• No results found

UNIVALENT FUNCTIONS RELATED TO q–ANALOGUE OF GENERALIZED M –SERIES WITH RESPECT TO k–SYMMETRIC POINTS

N/A
N/A
Protected

Academic year: 2022

Share "UNIVALENT FUNCTIONS RELATED TO q–ANALOGUE OF GENERALIZED M –SERIES WITH RESPECT TO k–SYMMETRIC POINTS"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 14 (2019), 277 – 285

UNIVALENT FUNCTIONS RELATED TO q–ANALOGUE OF GENERALIZED M –SERIES WITH RESPECT TO k–SYMMETRIC POINTS

Sh. Najafzadeh

Abstract. In this paper, we introduce subclasses of analytic functions by using q–analogue of generalized M –series and k–symmetric points. Some special coefficient inequalities are also discussed.

1 Introduction

The M –series in [8] in given by:

α

tMs(z) =

k=0

(d1)k· · · (dt)k

(b1)k· · · (bs)k zk

Γ(αk + 1), (1.1)

where α, z ∈ C, Re{α} > 0 and (dm)k, (bm)k are then well-known Pochhammer symbols.

It is easy to see that by the ratio test the series in (1.1) is convergent for all z if t 6 s.

The extension of both Mittag-Leffler function and generalized hypergeometric functionxFy is called generalized M –series which introduced in [9] as follow:

α tMβs =

k=0

(d1)k· · · (dt)k (b1)k· · · (bs)k

zk

Γ(αk + β), (z, α, β ∈ C). (1.2) For more details see [1].

The series in [2] is a convergent series for all z if t 6 s + Re{α}. Also it is convergence for |z| < αα if t = s + Re{α}.

The q–analogue of Pochhammer symbol is defined by:

(α; q)n=

n−1

k=0

(1 − αqk), (n ∈ N), (1.3)

2010 Mathematics Subject Classification: 30C45; 30C50.

Keywords: M –series; q–derivative; univalent function; convolution; k–symmetric points.

(2)

and for n = 0 and q ̸= 1, (α; q)0 = 1. When n → ∞, we shall assume that |q| < 1, see [2].

Also q–derivative of a function f (z) is defined by (Dqf)(z) = f (z) − f (qz)

(1 − q)z , (z ̸= 0, q ̸= 1), (1.4) and

q→1limDqf (z) = f(z). (1.5) By using (1.4), we conclude that:

(Dn1 q

f)(x) = qn(Dnqf)( x

qn), (1.6)

Dnqzλ = Γq(λ + 1)

Γq(λ − n + 1)zλ−n, ( Re{λ} + 1 > 0). (1.7) Indeed

Γq(z + 1) = 1 − qz

1 − z Γq(z). (1.8)

Also

βq(x, y) =

1 0

tx−1 (tq; q)

(tqy; q)

dq(t) = Γq(x)Γq(y)

Γq(x + y) , (1.9)

where Re{x} > 0, Re{y} > 0 and βq(x, y) and Γq(w) are the q–analogue of the beta function and q–gamma function respectively.

Now we consider the q–analogue of generalized M –series as follows:

α

tMβs(z; q) =

k=0

(d1; q)k· (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)k

zk

Γq(αk + β), (1.10) where α, β ∈ C, Re{α} > 0, |q| < 1, (γ; q)kis the q–analogue of Pochhammer symbol and Γq(w) is the q–gamma function.

By applying the convergent conditions of the well-known Fox-Wright generalized hypergeometric function and generalized H–function, the function αtMβs(z; q) is convergent, see [3].

Some special eases of αtMβs(z; q) are:

(i) The q–Mittag-Leffler function [5].

(ii) The generalized q–Mittag-Leffler function [10].

(3)

(iii) The q–generalized M –series as a special ease of the q–Wright generalized hypergeometric function [6].

Definition 1. Let A denote the class of functions f (z) of the type:

f (z) = z +

k=2

akzk, (1.11)

which are analytic in the open unit disk:

U = {z ∈ C : |z| < 1}.

Definition 2. the Hadamard product (convolution) for functions f (z) = z+∑ k=2akzk and g(z) = z +∑

k=2bkzk belong to A denoted by f ∗ g in defined as follows:

(f ∗ g)(z) = z +

k=2

akbk = (g ∗ f )(z). (1.12)

Definition 3. A function f (z) ∈ A is in the class Xn(θ) if

Re

{z(f ∗ F )+ (f ∗ F ) Hn(z)

}

< θ, (1.13)

where θ > 1, n > 1 is a fixed positive integer,

F (z) =[

1 − (1 − d1) · · · (1 − dt) (1 − b1) · · · (1 − b1)Γ(α + β)

]

z − 1

Γq(β)+αtMβs(z; q), (1.14) and

Hn(z) = 1 n

n−1

v=0

E−v(f ∗ F )(Evz), (En= 1, z ∈ U). (1.15)

Further, a function f (z) ∈ A is in the class Yn(θ), if and only if zf(z) ∈ Xn(θ).

From (1.11), (1.14) and (1.12) with a simple calculation, we get:

(f ∗ F )(z) = z +

k=2

(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓq(αk + β)akzk. (1.16)

(4)

2 Main results

In this section, we shall obtain some coefficient bounds for functions in Xn(θ) and Yn(θ) and their subclasses positive coefficients.

Note that other subclasses of analytic functions with respect to n–symmetric points have been studied by many authors, see [4,7] and [11].

Theorem 4. Let θ > 2. If f (z) ∈ A satisfies:

k=1

[ (nk + 2)(d1; q)nk+1· · · (dt; q)nk+1

(b1; q)nk+1· · · (bs; q)nk+1(q; q)nk+1Γ(α(nk + 1) + β) +

(nk + 2)(d1; q)nk+1· · · (dt; q)nk+1

(b1; q)nk+1· · · (bs; q)nk+1(q; q)nk+1Γ(α(nk + 1) + β) − 2θ

⏐ ]

|ank+1|

+

n=2 k̸=mk+1

2(k + 1)(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓ(αk + β)|ak| 6 2(θ − 2),

(2.1)

then f ∈ Xn(θ).

Proof. Suppose that theta > 2 and f (z) ∈ A, it is sufficient to show that:

z(f ∗ F )+ (f ∗ F ) fn(z)

<

z(f ∗ F )+ (f ∗ F ) fn(z) − 2θ

, (z ∈ U).

By putting W =⏐

⏐z(f ∗ F )+ (f ∗ F )⏐

⏐−⏐

⏐z(f ∗ F )+ (f ∗ F ) − 2θfn(z)⏐

⏐, and

Hn(z) = z + 1 n

k=2

(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓ(αk + β)αk n−1

v=0

Ev(k−1)zn, (2.2) we get

W =

⏐ 2z +

k=2

(k + 1) (d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓq(αk + β)akzk

⏐ 2z +

k=2

(k + 1) (d1; q)k· · · (dt; q)kakzk (b1; q)k· · · (bs; q)k(q; q)k(αk + β; q)k

− 2θz − 2θ

k=2

(d1; q)k· · · (dt; q)kakbkzk (d1; q)k· · · (bs; q)k(q; q)kΓq(αk + β)

⏐ ,

(5)

where

bk= 1 n

n−1

v=0

Ev(k−1), (En= 1). (2.3)

Hence for |z| = r < 1, we have:

W 6 2r +

k=2

(k + 1)(d1; q)k· · · (dt; q)kakrk (b1; q)k· · · (bs; q)k(q; q)kΓ(αk + β)

− {

2(θ − 1)r −

k=2

(k + 1)(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓ(αk + β)− 2θbk

|ak|rk }

<

{

k=2

[ (k + 1)(d1; q)k· · · (dt; q)k (b1; q)k· · · (bs; q)k(q; q)kΓ(αk + β) +

(k + 1)(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓ(αk + β)− 2θbk

⏐ ]

|ak| − 2(θ − 2) }

r.

From (2.3) we know

bk =

{0 , k ̸= mn + 1

1 , k = mn + 1. (2.4)

So we get

W <

{

k=1

[ (nk + 2)(d1; q)nk+1· · · (dt; q)nk+1

(b1; q)nk+1· · · (bs; q)nk+1(q; q)nk+1Γ(α(nk + 1) + β) +

(nk + 2)(d1; q)nk+1· · · (dt; q)nk+1

(b1; q)nk+1· · · (bs; q)nk+1(q; q)nk+1Γ(α(nk + 1) + β) − 2θ

⏐ ]

|ank+1|

+

k=2 k̸=mn+1

2(k + 1)(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓ(αk + β)|ak| − 2(θ − 2) }

r.

From (2.1) we know that W < 0. Thus we get then required result.

By definition of Yn(θ) we obtain the following corollary.

(6)

Corollary 5. If θ > 2 and (f ∗ F )(z) is defined by (1.16) satisfies

k=0

(nk + 2)

[ (nk + 2)(d1; q)nk+1· · · (dt; q)nk+1

(b1; q)nk+1· · · (bs; q)nk+1(q; q)nk+1Γ(α(nk + 1) + β) +

(nk + 2)(d1; q)nk+1· · · (dt; q)nk+1

(b1; q)nk+1· · · (bs; q)nk+1(q; q)nk+1Γ(αk + 1) + β) − 2θ

⏐ ]

|ank+1|

+

k̸=mk+1k=2

2(k + 1)2(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓ(αk + β)|ak| 6 2(θ − 2),

(2.5)

then f (z) ∈ Yn(θ).

Now, we define two subclasses of Xn(θ) and Yn(θ) as follow:

Xn+(θ) ={

f ∈ Xn(θ) : The coefficients of f ∗ F are non-negative}

, (2.6) Yn+(θ) ={

f ∈ Yn(θ) : The coefficients of f ∗ F are non-negative}

, (2.7)

Theorem 6. Let n > 2 and 2 < θ 6 n + 1, then f (z) ∈ Xn+(θ) if and only if

k=2

(k + 1)(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓq(αk + β)ak

− θ

m=1

(d1; q)mn+1· · · (dt; q)mn+1amn+1

(b1; q)mn+1· · · (bs; q)mn+1(q; q)mn+1Γq(α(mn + 1) + β) 6 2(θ − 2).

(2.8)

Proof. According to Theorem4, we need only to prove the necessary. Since f (z) ∈ Xn+(θ), then

(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓq(αk + β)ak> 0, (k > 2).

Also

Re{z(f ∗ F )+ (f ∗ F ) Hn(z)

}

< θ, or equivalently

z(f ∗ F )+ (f ∗ F ) Hn(z)

<

z(f ∗ F )+ (f ∗ F ) Hn(z)

⏐ , or

⏐⏐z(f ∗ F )+ (f ∗ F )⏐

⏐<⏐

⏐z(f ∗ F )+ (f ∗ F ) − 2θHn(z)⏐

⏐.

(7)

Hence

⏐ z +

k=2

k(d1; q)k· · · (dt; q)k

(b1; q)k· · · (bs; q)k(q; q)kΓq(αk + β)akzk + z +

k=2

(d1; q)k· · · (dt; q)k

(b1; q)k· · · (q; q)kΓq(αk + β)akzk

<

⏐ z +

k=2

k(d1; q)k· · · (dt; q)k

(b1; q)k· · · (q; q)kΓq(αk + β)akzk + z +

k=2

(d1; q)k· · · (dt; q)k

(b1; q)k· · · (q; q)kΓq(αk + β)akzk− 2θ

− 2θ

m=1

(d1; q)mn+1· · · (dt; q)mn+1amn+1

(b1; q)mn+1· · · (q; q)mn+1Γq(α(mn + 1) + β)zmn+1

⏐ . Since

(d1; q)k· · · (dt; q)k

(b1; q)k· · · (q; q)kΓq(αk + β)ak> 0, for k > 2 and θ > 2, by setting z → 1, we get:

2 +

k=2

(k + 1) (d1; q)k· · · (dt; q)k

(b1; q)k· · · (q; q)kΓq(αk + β)ak6 2θ − 2 + 2θ

m=1

(d1; q)mn+1· · · (dt; q)mn+1

(b1; q)mn+1· · · (q; q)mn+1Γq(α(mn + 1) + β)amn+1

k=2

(k + 1) (d1; q)k· · · (dt; q)k

(b1; q)k· · · (q; q)kΓq(αk + β)ak, or

k=2

(k + 1) (d1; q)k· · · (dt; q)k

(b1; q)k· · · (q; q)kΓq(αk + β)ak

− θ

m=1

(d1; q)mn+1· · · (dt; q)mn+1amn+1

(b1; q)mn+1· · · (q; q)mn+1Γq(α(mn + 1) + β) 6 2(θ − 2).

Similarly, we have the following theorem for the class Yn(θ).

Corollary 7. Let n > 2, 2 < θ 6 n + 1 and f (z) ∈ A, then f (z) is in the class Yn(θ) if and only if

k=2

(k + 1)2 (d1; q)k· · · (dt; q)k

(b1; q)k· · · (q; q)kΓq(αk + β)ak

(8)

− θ

m=1

(mn + 1) (d1; q)mn+1· · · (dt; q)mn+1amn+1

(b1; q)mn+1· · · (q; q)mn+1Γq(α(mn + 1) + β) 6 2(θ − 2).

References

[1] A. Chouhan and S. Saraswat, Certain properties of fractional calculus operators associated with M –series, Sci., Ser. A, Math. Sci., 22 (2012), 27–32.MR3058917.

Zbl 1258.33013.

[2] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge university press 96, 2004. MR2128719.Zbl 1129.33005.

[3] S. H. Malik, R. Jain and J. Majid, Certain properties of q–fractional integral operators associated with q–analogue of generalized M –series, UGC Approved Journal, 12(4) (2019), 1006–1015.

[4] S. Najafzadeh, Application of S˘al˘agean operator on univalent functions with respect to k–symmetric points, Adv. Math., Sci. J., 1 (2016), 39–43. Zbl 1377.30013.

[5] S. D. Purohit and F. Ucar, An application of q–sumudu transform for fractional q–kinetic equation, Turk. J. Math., 42(2) (2018), 726–734. MR3794501. Zbl 07051495.

[6] R. Saxena and R. Kumar, A basic analogue of the generalized H–function, Matematiche (Catania), 50(2) (1995), 263–271. MR1414634.Zbl 0899.33012.

[7] C. Selvaraj, K. Karthikeyan and E. Umadevi, Certain classes of meromorphic multivalent functions with respect to (j, k)–symmetric points, An. Univ. Oradea, Fasc. Mat., 20(2) (2011), 173–180. Zbl 1313.30078.

[8] M. Sharma, Fractional integration and fractional differentiation of the M –series, Fract. Calc. Appl. Anal., 11(2) (2008), 187–191.MR2401326.Zbl 1153.26303.

[9] M. Sharma and R.Jain, A note on a generalized M –series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12(4) (2009), 449–452.MR2598192.

Zbl 1196.26013.

[10] S. Sharma and R. Jain, On some properties of generalized q–Mittag-Leffler function, Mathematica Aeterna, 4(6) (2014), 613–619.

[11] Z. Wang, C. Gao and S. Yuan, Some coefficient inequalities for certain subclasses of analytic functions with respect to k–symmetric points, Soochow J.

Math., 33(2) (2007), 223–227. MR2330472.Zbl 1130.30015.

(9)

Sh. Najafzadeh

Department of Mathematics, Payame Noor University, Post Office Box: 19395–3697, Tehran, Iran.

e-mail: najafzadeh1234@yahoo.ie.

License

This work is licensed under aCreative Commons Attribution 4.0 International License.

References

Related documents

Universities and colleges set their own criteria for accepting credits based on AP and IB test scores and if the student score is high enough, the student will receive credit for

The aim of this study is to investigate the monthly ground water level (GWL) fluctuation estimation by using Multiple Linear Regression (MLR) and Adaptive network fuzzy

The client workstation component of the Client Logging Tool can be installed on any workstation on which an iSite/IntelliSpace PACS client (Radiology or Enterprise) has been

factors were legume-grass mixtures and organic fertilizers with high organic matter content (spent mushroom substrate and cow slurry, used separately and in various

Abstract : This paper is an approach to predict the probability of an infected dermatoscopic image being cancerous (malignant melanoma) or not (benign) using learning power of

Le deuil est une experience unique, propre chacun, qui comporte chez le parapl~gique des caract~ristiques particuli~res et un rap- port direct avec le v~cu g~nito-sexuel

Despite the deprivations discussed above, the depend- ency identified in Dadaab resembles more that discussed by Clark, namely loss of “social, political and economic coping