• No results found

A strengthened Mulholland type inequality with parameters

N/A
N/A
Protected

Academic year: 2020

Share "A strengthened Mulholland type inequality with parameters"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

A strengthened Mulholland-type

inequality with parameters

Aizhen Wang

*

, Qiliang Huang and Bicheng Yang

*Correspondence:

sxxmaths876@sina.com Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P.R. China

Abstract

By means of the way of weight coefficients, technique of real analysis, and Hermite-Hadamard’s inequality, a strengthened version of the Mulholland-type inequality with the best possible constant factor and multi-parameters is given. The equivalent forms, the reverses, the operator expressions and a few particular cases are considered.

MSC: 26D15; 47A07

Keywords: Mulholland-type inequality; weight coefficient; equivalent form; reverse; operator

1 Introduction

Ifp> , p +q = ,am,bn≥,a={am}∞m=lp,b={bn}

n=∈lq,ap= (

m=a

p m)

p > ,

bq> , then we have the following well-known Hardy-Hilbert’s inequality with the best possible constant factorsin(ππ/p) (cf.[], Theorem ):

m= ∞

n=

ambn m+n<

π

sin(π/p)apbq. ()

Also we have the following Mulholland’s inequality similar to () with the same best

pos-sible constant factor π

sin(π/p)(cf.[] or [], Theorem , replacing

am n,

bn

n byam,bn):

m= ∞

n=

ambn

lnmn<

π

sin(π/p)

m=

apm m–p

p

n=

bqn n–q

q

. ()

Inequalities () and () are important in analysis and its applications (cf.[, –]). In , Gao and Yang [] gave a strengthened version of () as follows:

m= ∞

n=

ambn m+n<

m=

π

sin(π/p)–  –γ

m/p

apm

p

×

n=

π

sin(π/p)–  –γ

n/q

bqn

q

, ()

where  –γ = .+(γ is Euler constant).

(2)

Suppose thatμi,υj>  (i,jN={, , . . .}),

Um:= m

i=

μi, Vn:= n

j=

υj (m,nN), ()

we have the following Hardy-Hilbert-type inequality (cf.[], Theorem ):

m= ∞

n=

μ/mqυn/pambn Um+Vn <

π

sin(π/p)apbq. ()

Forμi=υj=  (i,jN), inequality () reduces to (). Replacingμ/mqamandυn/pbnbyam andbnin (), respectively, we obtain the equivalent form of () as follows:

m= ∞

n=

ambn Um+Vn<

π

sin(π p)

m=

apm

μpm– 

p

n=

bqn

υnq– 

q

. ()

In , Yang [] gave an extension of () as follows: For  <λ,λ≤,λ+λ=λ, we

have

m= ∞

n=

ambn (Um+Vn)λ

<B(λ,λ)

m=

Up(–λ)– m apm

μpm– 

p

n=

Vq(–λ–) n bqn

υnq– 

q

, ()

whereB(u,v) is the beta function indicated by (cf.[])

B(u,v) :=

tu–

( +t)u+vdt (u,v> ). ()

In this paper, by using the way of weight coefficients, the technique of real analysis, and Hermite-Hadamard’s inequality, a Mulholland-type inequality with the best possible con-stant factor sin(ππ/p) is given as follows: Forμ=υ= ,{μm}∞m=and{υn}∞n=are decreasing,

andU∞=V∞=∞, we have

m= ∞

n=

ambn

lnUmVn

< π

sin(π/p)

m=

Um

μm+

p–

apm

p

n=

Vn

υn+

q–

bqn

q

, ()

(3)

2 Some lemmas

In the following, we make appointment thatp= , , p+q= ,  <λ,λ≤,λ+λ=λ, μi,υj>  (i,jN), withμ=υ= ,UmandVnare defined by (),am,bn≥,ap,λ:=

(∞m=λ(m)apm) 

p andb q,λ:= (

n=λ(n)bqn) 

q, where

λ(m) :=

(lnUm)p(–λ)– Um–pμpm–+

,

λ(n) :=

(lnVn)q(–λ)– Vn–qυnq+–

m,nN\{}.

()

Lemma  If aR,f(x)is continuous in[a,a+],f(x)is strictly increasing in(a–,a) and(a,a+),respectively,and

lim

xaf

(x) =f(a– )f(a+ ) = lim

xa+f (x),

then we have the following Hermite-Hadamard’s inequality(cf.[]):

f(a) < a+

a–

f(x)dx. ()

Proof Sincef(a– ) (≤f(a+ )) is finite, we set a functiong(x) as follows:

g(x) :=f(a– )(xa) +f(a), x

a–  ,a+

 

.

In view off(x) being strictly increasing in (a–,a), then forx∈(a–,a), (f(x) –g(x))= f(x) –f(a– ) < . Sincef(a) –g(a) = , it follows thatf(x) –g(x) > ,x∈(a–,a). In the same way, we can obtainf(x) –g(x) > ,x∈(a,a+). Hence, we find

a+

a

f(x)dx> a+

a

g(x)dx=f(a),

namely () follows.

Example  If{μm}∞m= and{υn}∞n= are also decreasing, we setμ(t) :=μm,t∈(m– ,m] (mN);υ(t) :=υn,t∈(n– ,n] (nN),

U(x) := x

μ(t)dt (x≥), V(y) :=

y

υ(t)dt (y≥). ()

Then it follows thatU(m) =Um,V(n) =Vn(m,nN),U(∞) =U∞,V(∞) =V∞and

U(x) =μ(x) =μm

x∈(m– ,m),

V(y) =υ(y) =υn

y∈(n– ,n).

For fixedm,nN\{}, we also set a functionf(x) as follows:

f(x) = ln

λ–V(x)

V(x)(lnUm+lnV(x))λ, x

n– ,n+

 

(4)

Thenf(x) in continuous in [n,n+]. Forx∈(n,n) (nN\{}), we find

f(x) = –

lnλ–V(x) V(x) +

λlnλ–V(x)

lnUm+lnV(x)

+  –λV–λ(x)

× υn

V(x)(lnUm+lnV(x))λ .

Since  –λ≥, it follows thatf(x) (< ) is strictly increasing in (n,n) and

lim

xnf

(x) =f(n– )

= –

lnλ–V n Vn +

λlnλ–V n

lnUm+lnVn+  –λ

V–λn

× υn

Vn(lnUm+lnVn)λ.

In the same way, forx∈(n,n+), we find

f(x) = –

lnλ–V(x) V(x) +

λlnλ–V(x)

lnUm+lnV(x)+  –λ

V–λ(x)

× υn+

V(x)(lnUm+lnV(x))λ,

f(x) (< ) is strictly increasing in (n,n + ). In view of υn+ ≤υn, it follows that

limxn+f(x) =f(n+ )≥f(n– ). Then by () we have

f(n) < n+

n–

f(x)dx= n+

n

lnλ–V(x)

V(x)(lnUm+lnV(x))λdx. ()

Definition  Define the following weight coefficients:

ω(λ,m) := ∞

n=

lnλ(UmVn)

υn+lnλUm

Vnln–λVn, mN\{}, ()

(λ,n) := ∞

m=

lnλ(UmVn)

μm+lnλVn

Umln–λUm, nN\{}. ()

Lemma  If{μm}∞m= and{υn}∞n= are decreasing,and U∞ =V∞=∞,then we have the

following inequalities:

ω(λ,m) <B(λ,λ)

 – θ

lnλU m

 <λ≤,λ> ;mN\{}

, ()

(λ,n) <B(λ,λ)

 – θ

lnλVn

 <λ≤,λ> ;nN\{}

(5)

where

θ:=

B(λ,λ)

lnλ( +υ

/)

λ[ +lnln(+(+μυ/)/)]

λ, ()

θ:=

B(λ,λ)

lnλ( +μ

/)

λ[ +lnln(+(+μυ/)/)]

λ. ()

Proof Since forx∈(n– ,n+

)\{n},υn+≤V(x), by () we find

ω(λ,m) < ∞

n= υn+

n+

n

lnλUmlnλ–V(x) V(x)(lnUm+lnV(x))λdx

≤ ∞

n=

n+

n–

lnλU

mlnλ–V(x) V(x)(lnUm+lnV(x))λV

(x)dx

=

 

lnλUmlnλ–V(x) V(x)(lnUm+lnV(x))λ

V(x)dx

=

lnλUmlnλ–V(x) V(x)(lnUm+lnV(x))λV

(x)dx

lnλU

mlnλ–V(x) V(x)(lnUm+lnV(x))λV

(x)dx.

Settingt=lnlnVU(x)

m, we obtain V(x)

V(x) dx=lnUmdtand

ω(λ,m) <

 ( +t)λt

λ–dt

lnλUm (lnUm+lnV(x))λ

lnλ–V(x) V(x) V

(x)dx

=B(λ,λ)

 –θ(m), ()

where

θ(m) :=  B(λ,λ)

lnλU m (lnUm+lnV(x))λ

lnλ–V(x) V(x) V

(x)dx. ()

We find

θ(m)≥  B(λ,λ)

lnλUm (lnUm+lnV())λ

lnλ–V(x) V(x) V

(x)dx

= 

B(λ,λ)

lnλUm

λ(lnUm+lnV())λ

lnλV

 

= 

B(λ,λ)

lnλ( +υ

/)

λ( +ln(+lnUυm/)) λ

lnλU m

≥ 

B(λ,λ)

lnλ( +υ

/)

λ( +ln(+ln/)) λ

lnλU m

= θ

lnλU m

.

Hence, by (), we have () and (). In the same way, we obtain () and ().

(6)

Lemma  With the assumptions of Lemma, (i)for m,nN\{},we have

B(λ,λ)

 –θ(λ,m)

<ω(λ,m) ( <λ≤,λ> ), ()

B(λ,λ)

 –ϑ(λ,n)

< (λ,n) ( <λ≤,λ> ), ()

where

θ(λ,m) =

B(λ,λ)

lnλ( +υ

)

λ[ +ln(+lnθU(mm)υ)] λ

lnλU m

=O

lnλUm

∈(, ) θ(m)∈(, ), ()

ϑ(λ,n) =

B(λ,λ)

lnλ( +μ

)

λ[ +ln(+lnϑV(nn)μ)] λ

lnλVn

=O

lnλVn

∈(, ) ϑ(n)∈(, ); ()

(ii)for any a> ,we have

m=

μm+

Umln+aUm =

a

lna( +μ)

+aO()

, ()

n= υn+

Vnln+aVn=  a

lna( +υ)

+aO()

. ()

Proof Since by Example ,f(x) is strictly decreasing in [n,n+ ], then we find

ω(λ,m) > ∞

n=

n+

n

υn+

lnλU

mlnλ–V(x) V(x)(lnUm+lnV(x))λdx

=

lnλUmlnλ–V(x) V(x)(lnUm+lnV(x))λ

V(x)dx

=

lnλU

mlnλ–V(x) V(x)(lnUm+lnV(x))λV

(x)dx

lnλUmlnλ–V(x) V(x)(lnUm+lnV(x))λV

(x)dx

=B(λ,λ)

 –θ(λ,m)

,

where

θ(λ,m) :=

B(λ,λ)

V(x)lnλUmlnλ–V(x)

V(x)(lnUm+lnV(x))λ dx∈(, ).

There existsθ(m)∈(, ) such that

θ(λ,m) =

B(λ,λ)

lnλU m

[lnUm+lnV( +θ(m))]λ

×  

lnλ–V(x) V(x) V

(7)

=  B(λ,λ)

lnλUmlnλ( +υ

) λ[lnUm+lnV( +θ(m))]λ

= 

B(λ,λ)

lnλ( +υ

)

λ[ +ln(+lnθU(mm)υ)] λ

lnλUm.

Since we obtain

 <θ(λ,m)≤

lnλ( +υ

) λB(λ,λ)

lnλU m

,

namelyθ(λ,m) =O(lnλUm), we have (). In the same way, we obtain (). Fora> , we find

m=

μm+

Umln+aUm

m= μm Umln+aUm

= μ

Uln+aU

+

m= μm Umln+aUm

= μ

Uln+aU

+

m=

m

m–

U(x) Umln+aUm

dx

< μ

Uln+aU

+

m=

m

m–

U(x) U(x)ln+aU(x)dx

= μ

Uln+aU

+

U(x) U(x)ln+aU(x)dx

= μ

( +μ)ln+a( +μ)

+ 

alna( +μ

)

= a

lna( +μ)

+

( +μ)ln+a( +μ)

,

m=

μm+

Umln+aUm =

m=

m+

m

U(x)dx Umln+aUm

>

m=

m+

m

U(x) U(x)ln+aU(x)dx

=

U(x)dx U(x)ln+aU(x)=

alna( +μ)

.

Hence we have (). In the same way, we have ().

3 Main results and operator expressions We also set

λ(m) :=ω(λ,m)

(lnUm)p(–λ)–

Um–pμpm–+

,

λ(n) := (λ,n)

(lnVn)q(–λ)– Vn–qυnq+–

m,nN\{}.

(8)

Theorem  (i)For p> ,we have the following equivalent inequalities:

I:=

n= ∞

m=

ambn

lnλ(UmVn)≤ ap,λbq,λ, ()

J:=

n=

υn+ln–Vn

( (λ,n))p–Vn

m=

am

lnλ(UmVn) p p

ap,λ. ()

(ii)For <p<  (or p< ),we have the equivalent reverses of()and().

Proof (i) By Hölder’s inequality with weight (cf.[]) and (), we have

m=

am

lnλ(U mVn)

p =

m=

lnλ(U mVn)

Um/q(lnUm)(–λ)/qυn/+p

(lnVn)(–λ)/pμ/q m+

am

×

(lnVn)(–λ)/pμ/q m+

Um/q(lnUm)(–λ)/qυn/+p

p

≤ ∞

m=

lnλ(UmVn)

Ump–(lnUm)(–λ)p/qυn+

(lnVn)–λμp/q m+

apm

×

m=

lnλ(UmVn)

(lnVn)(–λ)(q–)μ m+

Um(lnUm)–λυq– n+

p–

= ( (λ,n)) p–Vn

(lnVn)–υn+

m=

υn+Ump–(lnUm)(–λ)(p–)apm

lnλ(U

mVn)Vn(lnVn)–λμpm–+

. ()

Then by () we find

J

n= ∞

m= υn+

lnλ(U mVn)

Ump–(lnUm)(–λ)(p–) Vn(lnVn)–λμp–

m+

apm

p

=

m= ∞

n=

υn+(lnUm)λ

lnλ(UmVn)

Ump–(lnUm)p(–λ)–

Vn(lnVn)–λμp– m+

apm

p

=

m=

ω(λ,m)

(lnUm)p(–λ)–

Um–pμpm–+

apm

p

, ()

and then () follows.

By Hölder’s inequality (cf.[]), we have

I=

n=

(lnVn)λ–pυ/p n+

( (λ,n))

qV

p n

m=

am

lnλ(UmVn)

× (λ,n)

q(lnVn)

pλ

V –

p n υ

p n+

bn

Jbq,λ. ()

(9)

On the other hand, assuming that () is valid, we set

bn:=(lnVn) –υ

n+

( (λ,n))p–Vn

m=

am

lnλ(U mVn)

p–

, nN\{}. ()

Then we findJp=bq

q,λ. IfJ= , then () is trivially valid; ifJ=∞, then, by (), () takes the form of equality. Suppose that  <J<∞. By (), it follows that

bqq,

λ=J

p=Ia

p,λbq,λ, ()

bqq–,

λ=Jap,λ, ()

and then () follows, which is equivalent to ().

(ii) For  <p<  (orp< ), by the reverse Hölder’s inequality with weight (cf.[]) and (), we obtain the reverse of () (or ()), then we have the reverse of (), and then the reverse of () follows. By Hölder’s inequality (cf.[]), we have the reverse of () and then by the reverse of (), the reverse of () follows.

On the other hand, assuming that the reverse of () is valid, we setbnas (). Then we findJp=bq

q,λ. IfJ=∞, then the reverse of () is trivially valid; ifJ= , then, by the reverse of (), () takes the form of equality (= ). Suppose that  <J<∞. By the reverse of (), it follows that the reverses of () and () are valid, and then the reverse

of () follows, which is equivalent to the reverse of ().

Setting

λ(m) :=

 – θ

lnλU m

(lnUm)p(–λ)– Um–pμpm–+

,

λ(n) :=

 – θ

lnλVn

(lnVn)q(–λ)– Vn–qυnq–+

m,nN\{},

()

we have the following.

Theorem  If p> ,{μm}∞m=and{υn}∞n=are decreasing,U∞=V∞=∞,ap,λR+and

bq,λR+,then we have the following equivalent inequalities:

n= ∞

m=

ambn

lnλ(UmVn)<B(λ,λ)ap,λbq,λ, ()

J:=

n=

υn+ln–Vn ( – θ

lnλVn) p–Vn

m=

am

lnλ(UmVn) p p

<B(λ,λ)ap,λ, ()

where the constant factor B(λ,λ)is the best possible.

Proof Using () and () in () and (), since

ω(λ,m)

p<B(λ

,λ)

p

 – θ

lnλU m

p

(p> ),

(λ,n)

q <B(λ

,λ)

q

 – θ

lnλVn

q

(10)

and

(B(λ,λ))p–( –lnλθVn) p–<

 ( (λ,n))p–

(p> ),

we obtain equivalent inequalities () and ().

Forε∈(,), we setλ=λ–pε(∈(, )),λ=λ+εp (> ), and

am:=

μm+

Um ln λ–U

m=

μm+

Um ln λ–εp–U

m,

bn=

υn+

Vn ln λ–ε–V

n=

υn+

Vn ln λ–εq–V

n.

()

Then, by (), () and (), we have

ap,λbq,λ

ap,λbq,λ

=

m=

μm+

Umln+εUm

p

n= υn+

Vnln+εVn

q

=

ε

lnε( +μ)

+εO() 

p

lnε( +υ)

+εO() 

q

,

I:=

n= ∞

m=

ambn

lnλ(UmVn)

=

n=

m=

lnλ(U mVn)

μm+lnλVn

Umln–λUm

υn+

Vnlnε+Vn

=

n=

(λ,n) υn+

Vnlnε+Vn

B(λ,λ) ∞

n=

 –O

lnλVn

υn+

Vnlnε+Vn

=B(λ,λ)

n= υn+

Vnlnε+Vn

n=

O

υn+

Vn(lnVn)(εq+λ)+

=

εB(λ,λ)

lnε( +υ)

+εO() –O().

If there exists a positive constantKB(λ,λ) such that () is valid when replacing

B(λ,λ) byK, then, in particular, we haveεI<εKap,λbq,λ, namely

B(λ,λ)

lnε( +υ)

+εO() –O()

<K

lnε( +μ

)

+εO() 

p

lnε( +υ

)

+εO() 

q

(11)

It follows thatB(λ,λ)≤K (ε→+). Hence,K=B(λ,λ) is the best possible constant

factor of ().

Similarly to (), we still can find that

IJbq,λ. ()

Hence, we can prove that the constant factorB(λ,λ) in () is the best possible.

Other-wise, we would reach a contradiction by () that the constant factor in () is not the best

possible.

Remark  (i) It is evident that () and () are strengthened versions of the following equivalent Mulholland-type inequalities:

n= ∞

m=

ambn

lnλ(UmVn)<B(λ,λ)ap,λbq,λ, ()

n= υn+

Vn ln –Vn

m=

am

lnλ(UmVn) pp

<B(λ,λ)ap,λ, ()

where the constant factorB(λ,λ) is still the best possible.

(ii) Forλ= ,λ=q,λ=p,

θ=ϑ:=

psin(π/p)ln/p( +υ/) π[ + ln(+υ/)

ln(+μ/)] ,

θ=ϑ:=

qsin(π/p)ln/q( +μ/) π[ +ln(+μ/)

ln(+υ/)] ,

() reduces to the strengthened version of () as follows:

m= ∞

n=

ambn

lnUmVn <

π

sin(π/p)

m=

 – ϑ

ln/pUm

Um

μm+

p–

apm

p

×

n=

 – ϑ

ln/qVn

Vn

υn+

q–

bqn

q

. ()

Forμi=υj=  (i,jN), () reduces to the following strengthened Mulholland’s inequal-ity:

m= ∞

n=

ambn

lnmn<

m=

π

sin(π/p)–

ln√/

ln/pm

apm m–p

p

×

n=

π

sin(π/p)–

ln√/

ln/qm

bqn n–q

q

, ()

(12)

Forp> ,λ–p(n) = υn+ Vn (lnVn)

–, we define the following normed spaces:

lp,λ:=

a={am}∞m=;ap,λ<∞

,

lq,λ:=

b={bn}∞n=;bq,λ<∞

,

lp,–p

λ :=

c={cn}∞n=;cp,–p

λ <∞

.

Assuming thata={am}m∞=∈lp,λ, setting

c={cn}∞n=,cn:=

m=

am

lnλ(UmVn), nN,

we can rewrite () as follows:

cp,–p

λ

<B(λ,λ)ap,λ<∞,

namelyclp,–p

λ .

Definition  Define a Mulholland-type operatorT :lp,λlp,–λp as follows: For any a={am}∞m=lp,λ, there exists a unique representationTa=clp,–λp. Define the formal inner product ofTaandb={bn}∞n=lq,λas follows:

(Ta,b) :=

n=

m=

am

lnλ(UmVn)

bn. ()

Then we can rewrite () and () as follows:

(Ta,b) <B(λ,λ)ap,λbq,λ, ()

Tap,–p

λ <B(

λ,λ)ap,λ. ()

Define the norm of operatorTas follows:

T:= sup

a(=θ)∈lp,λ

Tap,–p

λ

ap,λ .

Then by () we findTB(λ,λ). Since the constant factor in () is the best possible,

we have

T=B(λ,λ). ()

4 Some strengthened versions of the reverses In the following, we also set

λ(m) :=

 –θ(λ,m)

(lnUm)p(–λ)–

Um–pμpm–+

,

λ(n) := –ϑ(λ,n)

(lnVn)q(–λ)– Vn–qυnq–+

m,nN\{}.

(13)

For  <p<  orp< , we still use the formal symbolsap,λ,bq,λ,ap,λ,bq,λ,

ap,λandbq,λ.

Theorem  If <p< ,{μm}m∞=and{υn}∞n=are decreasing,U∞=V∞=∞,ap,λR+

andbq,λR+,then we have the following equivalent inequalities with the best possible

constant factor B(λ,λ):

n= ∞

m=

ambn

lnλ(UmVn)

>B(λ,λ)ap,λbq,λ, ()

n=

υn+ln–Vn

( – θ

lnλVn) p–Vn

m=

am

lnλ(U mVn)

p p

>B(λ,λ)ap,λ. ()

Proof Using () and () in the reverses of () and (), since

ω(λ,m)

p>B(λ

,λ)

p –θ(λ

,m)

p ( <p< ),

(λ,n)

q >B(λ

,λ)

q

 – θ

lnλV n

q

(q< )

and

 (B(λ,λ))p–( – θ

Vnλ

)p–>

 ( (λ,n))p–

( <p< ),

we obtain equivalent inequalities () and ().

Forε∈(,), we setλ,λ,amandbnas (). Then, by (), () and (), we find

ap,λbq,λ

ap,λbq,λ

=

m=

 –θ(λ,m)

μm+

Umln+εUm

p

n= υn+

Vnln+εVn

q

=

m=

μm+

Umln+εUm

m=

O

μm+

Umln+λ+εUm

p

×

n= υn+

Vnln+εVn

q

=

ε

lnε( +μ

)

+εO() –O()

p

lnε( +υ

)

+εO() 

q

,

I:=

n= ∞

m=

ambn

lnλ(UmVn)

=

n=

m=

lnλ(UmVn)

μm+lnλVn

Umln–λUm

υn+

(14)

=

n=

(λ,n) υn+

Vnlnε+VnB(λ,λ)

n= υn+

Vnlnε+Vn

=

εB(λ,λ)

lnε( +υ)

+εO()

.

If there exists a positive constantKB(λ,λ) such that () is valid when replacing

B(λ,λ) byK, then, in particular, we haveεI>εKap,λbq,λ, namely

B(λ,λ)

lnε( +υ)

+εO()

>K

lnε( +μ)

+εO() –O()

p

lnε( +υ)

+εO() 

q

.

It follows thatB(λ,λ)≥K (ε→+). Hence,K=B(λ,λ) is the best possible constant

factor of ().

The constant factorB(λ,λ) in () is still the best possible. Otherwise, we would reach

a contradiction by the reverse of () that the constant factor in () is not the best

possi-ble.

Remark  It is evident that () and () are strengthened versions of the following equiv-alent inequalities:

n= ∞

m=

ambn

lnλ(UmVn)>B(λ,λ)ap,λbq,λ, ()

n= υn+

Vn ln –V

n

m=

am

lnλ(UmVn) pp

>B(λ,λ)ap,λ, ()

where the constant factorB(λ,λ) is still the best possible.

Theorem  If p< ,{μm}∞m= and{υn}∞n= are decreasing,U∞=V∞=∞,ap,λR+

andbq,λR+,then we have the following equivalent inequalities with the best possible

constant factor B(λ,λ):

n= ∞

m=

ambn

lnλ(U mVn)

>B(λ,λ)ap,λbq,λ, ()

J:=

n=

υn+ln–Vn

( –ϑ(λ,n))p–Vn

m=

am

lnλ(U mVn)

pp

>B(λ,λ)ap,λ. ()

Proof Using () and () in the reverses of () and (), since

ω(λ,m)

p>B(λ

,λ)

p

 – θ

m

p

(p< ),

(λ,n)

q >B(λ

,λ)

q –ϑ(λ

,n)

(15)

and

(B(λ,λ))p–( –ϑ(λ,n))p–

p

>

 ( (λ,n))p–

p

(p< ),

we obtain equivalent inequalities () and ().

Forε∈(,), we setλ=λ+εq(> ),λ=λ–qε(∈(, )), and

am:=μm+ Um

lnλ–ε–Um=μm+ Um

lnλ–εp–Um,

bn=υn+ Vn ln

λ–Vn=υn+ Vn ln

λ––Vn.

Then, by (), () and (), we have

ap,λbq,λ

ap,λbq,λ

=

m=

μm+

Umlnε+Um

p

n=

 –ϑ(λ,n)

υn+

Vnlnε+Vn

q

=

m=

μm+

Umlnε+Um

p

n= υn+

Vnlnε+Vn

n=

O

υn+

Vnln+(λ+ε)Vn

q

=

ε

lnε( +μ

)

+εO() 

p

lnε( +υ

)

+εO() –O()

q

,

I=

m= ∞

n=

ambn

lnλ(UmVn)

=

m=

n=

lnλUm

lnλ(UmVn)

υn+

Vn ln λ–V

n

μm+

Umlnε+Um

=

m=

ω(λ,m)

μm+

Umlnε+UmB(λ,λ)

n=

μm+

Umlnε+Um

=

εB(λ,λ)

lnε( +μ)

+εO()

.

If there exists a positive constantKB(λ,λ) such that () is valid when replacing

B(λ,λ) byK, then, in particular, we haveεI>εKap,λbq,λ, namely

B(λ,λ)

lnε( +μ)

+εO()

>K

lnε( +μ

)

+εO() 

p

lnε( +υ

)

+εO() –O()

q

.

It follows thatB(λ,λ)≥K (ε→+). Hence,K=B(λ,λ) is the best possible constant

(16)

Similarly to the reverse of (), we still find that

IJbq,λ. ()

Hence the constant factorB(λ,λ) in () is still the best possible. Otherwise, we would

reach a contradiction by () that the constant factor in () is not the best possible.

Remark  It is evident that () and () are strengthened versions of the following equiv-alent inequalities:

n= ∞

m=

ambn

lnλ(UmVn)

>B(λ,λ)ap,λbq,λ, ()

n=

υn+ln–Vn

( –ϑ(λ,n))p–Vn

m=

am

lnλ(U mVn)

pp

>B(λ,λ)ap,λ, ()

where the constant factorB(λ,λ) is still the best possible.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. AW and QH participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Acknowledgements

The authors wish to express their thanks to the referees for their careful reading of the manuscript and for their valuable suggestions. This work is supported by the National Natural Science Foundation (No. 61370186), and 2013 Knowledge Construction Special Foundation Item of Guangdong Institution of Higher Learning College and University

(No. 2013KJCX0140).

Received: 5 August 2015 Accepted: 30 September 2015

References

1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)

2. Mulholland, HP: Some theorems on Dirichlet series with positive coefficients and related integrals. Proc. Lond. Math. Soc.29(2), 281-292 (1929)

3. Mitrinovi´c, DS, Peˇcari´c, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991)

4. Yang, BC: Hilbert-Type Integral Inequalities. Bentham Science Publishers, Sharjah (2009) 5. Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science Publishers, Sharjah (2011) 6. Yang, BC: On Hilbert’s integral inequality. J. Math. Anal. Appl.220, 778-785 (1998) 7. Yang, BC: An extension of Mulholland’s inequality. Jordan J. Math. Stat.3(3), 151-157 (2010) 8. Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009) 9. Gao, MZ, Yang, BC: On the extended Hilbert’s inequality. Proc. Am. Math. Soc.126(3), 751-759 (1998) 10. Yang, BC: An extension of a Hardy-Hilbert-type inequality. J. Guangdong Univ. Educ.35(3), 1-7 (2015) 11. Wang, DX, Guo, DR: Introduction to Spectral Functions. Science Press, Beijing (1979)

References

Related documents

A schematic of the stages ( A-F ) of mammary gland development in the adult mouse, from pre-puberty through to pregnancy, lactation and involution. Some of the important factors

Results of antimicrobial activities of methanol extracts of used plant against the test microorganisms are shown in Table 1.. The results of antimicrobial activities

2 A tese de doutorado de Milene de Cássia Silveira Gusmão, intitulada Dinâmicas do cinema no Brasil e na Bahia: trajetórias e práticas do século XX ao XXI , defendida

Summary of the results of the experiment 1. A) mean + S.E.M of reaction time, in seconds, in each group. This work is in conformity with International Research, as described

The synthesized β-amino- heteronapthols were tested for their antimicrobial efficacy against pathogenic bacteria and fungi by comparing their zone of inhibition with

Erythroid Kru ̈ ppel-like factor (EKLF; KLF1), a crucial zinc finger transcription factor, is expressed in the EMPs, and plays an extrinsic role in erythroid maturation by

The findings revealed among others that the extent to which administrators manage time for quality administration of universities include: planning school

Note that treatment with either the antibodies or with soluble agrin significantly decreased the density of spines (D) and the number of primary dendrites (E), and increased