriginatenorthofUlaanbaatar.Forexample,a
peakinbiomassburningsourcecontributiontoPM2.5occurredon 20April2006(4μgmо3).Theback–trajectorypresentedinFigure
16showstheairmassarrivingatUlaanbaatarfromthenorthand
satelliterecordsshowsignificantfiresburninginsouthernRussia
andnorthernMongoliaoverthesameperiod(Figure17).
Figure17presentsthesatelliteimageforApril23,2006,
showingthatlargefireswereburninginthefoothillsofthe
mountainsthatseparateRussia(north)fromMongolia(south).The
Moderate Resolution Imaging Spectroradiometer (MODIS) on
NASA’sTerrasatellitecapturedtheimageofthefires(actively
burningareasoutlinedinred)andtheiraccompanyinglargeburn
scars(darkbrown).Thesmokewasblowingsoutheastwardacross
Mongolia(fromhttp://earthobservatory.nasa.gov/NaturalHazards/
view.php?id=16493).
ThezincsourcewasfoundtobeaminorcontributortoPM2.5 inUlaanabaatar.InitiallytheassociationofzincandBCinthe
profilesuggestedthatitmay be dueto twostrokeengine
emissions (Begum et al., 2004). However, few vehicles in
Ulaanbaatararethoughttobepoweredbytwostrokeenginesand
nootherlocalzinccontainingparticulatematteremissionsource
hasbeenidentifiedasyet.ThePSCFanalysisforthezincsource
presentedinFigure18indicatesthatthepotentialsourceareafor
thezincsourcewasnorthwesternChinacentredonUrumchi,the
localprovincialcapital.Thezincsourcemaybeduetolong–range
transportofemissionsfromheavyindustryinthearea(e.g.zinc
miningandsmelting). Figure16.AirmassbackͲtrajectory(24hr)forApril202006(Source:NOAA, HYSPLIT). 0 10 20 30 40 50 60 70 80 90 100 2004/2005 2005/2006 2006/2007 2007/2008 Winter period PM 2. 5 m a ss co nt ri b u ti o n P g m -3
Figure17.SatelliteimageofforestfiresburninginsouthernRussiaand northernMongoliaon23April2006(source:NASAEarthObservatoryat http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=16493).
4.
Conclusions
ThisstudypresentedtheresultsoffouryearsofPM10Ͳ2.5and PM2.5 monitoring data collected at Ulaanbaatar, Mongolia. Particulatematterconcentrationswerefoundtobeextremelyhigh
at times with maximum PM10 concentrations measured at 1100μgmо3andmanydayswhereconcentrationswereabove
300μgmо3.ThecoarseparticlefractiongenerallydominatedPM10 buthighPM2.5valueswererecordedduringwintermonthswith PM2.5valuesoftenover100μgmо3.Withsuchhighparticulate
matterconcentrationspresentintheUlaanbaatarurbanareathere
arelikelytobesignificanthealthimplicationsfortheexposed
population.Elementalconcentrationswithinparticulatematter
collectedontofiltersweredeterminedbyIBAandfactoranalysis
performedusingPositiveMatrixFactorisation.
Four source contributors were identified for the coarse
particlefractionandsevensourcesderivedforthefineparticle
fraction.Majorsourcescontributingtoparticleconcentrations
werefoundtobecrustalmatter(primarilythecoarsefraction)and
coal combustion sources dominated the fine fraction during
winter.Crustalmattersourceswerefoundtobegeneratedboth
locally(urbandustsources)andtransportedtoUlaanbaatarfrom
thewestandnorthwest,particularlyduringthedryandwindy
monthsofspringandautumn.Duststormeventsinthisregionare
wellknowntogeneratetheAsianDusteventsthataffectmany
partsofeasternandsoutheasternAsiaduringspringandcanbe
transportedoutoverthePacific.
SourcecontributionstoPM2.5weredominatedbyemissions fromcoalcombustionsourceswithtwodistinctsourcetypes,the
first identified as a high–temperature combustion source
originatingfrompowerstationemissionsinthewesternpartof
Ulaanbaatar and the other from coal combustion used for
domesticheatingduringwinter.Themonitoringdatasuggeststhat
masscontributionsfromcoalcombustionsourcesareincreasing.It
wasalsofoundthat,attimes,forestfiresinnorthernMongoliaand
southernRussiacanimpactonairqualityinUlaanbaataranda
long–rangetracesourceofzinccontainingPM2.5particleswas identifiedasoriginatinginnorthwesternChina.
Acknowledgements
ThisprojectwassupportedinpartbytheInternationalAtomic
Energy Agency through the Regional Cooperation Agreement
Programme“RAS/7/015ͲCharacterizationandSourceIdentification
ofParticulateAirPollutionintheAsiaRegion”.
Figure18.PSCFanalysisforthePM2.5zincsourceshowingapotentialsourcelocationinnorthwesternChina(Urumchi)tothewestofMongolia.
References
Begum,B.A.,Kim,E.,Jeong,C.ͲH.,Lee,D.ͲW.,Hopke,P.K.,2005.Evaluation ofthepotentialsourcecontributionfunctionusingthe2002Quebec forestfireepisode.AtmosphericEnvironment39,3719Ͳ3724.
Begum,B.A.,Kim,E.,Biswas,S.K.,Hopke,P.K.,2004.Investigationof sourcesofatmosphericaerosolaturbanandsemiͲurbanareasin Bangladesh.AtmosphericEnvironment38,3025Ͳ3038.
Draxler,R.R.,Rolph,G.D.,2003.HYSPLIT(HYbridSingleͲParticleLagrangian IntegratedTrajectory)Model,NOAAAirResourcesLaboratory,Silver Spring,MD.
Fine,P.M.,Cass,G.R.,Simoneit,B.R.T.,2001.Chemicalcharacterizationof fineparticleemissionsfromfireplacecombustionofwoodsgrownin thenortheasternUnitedStates.EnvironmentalScienceandTechnology 35,2665Ͳ2675.
Guttikunda,S., 2007. Urban air pollution analysis for Ulaanbaatar, Mongolia.WorldBankConsultantReport,WashingtonDC,USA. Hedberg,E.,Kristensson,A.,Ohlsson,M.,Johansson,C.,Johansson,P.A.,
Swietlicki,E.,Vesely,V.,Wideqvist,U.,Westerholm,R.,2002.Chemical and physical characterization of emissions from birch wood combustioninawoodstove.AtmosphericEnvironment36,4823Ͳ4837. Hopke,P.K.,Cohen,D.D.,Begum,B.A.,Biswas,S.K.,Ni,B.,Pandit,G.G.,
Santoso,M.,Chung,Y.S.,Davy,P.,Markwitz,A.,Waheed,S.,Siddique, N.,Santos,F.L.,Pabroa,P.C.B.,Seneviratne,M.C.S.,Wimolwattanapun, W.,Bunprapob,S.,Vuong,T.B.,Hien,P.D.,Markowicz,A.,2008.Urban airqualityintheAsianregion.ScienceoftheTotalEnvironment404, 103Ͳ112.
Hopke,P.K.,Xie,Y.,Raunemaa,T.,Biegalski,S.,Landsberger,S.,Maenhaut, W.,Artaxo,P.,Cohen,D.,1997.CharacterizationoftheGentstacked filterunitPM10sampler.AerosolScienceandTechnology27,726Ͳ735. Horvath,H.,1997.Experimentalcalibrationforaerosollightabsorption
measurementsusingtheintegratingplatemethod Ͳsummaryofthe data.JournalofAerosolScience28,1149Ͳ1161.
Horvath,H.,1993.Atmosphericlightabsorption Ͳareview.Atmospheric EnvironmentͲPartAGeneralTopics27A,293Ͳ317.
Jacobson,M.C.,Hansson,H.C.,Noone,K.J.,Charlson,R.J.,2000.Organic atmosphericaerosols:reviewandstateofthescience.Reviewsof Geophysics38,267Ͳ294.
Kim,E.,Hopke,P.K.,2006.Characterizationoffineparticlesourcesinthe GreatSmokyMountainsarea.ScienceoftheTotalEnvironment368, 781Ͳ794.
Kim,J.Y.,Ghim,Y.S.,Song,C.H.,Yoon,S.C.,Han,J.S.,2007.Seasonal characteristicsofairmassesarrivingatGosan,Korea,usingfineparticle measurementsbetweenNovember2001andAugust2003.Journalof GeophysicalResearchͲAtmospheres112,art.no.D07202.
Lide,D.R.,1992.CRCHandbookofChemistryandPhysics,CRCPressInc. Maenhaut,W.,Francois,F.,Cafmeyer,J.,1993.The“Gent”StackedFilter
UnitSamplerfortheCollectionofAtmosphericAerosolsinTwoSize Fractions:DescriptionandInstructionsforInstallationandUse.CoͲ ordinatedResearchProgramme:CRPE4.10.08.Vienna,International AtomicEnergyAgency.
Markwitz, A.,2005.AnoverviewoftheRCA/IAEAactivities inthe AustralasianRegionusingnuclearanalysistechniquesformonitoring airpollution.InternationalJournalofPIXE15,271Ͳ276.
Markwitz,A.,Barry,B.,Shagjjamba,D.,2008.PIXEanalysisofsandandsoil fromUlaanbaatarandKarakurum,Mongolia.NuclearInstrumentsand MethodsinPhysicsResearch,SectionB:BeamInteractionswith MaterialsandAtoms266,4010Ͳ4019.
Mizohata,A.,Ito,N.,1995.Quantitativedeterminationoftheairborne particulatemattersourcesbymotorvehiclesusingTTFA.TaikiKankyo Gakkaishi30,243Ͳ55.
Mukai,H.,Furuta,N.,Fujii,T.,Ambe,Y.,Sakamoto,K.,Hashimoto,Y.,1993. CharacterizationofsourcesofleadintheurbanairofAsiausingratios ofstableleadisotopes.EnvironmentalScienceandTechnology27, 1347Ͳ1356.
Mukai,H.,Tanaka,A.,Fujii,T.,Zeng,Y.,Hong,Y.,Tang,J.,Guo,S.,Xue,H., Sun,Z.,Zhou,J.,Xue,D.,Zhao,J.,Zhai,G.,Gu,J.,Zhai,P.,2001. Regionalcharacteristicsofsulfurandleadisotoperatiosinthe atmosphereatseveralChineseurbansites.EnvironmentalScienceand Technology35,1064Ͳ1071.
NAMHEM,2007.EmissionsInventoryforUlaanbaatar.NationalAgencyfor Meteorology, Hydrology, Environmental Monitoring, Mongolian Government.
Nyamjav,B.,Goldammer,J.G.,Uibrig,H.,2007.Theforestfiresituationin Mongolia.InternationalForestFireNews36,46Ͳ66.
Paatero,P.,Hopke,P.K.,Begum,B.A.,Biswas,S.K.,2005.Agraphical diagnosticmethodforassessingtherotationinfactoranalyticalmodels ofatmosphericpollution.AtmosphericEnvironment39,193Ͳ201. Paatero,P.,HopkeP.K.,2003.DiscardingordownweightinghighͲnoise
variablesinfactoranalyticmodels.AnalyticaChimicaActa490,277Ͳ 289.
Paatero,P.,Hopke,P.K.,Song,X.H.,Ramadan,Z.,2002.Understandingand controllingrotationsinfactoranalyticmodels.Chemometricsand IntelligentLaboratorySystems60,253Ͳ264.
Paatero,P.,Hopke,P.K.,2002.Utilizingwinddirectionandwindspeedas independent variables in multilinear receptor modeling studies. ChemometricsandIntelligentLaboratorySystems60,25Ͳ41.
Paatero,P.,1997.LeastsquaresformulationofrobustnonͲnegativefactor analysis.ChemometricsandIntelligentLaboratorySystems37,23Ͳ35. Polissar,A.V.,Hopke,P.K.,Poirot,R.L.,2001.Atmosphericaerosolover
Vermont:chemicalcompositionandsources."EnvironmentalScience andTechnology35,4604Ͳ4621.
Salma,I.,Chi,X.,Maenhaut,W.,2004.Elementalandorganiccarbonin urbancanyonandbackgroundenvironmentsinBudapest,Hungary. AtmosphericEnvironment38,27Ͳ36.
Schauer,J.J.,Lough,G.C.,Shafer,M.M.,Christensen,W.F.,Arndt,M.F., DeMinter,J.T.,Park,J.S.,2006.Characterizationofmetalsemitted frommotorvehicles.ResearchReportHealthEffectsInstitute133,1Ͳ 88.
Song,Y.,Zhang,Y.,Xie,S.Zeng,L.,Zheng,M.,Salmon,L.G.,Shao,M., Slanina,S.,2006.SourceapportionmentofPM2.5inBeijingbypositive matrixfactorization.AtmosphericEnvironment40,1526Ͳ1537. Song,X.H.,Polissar,A.V.,Hopke,P.K.,2001.Sourcesoffineparticle
compositioninthenortheasternUS.AtmosphericEnvironment35, 5277Ͳ5286.
Trompetter,W.J.,Markwitz,A.,Davy,P.,2005.Airparticulateresearch capabilityattheNewZealandionbeamanalysisfacilityusingPIXEand IBAtechniques.InternationalJournalofPIXE15,249Ͳ255.
UNEP,2008.Target2008:GlobalEliminationofLeadedPetrol.AReportof thePartnershipforCleanFuelsandVehicles(PCFV)UnitedNations EnvironmentProgram,Nairobi,Kenya.
Wahlin,P.,Berkowicz,R.,Palmgren,F.,2006.Characterisationoftraffic generated particulate matter in Copenhagen. Atmospheric Environment40,2151Ͳ2159.
Wang,X.,Huang,J.,Ji,M.,Higuchi,K.,2008.VariabilityofEastAsiadust eventsandtheirlongͲtermtrend.AtmosphericEnvironment42,3156Ͳ 3165.
Wang,Y.Q.,Zhang,X.Y.,Arimoto,R.,2006.Thecontributionfromdistant dustsourcestotheatmosphericparticulatematterloadingsatXiAn, Chinaduringspring.ScienceoftheTotalEnvironment368,875Ͳ883. Watson,J.G.,Zhu,T.,Chow,J.C.,Engelbrecht,J.,Fujita,E.M.,Wilson,W.E.,
2002.Receptormodelingapplicationframeworkforparticlesource apportionment.Chemosphere49,1093Ͳ1136.
Xuan,J.,Sokolik,I.N.,Hao,J.,Guo,F.,Mao,H.,Yang,G.,2004.Identification andcharacterizationofsourcesofatmosphericmineraldustinEast Asia.AtmosphericEnvironment38,6239Ͳ6252.
Zhang,R.,Arimoto,R.,An,J.,Yabuki,S.,Sun,J.,2005.Groundobservations ofastrongduststorminBeijinginMarch2002.JournalofGeophysical ResearchͲAtmospheres110,art.no.D18S06.
Zhang,X.Y.,Gong,S.L.,Shen,Z.X.,Mei,F.M.,Xi,X.X.,Liu,L.C.,Zhou,Z.J., Wang,D.,Wang,Y.Q.,Cheng,Y.,2003.Characterizationofsoildust aerosolinChinaanditstransportanddistributionduring2001ACEͲ Asia:1.Networkobservations.JournalofGeophysicalResearchͲ Atmospheres108,art.no.4261.
Zheng,M.,Salmon,L.G.,Schauer,J.J.,Zeng,L.,Kiang,C.S.,ZhangY.,Cass, G.R.,2005.SeasonaltrendsinPM2.5sourcecontributionsinBeijing, China.AtmosphericEnvironment39,3967Ͳ3976.