• No results found

Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo

N/A
N/A
Protected

Academic year: 2020

Share "Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

D

E

V

E

LO

P

M

E

N

T

INTRODUCTION

The vertebrate eye primordia are first visible as an outgrowth of the prosencephalic neuroepithelium (reviewed by Chow and Lang, 2001; Martinez-Morales et al., 2004). Enlargement of the distal portion of the optic vesicle and dorsal expansion divides the optic vesicle into three territories (Hilfer, 1983): the narrow optic stalk (proximal), the neural retina (NR) and the retinal pigment epithelium (RPE). Formation of the lens vesicle from the surface ectoderm induces the distal region of the optic vesicle to invaginate and this process results in the development of the bilayered optic cup. The inner layer develops into the multilayered NR, whereas the outer layer develops into the single-layered, pigmented RPE (reviewed by Chow and Lang, 2001).

In vertebrates, optic vesicle cells initially co-express a number of transcription factors (TFs) that become restricted to NR, RPE and optic nerve later on, implicating that these cells are competent to develop into these tissues (reviewed by Martinez-Morales et al., 2004). Extrinsic signals emanating from the surface ectoderm and ocular mesenchyme appear to induce and repress specific TFs, which subsequently pattern the optic vesicle into NR and RPE domains (for reviews, see Chow and Lang, 2001; Martinez-Morales et al., 2004). For example, fibroblast growth factors (FGFs) expressed in the surface ectoderm and/or distal optic vesicle appear to be involved in NR induction and differentiation (Pittack et al., 1997; Hyer et al., 1998; Nguyen and Arnheiter, 2000; Vogel-Höpker et al., 2000; Martinez-Morales et al., 2005). Embryonic transplantations and in ovo explant cultures of the chick optic vesicle

have shown that the dorsoventral polarity of the eye is already specified by stage 10 (Uemonsa et al., 2002; Kagiyama et al., 2005). At this time point, the dorsal half of the optic vesicle is fated to develop mainly into RPE, whereas the ventral portion develops mainly into NR (Kagiyama et al., 2005).

Little is known about the molecular mechanisms that specify the RPE (reviewed by Martinez-Morales et al., 2004). The mesenchyme adjacent to the optic vesicle appears to be crucial for RPE development, but the molecular nature of the signal(s) is still unclear (reviewed by Chow and Lang, 2001; Martinez-Morales et al., 2004). Activin, a member of the transforming growth factor-␤(TGF-␤) superfamily, or a related growth factor appears to be released from the mesenchyme to induce RPE development (Fuhrmann et al., 2000). Cell-intrinsic TFs mediate the effect of mesenchymal signalling molecules on RPE development (reviewed by Chow and Lang, 2001). The best-studied example is the microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper TF that is crucial for the acquisition and maintenance of RPE cell identity (reviewed by Martinez-Morales et al., 2004). Ectopic Mitfexpression in cultured avian neural retina cells results in the induction of pigmentation by initiating the expression of two markers of differentiated pigment cells: melanosomal matrix protein 115 (MMP115) and tyrosinase (Mochii et al., 1998; Planque et al., 1999). By contrast, inhibition of Mitfby small interfering RNAs (siRNA) decreases MMP115 expression and promotes de-differentiation of the RPE (Iwakiri et al., 2005). In Mitfmutants, the RPE remains unpigmented and displays areas developing into a second NR (Bumsted and Barnstable, 2000; Nguyen and Arnheiter, 2000). Members of the orthodenticle-related family of TFs, Otx1 and Otx2, are also required for RPE specification during vertebrate eye development (Martinez-Morales et al., 2001; Martinez-Morales et al., 2003). In Otx1/Otx2mutants, RPE development is disturbed and instead the outer layer of the optic cup develops NR-like features. Similar to Mitf, Otx2overexpression induces a pigmented phenotype in cultured NR cells. Otx1 and Otx2 are initially

Bone morphogenetic proteins specify the retinal pigment

epithelium in the chick embryo

Frank Müller*, Hermann Rohrer and Astrid Vogel-Höpker†

In vertebrates, the neuroepithelium of the optic vesicle is initially multipotential, co-expressing a number of transcription factors that are involved in retinal pigment epithelium (RPE) and neural retina (NR) development. Subsequently, extrinsic signals

emanating from the surrounding tissues induce the separation of the optic vesicle into three domains: the optic stalk/nerve, the NR and the RPE. Here, we show that bone morphogenetic proteins (BMPs) are sufficient and essential for RPE development in vivo.

Bmp4and Bmp7 are expressed in the surface ectoderm overlying the optic vesicle, the surrounding mesenchyme and/or presumptive RPE during the initial stages of eye development. During the initial stages of chick eye development the

microphthalmia-associated transcription factor (Mitf), important for RPE development, is expressed in the optic primordium that is covered by the BMP-expressing surface ectoderm. Following BMP application, the optic neuroepithelium, including the

presumptive optic stalk/nerve and NR domain, develop into RPE as assessed by the expression of Otx2, Mitf, Wnt2band the pigmented cell marker MMP115. By contrast, interfering with BMP signalling prevents RPE development in the outer layer of the optic cup and induces NR-specific gene expression (e.g. Chx10).Our results show that BMPs are sufficient and essential for RPE development during optic vesicle stages. We propose a model in which the BMP-expressing surface ectoderm initiates RPE specification by inducing Mitfexpression in the underlying neuroepithelium of the optic vesicle.

KEY WORDS: BMP, Eye development, Retinal pigment epithelium, RPE specification Development 134, 3483-3493 (2007) doi:10.1242/dev.02884

Max-Planck-Institute for Brain Research, Department of Neurochemistry, Deutschordenstr. 46, 60528 Frankfurt/M., Germany.

*Present address: Institute for Physiological Chemistry, Martin-Luther-University, Hollystr. 1, D-06097 Halle, Germany

Author for correspondence (e-mail: veithopker@aol.com)

(2)

D

E

V

E

LO

P

M

E

N

T

expressed in the entire optic vesicle. Subsequently, Otx2expression is maintained in the presumptive RPE and expression persists in the adult RPE (reviewed by Martinez-Morales et al., 2004).

There appear to be differences in the Mitfexpression pattern between chick and mouse (Mochii et al., 1998; Fuhrmann et al., 2000; Nguyen and Arnheiter, 2000). In chick, Mitfexpression seems to be restricted to the dorsal region of the optic vesicle, the presumptive RPE, and this region is covered by the surrounding mesenchyme. By contrast, the entire mouse optic vesicle is initially covered by a small amount of mesenchyme and here Mitfexpression is observed throughout the optic vesicle. Once the mesenchyme is displaced at the distal part of the optic vesicle at the time this region contacts the FGF-expressing surface ectoderm, Mitfexpression is inhibited and instead NR induction occurs in the mouse (Bora et al., 1998; Nakayama et al., 1998; Nguyen and Arnheiter, 2000). The paired-like homeobox gene Chx10is a specific marker of retinal progenitor cells and functions to repress Mitfexpression in the distal optic vesicle (Rowan et al., 2004; Horsford et al., 2005). Moreover, overexpression of Chx10in the chick RPE causes downregulation of Mitf expression and other pigment markers, leading to a nonpigmented RPE (Rowan et al., 2004). Thus, the current model is that the ocular mesenchyme is necessary to induce the RPE domain during vertebrate eye development, whereas FGFs released from the surface ectoderm ensure that the NR develops at the distal part of the optic vesicle (reviewed by Chow and Lang, 2001).

Like activin, BMPs belong to the TGF-␤superfamily and several BMP ligands and their receptors are expressed in the developing chick and mouse eye and surrounding tissues (reviewed by Chow and Lang, 2001; Martinez-Morales et al., 2004). BMPs are involved in several aspects of vertebrate eye development. For example, BMP signalling is required for patterning the eye primordia during blastula and gastrula stages in zebrafish (Hammerschmidt et al., 2003), whereas later on BMPs function in both dorsal and ventral patterning of the vertebrate eye (Koshiba-Takeuchi et al., 2000; Sakuta et al., 2001; Adler and Belecky-Adams, 2002; Sasagawa et al., 2002; Murali et al., 2005). In addition, the generation of retina-specific BMP type 1 receptor mutant mice has shown that different threshold levels of BMP signalling regulate distinct developmental processes such as dorsoventral patterning of the NR, as well as NR growth and differentiation (Murali et al., 2005). At present, however, the possible involvement of BMP signalling in RPE development during optic vesicle stages has not been established (for a review, see Martinez-Morales et al., 2004).

In this study, we show that BMP family members are expressed at the right time and place to be involved in inducing Mitfexpression in the chick optic vesicle. Mitfexpression is first observed at optic vesicle stages, being strongest in the distal optic vesicle that is covered by the BMP-expressing surface ectoderm. Gain-of-function experiments show that BMPs are sufficient to elicit RPE development in vivo. BMP treatment converts cells of the presumptive optic stalk and NR region into RPE. By contrast, interfering with BMP signalling at optic vesicle stages inhibits RPE formation and induces NR-specific gene expression in the outer optic cup. Thus, we provide evidence that during optic vesicle stages, BMPs are necessary and sufficient for RPE development in vivo.

MATERIALS AND METHODS

Assaying gene expression in chick embryos by in situ hybridisation (ISH)

ISH was performed on whole embryos according to Wilkinson (Wilkinson, 1993) and Henrique et al. (Henrique et al., 1995) and on cryostat sections using the technique described by Reissmann et al. (Reissmann et al., 1996).

In some cases, we enhanced the signal by staining whole-mount embryos two to three times or by leaving the colour reaction on sections overnight. Antisense RNA probes specific for chicken Bmp2, Bmp4 and Bmp7

(Reissmann et al., 1996; Vogel-Höpker and Rohrer, 2002), Bmp5(Oh et al., 1996), Bmpr1b(L. Niswander, Sloan-Kettering Institute, NY), RxandFgf8

(T. Ogura, Tohoku University, Aoba, Japan), Mitf(Mochii et al., 1998),

MMP115 (Rowan et al., 2004), Chx10 (D. Schulte, MPI Brain Research, Frankfurt/M, Germany), Wnt2b(H. Roelink, University of Washington, Seattle, WA) and Sox10(M. Wegner, University of Erlangen, Germany) were used.

In vivo manipulations of the developing chick embryo

Gain-of-function experiments

A 2 ␮l drop of recombinant mouse BMP5 or BMP4 (0.7 mg/ml or 1 mg/ml; R&D Systems) was placed in a Petri dish and about eight drops (10 ␮l each) of distilled water were placed around it to keep it from evaporating. Ten to fifteen agarose beads (Affi-Gel blue beads, Biorad) were added to the BMP solution, taking care to avoid transferring any fluid with the beads. These beads were incubated in the BMP4 or BMP5 solution for a minimum of 1 hour at room temperature.

Fertile white leghorn chicken eggs were incubated at 37.8°C until they reached the desired stages (stages 8-12) according to Hamburger and Hamilton (Hamburger and Hamilton, 1951). The embryonic membranes were removed and a small incision was made either temporal (posterior) to the optic vesicle/cup or into the midline of the forebrain. One BMP-soaked bead was transferred to the egg, inserted through the slit in the membranes and placed either temporal to the optic vesicle/cup into the mesenchyme or placed into the forebrain/optic vesicle region. The embryos were left to develop at 37.8°C until they reached the desired stages (stages 13-26). At this point, the embryos were fixed in 4% paraformaldehyde in PBS (PFA) at 4°C for 24-48 hours. Embryos to be used for whole-mount ISH were dehydrated and stored in 100% methanol. Those intended for ISH on sections were cryoprotected overnight in 15% sucrose in PBS at 4°C; consecutive 12-16 ␮m sections were then cut and analysed by ISH. For control experiments, beads were soaked in PBS and implanted according to the same protocol.

Loss-of-function experiments

Noggin-expressing Chinese hamster ovary (CHO B3A4) cells were cultured and implanted as described (Vogel-Höpker and Rohrer, 2002). Briefly, for implantation, a 90% confluent culture was harvested and centrifuged to form a pellet for implantation. The embryonic membranes of stage 8-12 chick embryos were removed and noggin-expressing CHO cells implanted/ injected into the mesenchyme temporal to the optic vesicle or into the optic vesicle using fine glass micropipettes. For control experiments, CHO cells were cultured, harvested and implanted according to the same protocol. After incubation for a further 1-6 days, the embryos were fixed and sectioned as described above.

Replication-competent RCAS (B) retroviruses engineered to express the dominant-negative BMPR1B (referred to here as dnBmpR1b) were kindly provided by L. Niswander. Retroviral stocks were prepared as described previously (Vogel et al., 1995; Vogel et al., 1996). For the infection of embryos with dnBmpr1b-RCAS (B), or with RCAS (B) as control, retroviral stock was injected either into the optic vesicle or into the mesenchyme temporal to the optic vesicle at stages 6-11, using fine glass micropipettes. The embryos were incubated for a further 3-8 days and analysed as described above.

RESULTS

Gene expression in the neuroepithelium of the optic vesicle during the initial stages of chick eye development

(3)

D

E

V

E

LO

P

M

E

N

T

In the chick, the separation of the optic vesicle into NR and RPE domains is initiated in the distal region of the optic vesicle at stage 10 (see below). Initially, Otx2transcripts are detected throughout the optic vesicle (data not shown) (Bovolenta et al., 1997). At stage 10, Otx2expression weakens in the distal portion of the optic vesicle (Fig. 1A) and, by stage 13, Otx2transcripts are abundant in the dorsal part of the optic vesicle, the cells that will give rise to the RPE (Fig. 1B). Otx2expression is maintained in the RPE thereafter and, from about stage 23 onwards, Otx2expression is also detected in NR cells (unoperated eye in Fig. 5B) (Bovolenta et al., 1997).

No Mitftranscripts were observed in the eye primordia of the chick at stage 8 (Fig. 2F). However, Mitf expression was observed in the optic vesicle at stage 9, where expression is strongest in the distal region (Fig. 2G) that is covered by the overlying surface ectoderm (Fig. 2, compare G with J). In the temporal part of the optic vesicle, downregulation of Mitfexpression was observed in the distal portion at stage 10 (Fig. 1C; Fig. 2S,T), while expression is still observed in the distal optic vesicle more nasally (Fig. 2R). Subsequently, at around stage 12/13, Mitftranscripts were restricted to the presumptive RPE (Fig. 1D). A marker of differentiated pigment cells is melanosomal matrix glycoprotein 115 (MMP115), which is involved in melanin production. Unlike Otx2and Mitf, we did not observe MMP115expression at the initial stages of chick eye development (Fig. 1E). The first MMP115transcripts were detected in the presumptive RPE from stage 13 onwards (Fig. 1F; Fig. 4C). This is about five stages earlier than previously reported (Mochii et al., 1988; Mochii et al., 1998). At stages 13-18, Wnt2bexpression is detected in the presumptive RPE and no transcripts are detected within the NR (Fig. 3B) (Jasoni et al., 1999).

Next, we investigated the time point at which the NR domain is established during chick eye development. The retinal homeobox-containing gene Rxis initially expressed throughout the optic vesicle (data not shown) (Mathers et al., 1997). At stage 10, Rx expression was seen to be downregulated in the presumptive RPE (Fig. 1G) and, by stage 13, expression was restricted to cells in the distal portion of the optic vesicle (Fig. 1H). Chx10is a NR-specific gene expressed in progenitor cells of the NR. At stage 10, Chx10 expression is detected distally in the temporal region of the optic vesicle (Fig. 1I) (Fuhrmann et al., 2000), the region where Mitftranscripts are first downregulated (compare Fig. 1C or Fig. 2T with Fig. 1I).

A second NR-specific marker is FGF8, which appears to be involved in NR induction and differentiation (Vogel-Höpker et al., 2000; Martinez-Morales et al., 2005). At stage 10, Fgf8transcripts were not detected in the distal neuroepithelium of the chick optic vesicle (Fig. 1K). Fgf8transcripts in the presumptive NR are first observed at stage 11/12 (13-16 somites) (Vogel-Höpker et al., 2000; Crossley et al., 2001) and expression persists in the central region of the chick NR at optic cup stages (Fig. 1L) (Vogel-Höpker et al., 2000).

Thus, in the chick, the subdivision of the optic vesicle into NR and RPE is observed at stage 10.

BMP expression during the initial stages of chick eye development

A signal released from the mesenchyme is thought to be the primary inducer of Mitfexpression in the chick and mouse optic vesicle (Fuhrmann et al., 2000; Kagiyama et al., 2005). At stage 9, Mitf expression was seen to be strongest in the distal part of the optic vesicle that is covered by the surface ectoderm (Fig. 2G). The first mesenchymal cells that surround the dorsal region of the optic vesicle are of neural crest origin (Johnston et al., 1979; Hilfer, 1983), suggesting that initially a signal released from the surface ectoderm

[image:3.612.316.564.64.378.2]
(4)

D

E

V

E

LO

P

M

E

N

T

expression was restricted to migrating neural crest cells that overlie the dorso-temporal part of the optic vesicle and no transcripts were observed in the distal region (Fig. 2D,E) where Mitfexpression is strongest (Fig. 2G,H,R).

Two candidate genes that are detected in the presumptive lens ectoderm in the mouse are Bmp4and Bmp7(Furuta et al., 1997; Furuta and Hogan, 1998). In the chick, Trousse et al. (Trousse et al., 2001) did not detect Bmp7transcripts in the neuroepithelium of the optic vesicle or overlying ectoderm until stage 13, whereas we previously observed Bmp7transcripts in the presumptive RPE at stages 11-16 (Vogel-Höpker et al., 2000). Therefore, we investigated the expression pattern of BMP family members and their receptors in comparison with the Mitfexpression pattern during the initial stages of chick eye development (stages 8-14). By stage 8+ (6 somites) the neural folds have closed and the neuroepithelium of the optic primordia are first visible. At this time point, the neuroepithelium appeared to be close to the surface ectoderm (Fig. 2) and transcripts of Bmp4, Bmp5and Bmp7were detected in the dorsal neural folds. Within the neural folds, Bmp7 expression was diffuse (Fig. 2I), whereas there appeared to be a regional restriction of Bmp4 and Bmp5transcripts (Fig. 2L,O). Both Bmp4and Bmp7

transcripts, but not Bmp5transcripts, were observed in the overlying ectoderm between stages 8 and 11 (Fig. 2B,I-Q). Both Bmp4and Bmp7transcripts were also detected in the ectoderm overlying the ocular mesenchyme at stage 10 (Fig. 2K,N). At optic cup stages (stages 13-16), Bmp4 transcripts are present in the dorsal NR, whereas Bmp5and Bmp7transcripts are detected in the presumptive RPE and surrounding mesenchyme (data not shown) (Vogel-Höpker et al., 2000; Trousse et al., 2001).

[image:4.612.51.299.59.495.2]
(5)

D

E

V

E

LO

P

M

E

N

T

with these observations, we detected Bmpr1b transcripts in the neuroepithelium of the optic vesicle, the overlying ectoderm and surrounding mesenchyme at stages 8-10 (data not shown).

In summary, BMP family members are expressed at the right time (stage 8/9) and place (surface ectoderm) to be involved in RPE specification by inducing Mitfexpression in the neuroepithelium of the chick optic vesicle.

BMP application induces RPE development in the presumptive optic stalk and NR

If BMP levels determine whether the cells of the neuroepithelium of the optic vesicle acquire a RPE instead of a NR phenotype, overexpression of BMPs should result in ectopic generation of RPE from cells of the optic vesicle (presumptive NR/optic stalk region). We implanted BMP-soaked beads into the head mesenchyme or optic vesicle at stages 8-12 and analysed these embryos for changes in NR and RPE gene expression patterns. Vertebrate BMPs have been divided into two subgroups, suggesting that different ligands might have different functions during embryogenesis. In our

experiments, we implanted BMP4 and BMP5, which belong to different BMP subclasses. BMP4 and BMP2 belong to the Dpp family, whereas both BMP5 and BMP7 belong to the 60A family (Zhao, 2002).

[image:5.612.53.299.58.309.2]

As described above, Otx2and Mitfexpression is downregulated in cells that develop into NR, but maintained in cells that will develop into RPE during vertebrate eye development. By contrast, the RPE-specific marker MMP115, which is involved in melanin Fig. 3. Effects of BMP and noggin application on the Wnt2b

[image:5.612.311.566.63.392.2]

expression pattern during early stages of eye development. (A) Schematic of a stage 10/11 chick embryo showing the implantation site of the BMP5-soaked bead in E. (B) At stage 13, Wnt2btranscripts are restricted to the presumptive RPE (arrow). The arrowhead indicates Wnt2bexpression in the ectoderm. (C) Wnt2btranscripts are detected in the RPE (arrows) and surface ectoderm (arrowhead) on the contralateral side of the BMP5-treated eye shown in E. (D) Wnt2b expression in the contralateral, untreated eye following implantation of noggin-expressing cells. Wnt2btranscripts are restricted to the RPE (arrowhead) and no transcripts are detected within the NR. The arrow shows Wnt2bexpression within the ectoderm and anterior lens. (E) Following BMP5 application (asterisk), Wnt2bexpression is also detected in the distal region of the optic vesicle, the presumptive NR (arrows). The arrowhead indicates Wnt2bexpression in the ectoderm. (F) Parallel section of the noggin-treated eye shown in Fig. 5B,D. Wnt2b expression is downregulated in the entire outer optic cup (arrowheads). In the surface ectoderm (arrow) and anterior lens, Wnt2bexpression is still detected.

Fig. 4. Effects of BMP5 application on the distribution of genes expressed within the NR and RPE at optic cup stages.(A) Schematic illustrating the location of the BMP5-soaked bead following implantation at stage 10/11 as shown in E-I; B-D are PBS-soaked bead controls (B) In control embryos, Mitfexpression is weakly detected in the RPE at stage 15 (arrowheads). (C) The RPE-specific marker MMP115 is restricted to the RPE at this stage (arrowheads). (D) Strong Rx expression is detected in the NR at this stage (arrowhead). (E) Following implantation of a BMP5-soaked bead (asterisk), optic cup formation is not observed and Mitfexpression is detected in the distal optic vesicle (arrowheads). (F) Parallel section of the embryo shown in E and G. MMP115expression is induced in the presumptive NR (arrowhead) and the optic stalk region following BMP5 exposure. (G) Implantation of a BMP5-soaked bead (asterisk) leads to downregulation of Rxexpression in the presumptive NR. (H) BMP5 application downregulates Chx10 expression in the distal optic vesicle/cup, the presumptive NR (right, arrowheads). By contrast, Chx10expression is strongly observed within the presumptive NR of the contralateral eye (left, arrow). (I) Parallel section of the embryo shown in H.MMP115expression is induced by BMP5 in the presumptive NR (arrowheads), whereas in the

(6)

D

E

V

E

LO

P

M

E

N

T

pigment production, is first detected in the presumptive RPE at stage 13 (Fig. 1F). Similarly, Wnt2b expression is detected in the presumptive RPE at early optic cup stages (Fig. 3B) (Jasoni et al., 1999; Fuhrmann et al., 2000). Application of BMP4 or BMP5 at stages 8-12 induced (MMP115,Wnt2b) and maintained (Otx2,Mitf) RPE genes in both the distal and proximal region of the optic vesicle in 43% of the embryos (n=19/44). In some cases in which the bead had been placed close to the eye region, optic cup and nerve formation was not observed, so that the BMP-treated eyes had still optic vesicle-like morphology (Fig. 3E; Fig. 4E-G). The distal and proximal regions of these BMP-treated eyes had lost the characteristic morphology of the multilayered NR and optic stalk/nerve, respectively. Instead, these regions developed RPE-like features, including the appearance of pigment granules (Fig. 5I,J). In these embryos, the expression of Mitf, Otx2,MMP115 andWnt2b was maintained or induced in the proximal region that normally

develops into the optic nerve (Fig. 4F; Fig. 5C,F), and/or in the distal region that normally gives rise to the NR (Fig. 3E; Fig. 4E,F,I; Fig. 5D,G,N,O). In BMP-treated embryos that developed RPE-like features, expression of NR-specific genes such as Rx,Chx10 and Fgf8was downregulated or absent in the distal optic vesicle (Fig. 4G,H; Fig. 5J,K). Three BMP-treated embryos that were left to develop until stage 25/26 developed a single-layered pigmented region within the neuroepithelium of the forebrain, expressing both Otx2and MMP115(data not shown).

[image:6.612.247.561.60.486.2]

BMP beads placed into the mesenchyme lying more temporal to the optic vesicle did not prevent optic cup formation, and eye morphology, including lens development, appeared normal (Fig. 4H,I; Fig. 5L-O). In 44% of these cases, the RPE-specific marker MMP115was expressed in single cells within the NR (n=12/27; Fig. 4I; Fig. 5N,O). Application of PBS-soaked beads into the optic vesicle or into the mesenchyme temporal to the optic vesicle did not Fig. 5. Effects of BMP4 application at the optic

vesicle stage (stage 8/9) on the distribution of genes expressed within the NR and RPE at stage 24.(A) Schematic illustrating the implantation site of the BMP4-soaked bead following the operations at stage 8/9. (B) Following BMP4 application into the optic vesicle, optic cup formation is not observed. Instead, a huge vesicle with RPE-like morphology, expressing Otx2in both the proximal (C) and distal (D) regions developed. The arrowhead indicates Otx2expression in the RPE of the contralateral, unoperated eye. Note that at this stage (stage 24), Otx2transcripts are also observed in cells of the native NR (Bovolenta et al., 1997). This expression pattern is also seen in a small ventral region of the BMP-treated eye that has still NR-like morphology (arrow). (C) The entire optic stalk region has a single-layered RPE-like morphology expressing Otx2(arrows) following BMP4 exposure. (D) Following BMP4 application, the region that normally develops into the NR has a RPE-like morphology and expresses Otx2 (arrows). (E) BMP4 application into the optic vesicle inhibits NR and optic stalk/nerve development and induces Mitfexpression in the entire optic vesicle. Note that the entire eye has RPE-like morphology (arrow). In the unoperated, contralateral eye, Mitfexpression is restricted to the RPE (arrowhead) and no transcripts are observed in the multilayered NR. (F)Mitf expression (arrows) in the optic stalk/nerve region that developed a single-layered morphology following BMP4 application. (G) Following BMP treatment, Mitfexpression is observed in the region that normally develops into the multilayered NR (arrows). (H) Parallel section of the embryo shown in B. Chx10expression is only detected in a small ventral portion of the BMP-treated eye (arrow). In the contralateral eye, strong Chx10expression is restricted to cells of the NR (arrowhead). (I) The optic stalk/nerve region of the BMP-treated eye has RPE-like morphology and pigment granules (arrows) are observed. (J) Following BMP4 application, expression of the NR-specific marker Chx10 is not observed in the region that normally

(7)

D

E

V

E

LO

P

M

E

N

T

convert NR into RPE (n=12; data not shown) (Vogel-Höpker et al., 2000). These results show that BMPs are sufficient to induce RPE development in vivo.

BMP signalling is required for RPE development To address the functional relevance of BMPs by loss-of-function experiments during the initial stages of eye development, we interfered with BMP signalling using the protein noggin. Noggin specifically inhibits BMP signalling by binding to BMP dimers, thereby preventing their interaction with cell surface receptors (reviewed by Balemans and Van Hul, 2002).

Noggin-expressing CHO cells were injected either into the head mesenchyme or into the ventricle of developing chick embryos at stages 8-11. At several time points after the injection, the embryos were analysed for the expression of RPE- and NR-specific markers. In general, the noggin-treated eyes were smaller than the contralateral unoperated eye and displayed aberrant development of the optic stalk/nerve (coloboma), NR, RPE and lens as previously reported by Adler and Belecky-Adams (Adler and Belecky-Adams, 2002). We therefore implanted the cells slightly further away, at the level of the midbrain. In 32% of the embryos, parts of the outer optic cup no longer had a single-layered morphology and instead a region developed with NR-like morphology (Fig. 3F, arrowheads; Fig. 6B,D, arrowheads; Fig. 6E-J, arrows). In these regions, the pigment marker MMP115,Wnt2band Mitfexpression was downregulated (n=7/22; Fig. 3F; Fig. 6B,D,J) and pigment granules were not observed (Fig. 6E,F,J, arrow). Instead, we observed expression of the retinal markers Rx andChx10 in these regions (Fig. 6G; data not shown). Pax6is initially expressed throughout the optic vesicle, but expression is lost from the proximal RPE at late optic cup stages (Fig. 6I, arrowhead) (reviewed by Martinez-Morales et al., 2004).

At stage 25, Pax6expression is strong within the chick NR and no Pax6transcripts are observed within the single-layered RPE (Fig. 6H,I). Overexpression of Pax6 in the chick RPE induces transdifferentiation of the RPE into NR (Azuma et al., 2005). Following noggin treatment, we observed strong Pax6expression in a small, multilayered region of the RPE (Fig. 6H,I), whereas expression of the RPE-specific gene MMP115was downregulated and pigment granules were absent (Fig. 6J, arrow). However, weak induction of Pax6expression within the RPE (Fig. 6H, arrowhead) did not result in the downregulation of MMP115 (data not shown). In control experiments, CHO cells were grafted into the mesenchyme temporal to the optic vesicle of stage 10-11 chick embryos. In these cases, eye morphology was normal and MMP115 expression and pigment granules were restricted to the RPE (n=12; data not shown).

[image:7.612.254.560.63.270.2]

In a second set of experiments, we blocked BMP signalling within the RPE by viral overexpression of a dnBmpr1bconstruct. Injection of dnBmpR1b-RCAS (B) into the eye field at stages 6-11 resulted in partial loss of RPE development in 21% (7/33) of cases. The most dramatic effects were observed when the operation was carried out at stage 6/7. The outer layer of the optic cup was no longer single-layered and instead developed a NR-like morphology (3/4 cases). Expression of bothOtx2 and MMP115 was downregulated in the outer optic cup (Fig. 7F,G,J). By contrast, the NR marker Chx10was now detected in the outer layer of the optic cup (Fig. 7H). Thickening of the outer layer was not as prominent when the operation was carried out at stages 8-11 (observed in 4/29 cases; Fig. 7K,L). Injection of control RCAS (B) retrovirus at the same stages of development did not result in any alterations in gene expression, and pigment granules were still observed in the outer layer of the optic cup (n=8; Fig. 7A-D).

Fig. 6. Effects of interfering with BMP signalling on the distribution of transcripts known to be involved in NR and RPE development.(A) Mitf expression in the contralateral, untreated eye following implantation of noggin-expressing CHO cells. Mitfexpression is restricted to the RPE (arrowhead). (B) Inhibition of BMP signalling downregulates Mitfexpression in the outer optic cup (arrowheads) and only a small single-layered region still expresses Mitf(arrows). (C) MMP115expression in the contralateral, untreated eye following

implantation of noggin-expressing cells. MMP115 transcripts are restricted to the RPE. (D) Parallel section of the noggin-treated eye shown in B. MMP115 expression is downregulated in the outer optic cup (arrowheads), although MMP115expression is still maintained in a small region that still has RPE-like morphology (arrow). (E) Following implantation of noggin-expressing CHO cells, the single-layered RPE suddenly thickens in the proximal region of the eye (arrow). Pigmentation is still observed in the unaffected areas of the RPE (arrowheads). (F) Higher magnification of the eye shown in E. The RPE is

(8)

D

E

V

E

LO

P

M

E

N

T

Taken together, the data suggest that BMP signalling is required during the initial stages of chick eye development for proper development of the RPE.

DISCUSSION

In this study, we have determined the time point at which the optic vesicle is subdivided into NR and RPE domains. We present evidence from gain- and loss-of-function studies that BMPs are necessary and sufficient for RPE development during optic vesicle stages in the chick. In addition, the BMP expression pattern in comparison to the expression of RPE and/or NR marker genes suggests that the BMP-expressing surface ectoderm, rather than the mesenchyme, is involved in RPE specification by inducing Mitf expression in the underlying optic vesicle.

In vertebrates, the neuroepithelium of the optic vesicle initially co-expresses several TFs that are involved in RPE and NR development. For example, Mitfand Otx2are initially expressed in the entire optic vesicle, but expression is subsequently maintained only in the presumptive RPE. MITF and OTX2 are key signals involved in initiating and maintaining pigmentation in the RPE of vertebrates (for reviews, see Chow and Lang, 2001; Martinez-Morales et al., 2004). The retinal homeobox-containing gene Rx, which is also initially expressed throughout the optic vesicle, becomes downregulated in the presumptive RPE, whereas expression is maintained in the presumptive NR (Mathers et al., 1997). In this study, we show that in the chick optic vesicle, RPE development is initiated first and that induction of NR development, marked by Chx10expression, leads to the separation of the chick optic vesicle into NR and RPE. Expression ofChx10, a marker of retinal progenitor cells, is detected at stage 10 in the distal region of the chick optic vesicle (this study) (Fuhrmann et al., 2000) (for a review, see Chow and Lang, 2001) at the time when Mitfexpression is downregulated in this region (this study). Members of the FGF family – Fgf1, Fgf2 and Fgf19 – are expressed in the surface ectoderm overlying the distal portion of the chick optic vesicle

[image:8.612.240.561.62.236.2]

(reviewed by Chow and Lang, 2001; Martinez-Morales et al., 2004; Kurose et al., 2004). The separation of the optic vesicle into NR and RPE domains is initiated through FGF-mediated induction of Chx10, which subsequently leads to the repression of Mitf(Horsford et al., 2005) and possibly also ofOtx2in the presumptive NR. An antagonistic interaction between Chx10and Mitfregulates retinal cell identity. CHX10 negatively regulates Mitf expression by binding to its promoter, thereby ensuring NR development in the distal portion of the optic vesicle (Rowan et al., 2004; Horsford et al., 2005). Thus, it appears that, similar to the situation in mouse, RPE development is the fate of the neuroepithelium of the optic vesicle in the absence of NR-inducing signals. Removal of the ectoderm after BMP-mediated RPE induction and before FGF production should thus lead to RPE development. Indeed, surface ectoderm removal at stage 10 prevents the separation of the optic vesicle into NR and RPE, and instead a pigmented vesicle develops (Hyer et al., 1998; Nguyen and Arnheiter, 2000). At stage 10, Mitf expression is mainly observed in the distal optic vesicle, whereas at this time only a few cells express Chx10(this study). Thus, in the absence of FGF-induced Chx10expression, the neuroepithelial cells will mainly develop into RPE and only a few neuronal cells are observed (Hyer et al., 1998). FGF application to the distal optic vesicle restores proper separation of the NR and RPE domains in the absence of the surface ectoderm (reviewed by Martinez-Morales et al., 2004). FGF family members are also expressed in the presumptive NR (reviewed by Chow and Lang, 2001; Martinez-Morales et al., 2004; Kurose et al., 2004). For example, in the chick, Fgf8and Fgf19transcripts are observed in the distal optic vesicle at about the time when Chx10expression is first detected in this region (Vogel-Höpker et al., 2000; Crossley et al., 2001; Kurose et al., 2004). Indeed, FGF8 application into the chick ocular mesenchyme inhibits Mitf,Otx2 andBmp7 expression in the presumptive RPE and Bmp7expression in the surrounding mesenchyme, and this allows NR development to occur in the outer optic cup (Vogel-Höpker et al., 2000; Martinez-Morales et al., 2005). On the other Fig. 7. Effects of interfering with BMP

signalling on the distribution of transcripts known to be involved in NR and RPE development.(A-D) Control experiments overexpressing a viral RCAS (B) (labelled RCAS-B) construct only (parallel sections). (A) Eye morphology is normal following viral infection with RCAS (B). Expression of the viral reverse transcriptasegene (RT) indicates infected areas of the RPE (arrows). (B) In the eyes infected with RCAS (B), Otx2expression is still restricted to the RPE (arrowheads) and no transcripts are observed in the NR at stage 20. (C) Following viral injection of RCAS (B), MMP115expression is unchanged and is restricted to the RPE (arrowheads). (D) Expression of the NR-specific marker Chx10is not observed in the outer layer of the optic cup following injection of RCAS (B) (arrowheads). (E-H) The effects following injection of the viral

(9)

D

E

V

E

LO

P

M

E

N

T

hand, BMP application leads to a downregulation of Fgf8 expression within the NR, and this allows RPE development to occur in the distal region of the neuroepithelium (this study, see below).

It has been suggested that RPE development is initiated by signals released from the ocular mesenchyme (for a review, see Martinez-Morales et al., 2004; Kagiyama et al., 2005). Previous studies considered the mesenchyme as a source of RPE-inducing signals for three reasons. First, Mitf expression was first detected in the presumptive chick RPE at stage 12/13 (Mochii et al., 1998; Fuhrmann et al., 2000), at the time the presumptive RPE is surrounded by mesenchyme. Second, in the mouse, the initial expression of Mitfthroughout the optic vesicle coincides with the time when it is entirely covered by a small amount of mesenchyme (Bora et al., 1998; Nguyen and Arnheiter, 2000). Third, embryonic transplantations and explant studies supported the idea that the mesenchyme induces RPE-specific gene expression within the neuroepithelium of the optic vesicle (Fuhrmann et al., 2000; Kagiyama et al., 2005). In the chick, Mitfexpression is induced in the distal optic vesicle before mesenchymal cells are present (this study) (Hilfer, 1983; Johnston et al., 1979; Sullivan et al., 2004; Kagiyama et al., 2005), and here expression is strongest in the distal optic vesicle that is covered by the Bmp4- and Bmp7-expressing surface ectoderm. Our gain-of-function experiments show that ectopic BMP application at optic vesicle stages can induce the development of a single-layered RPE, including the appearance of pigment granules, by inducing the pigment cell marker MMP115 and/or maintaining the expression of Otx2and Mitfin cells that would normally have developed into the optic nerve or NR. In vitro studies have shown that optic vesicles isolated at stages 11-15 and cultured in the presence of mesenchyme express Mitf,Wnt2band MMP115(Fuhrmann et al., 2000). The results of these co-culture experiments may be explained by BMP-producing/-containing mesenchyme that has a maintenance function at this later stage (see below). Fuhrmann et al. (Fuhrmann et al., 2000) reported that activin, but not BMPs, can substitute for the mesenchyme to induce RPE development in optic vesicle explants. The discrepancy with the present in vivo data might be best explained by the fact that

BMPs specify different cell fates in a concentration-dependent manner and that the BMP concentrations used were either too low or too high to elicit RPE induction (Wilson et al., 1997; Simeoni and Gurdon, 2007). BMP beads applied close to the optic vesicle induce the development of a single-layered RPE in cells that would have normally developed into NR or optic stalk. By contrast, following exposure to a lower BMP concentration owing to a different position of the BMP-soaked bead, only single cells within the NR itself express the RPE-specific marker MMP115.

What is the cellular mechanism that is responsible for the generation of RPE instead of a two-layered optic cup with NR? BMP treatment does not lead to increased apoptosis, excluding the possibility of selective death of presumptive NR (Ohkubo et al., 2002). The significant defects in eye vesicle morphogenesis upon BMP overexpression raised the question of whether the effect of BMPs is direct or, alternatively, is secondary to an invagination defect. Optic vesicle invagination fails when the NR domain has not been correctly specified (Uemonsa et al., 2002). The finding that lower BMP levels do not interfere with optic cup formation and lead to RPE-specific gene expression in single cells within the NR argues in favour of a direct BMP-induced differentiation process (e.g. Fig. 5O).

In the chick and mouse, several BMP family members and relevant receptors are expressed at the right time and place to play a role in inducing and maintaining RPE development (Lyons et al., 1995; Dudley and Robertson, 1997; Furuta et al., 1997; Furuta and Hogan, 1998; Wawersik et al., 1999; Fuhrmann et al., 2000; Vogel-Höpker et al., 2000; Crossley et al., 2001; Trousse et al., 2001; Belecky-Adams et al., 2002; Müller and Rohrer, 2002; Hyer et al., 2003; Liu et al., 2003). BMPs mainly signal via complexes composed of type 1 and type 2 transmembrane serine/threonine kinase receptors, which are both required for signal transduction (Mishina, 2003). Activated type 1 receptor kinases subsequently phosphorylate intracellular mediators known as Smad proteins. The type 1 receptors, also known as activin receptor-like kinases (ALKs), ALK1 (ACVRL1), ALK2 (ACTR1; ACVR1), ALK3 (BMPR1A) and ALK6 (BMPR1B) phosphorylate SMAD1, SMAD5 and SMAD8 (also known as SMAD9 in mouse), which transduce the extracellular signal to the nucleus. Activin SURFACE ECTODERM OPTIC VESICLE SURFACE ECTODERM DISTAL

OPTIC VESICLE MESENCHYME RPE NR

BMPs

BMPs BMPs

BMPs FGFs

Chx10 Mitf

Mitf

Chx10 FGFs

Mitf

(B) NR SPECIFICATION stage 10 (A) RPE SPECIFICATION

stage 8/9

[image:9.612.51.537.60.184.2]

(C) MAINTENANCE stage 11 - 17

(10)

D

E

V

E

LO

P

M

E

N

T

receptor type 2 mediates BMP signalling when bound to BMPR1A or BMPR1B (for reviews, see Balemans and Van Hul, 2002; Larsson and Karlsson, 2005). In the chick, Bmpr1a, Bmpr1band activin type 2a and type 2b receptors are expressed in the neuroepithelium of the optic vesicle and/or surrounding tissues at optic vesicle stages (data not shown) (Stern et al., 1995; Fuhrmann et al., 2000; Hyer et al., 2003) and ACTR1 is present in the optic primordia of the developing mouse embryo (Yoshikawa et al., 2000). Interestingly, neither the ␤A nor ␤B activin subunit has been detected at optic vesicle stages in the developing chick embryo (Fuhrmann et al., 2000), whereas phosphorylated SMAD1 was observed in both the neuroepithelium of the optic vesicle and in the surface ectoderm (Belecky-Adams et al., 2002; Faure et al., 2002; Sakai et al., 2005). We finally demonstrate the physiological importance of BMPs in RPE development by interfering with BMP signalling at optic vesicle stages. Application of the BMP-inhibitor noggin or of the dnBmpR1b construct downregulated MMP115, Mitfand Otx2expression in the RPE and instead induced the expression of the NR marker genes (e.g. Chx10, Rx). FGF8 application into the mesenchyme near to the optic vesicle/cup induces the development of a second NR in the outer optic cup (Vogel-Höpker et al., 2000; Martinez-Morales et al., 2005). However, during chick eye development, Fgf8 and Fgf19 are expressed within the NR, but NR induction in the outer optic cup does not occur. If BMPs within the RPE and FGFs within the NR act antagonistically, the absence of BMPs within the RPE should allow the development of NR-like features in the outer optic cup (see Figs 6 and 7). BMP inhibition at optic cup stages results in the upregulation of Fgf8expression within the NR itself (Adler and Belecky-Adams, 2002).

BMPs have multiple functions during early and late stages of vertebrate eye development (Koshiba-Takeuchi et al., 2000; Sakuta et al., 2001; Adler and Belecky-Adams, 2002; Sasagawa et al., 2002; Hammerschmidt et al., 2003; Murali et al., 2005). For example, deletion of the BMPR1A/B function specifically within the mouse retina leads to reduced growth of the NR and failure of retinal neurogenesis (Murali et al., 2005). We show that at optic vesicle stages, BMPs are involved in patterning the vertebrate eye by regulating RPE gene expression within the neuroepithelium of the optic vesicle. On the basis of our results, we propose the following model (Fig. 8). Within a short period of time, both RPE and NR specification are induced by signals released from the overlying ectoderm. Initially, the BMP-expressing surface ectoderm is involved in inducing and maintaining Mitf expression in the neuroepithelium of the chick optic vesicle. At this time, the optic vesicle is in direct contact with the surface ectoderm (this study) (Johnston et al., 1979; Hilfer, 1983; Sullivan et al., 2004; Kagiyama et al., 2005). The subdivision of the optic vesicle into NR and RPE domains is initiated by FGFs (e.g. FGF1, 2 and/or 19) released from the surface ectoderm a few hours later at stage 9/10. FGF-mediated induction of Chx10 expression in the distal portion of the optic vesicle downregulates genes involved in RPE development (e.g. Mitf). Subsequently, during early optic cup stages, BMPs (e.g. BMP5 and BMP7) in the presumptive RPE itself, the mesenchyme and/or released from the surrounding tissues (dorsal surface ectoderm, diencephalon) into the mesenchyme, are involved in stabilising the RPE domain in the outer optic cup. FGF family members (e.g. FGF3, 8, 15 and 19), being now expressed in the NR itself, maintain Chx10expression and allow NR development to occur adjacent to the RPE. Thus, at the early optic cup stages when the NR and RPE are in close contact, BMPs/MITF within the RPE and FGFs/CHX10 within the NR, act antagonistically to ensure vertebrate eye development.

BMP ligands are expressed in overlapping domains and genetic studies strongly argue that BMP family members are functionally redundant in vivo (Solloway et al., 1998; Solloway and Robertson, 1999; Kim et al., 2001). It is possible that cooperative signalling of different BMP family members, which may also involve BMP heterodimers (Butler and Dodd, 2003), might be involved in regulating RPE development at optic vesicle stages. However, which specific BMP family members are involved in RPE specification, differentiation and maintenance remains to be elucidated.

We thank Sabine Richter for excellent technical assistance; R. Harland, B. Houston, R. Johnson, M. Mochii, L. Niswander, H. Roelink, T. Ogura for providing reagents; and Sabine Fuhrmann, Juan Ramon Martinez-Morales, Dorothea Schulte and Jochen Wittbrodt for critical reading of the manuscript. F.M. and H.R. were supported from the SFB 269. A.V.-H. was supported by the Deutsche Forschungsgemeinschaft.

References

Adler, R. and Belecky-Adams, T. L.(2002). The role of bone morphogenetic proteins in the differentiation of the ventral optic cup. Development129, 3161-3171.

Azuma, N., Tadokoro, K., Asaka, A., Yamada, M., Yamaguchi, M., Handa, H., Matsushima, S., Watanabe, T., Kida, Y., Ogura, T. et al.(2005).

Transdifferentiation of the retinal pigment epithelium to the neural retina by transfer of the Pax6 transcriptional factor. Hum. Mol. Genet. 14, 1059-1068. Balemans, W. and Van Hul, W.(2002). Extracellular regulation of BMP signaling

in vertebrates: a cocktail of modulators. Dev. Biol. 250, 231-250.

Belecky-Adams, T. L., Adler, R. and Beebe, D. C.(2002). Bone morphogenetic protein signaling and the initiation of lens fiber cell differentiation. Development

129, 3795-3802.

Bora, N., Conway, S. J., Liang, H. and Smith, S. B.(1998). Transient overexpression of the Microphthalmia gene in the eyes of Microphthalmia vitiligo mutant mice. Dev. Dyn. 213, 283-292.

Bovolenta, P., Mallamaci, A., Briata, P., Corte, G. and Boncinelli, E.(1997). Implication of OTX2 in pigment epithelium determination and neural retina differentiation. J. Neurosci. 17, 4243-4252.

Bumsted, K. M. and Barnstable, C. J.(2000). Dorsal retinal pigment epithelium differentiates as neural retina in the microthalmia (mi/mi) mouse. Invest. Ophthalmol. Vis. Sci. 41, 903-908.

Butler, S. J. and Dodd, J.(2003). A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron38, 389-401.

Chow, R. L. and Lang, R. A.(2001). Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol. 17, 255-296.

Crossley, P. H., Martinez, S., Ohkubo, Y. and Rubenstein, J. L.(2001). Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles.

Neuroscience108, 183-206.

Dudley, A. T. and Robertson, E. J.(1997). Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient mice. Dev. Dyn. 208, 349-362.

Faure, S., de Santa Barbara, P., Roberts, D. J. and Whitman, M.(2002). Endogenous patterns of BMP signaling during early chick development. Dev. Biol. 244, 44-65.

Fuhrmann, S., Levine, E. M. and Reh, T.(2000). Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick.

Development 127, 4599-4609.

Furuta, Y. and Hogan, B. L.(1998). BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 12, 3764-3775.

Furuta, Y., Piston, D. W. and Hogan, B. L. M.(1997). Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development

124, 2203-2212.

Hamburger, V. and Hamilton, H.(1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49-92.

Hammerschmidt, M., Kramer, C., Nowak, M., Herzog, W. and Wittbrodt, J. (2003). Loss of maternal Smad5 in zebrafish embryos affects patterning and morphogenesis of optic primordia. Dev. Dyn. 227, 128-133.

Henrique, D., Adam, J., Myat, A., Chitnis, A., Lewis, J. and Ish-Horowicz, D. (1995). Expression of Delta homologue in prospective neurons in chick. Nature

375, 787-790.

Hilfer, S. R.(1983). Development of the eye of the chick embryo. Scan. Electron Microsc. III, 1353-1369.

Horsford, C. J., Nguyen, M. T., Sellar, G. C., Kothary, R., Arnheiter, H. and McInnes, R. R.(2005). Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 132, 177-187.

(11)

D

E

V

E

LO

P

M

E

N

T

Hyer, J., Kuhlman, J., Afif, E. and Mikawa, T.(2003). Optic cup morphogenesis requires pre-lens ectoderm but not lens differentiation. Dev. Biol. 259, 351-363. Iwakiri, R., Kobayashi, K., Okinami, S. and Kobayashi, H.(2005). Suppression of Mitf by small interfering RNA induces transdifferentiation of chick embryonic retinal pigment epithelium. Exp. Eye Res. 81, 15-21.

Jasoni, C., Hendrickson, A. and Roelink, H.(1999). Analysis of chicken Wnt-13 expression demonstrates coincidence with cell division in the developing eye and is consistent with a role in induction. Dev. Dyn. 215, 215-224.

Johnston, M. C., Noden, D. M., Hazelton, R. D., Coulombre, J. L. and Coulombre, A. J.(1979). Origins of avian ocular and periocular tissues. Exp. Eye Res. 29, 27-43.

Kagiyama, Y., Gotouda, N., Sakagami, K., Yasuda, K., Mochii, M. and Araki, M.(2005). Extraocular dorsal signal affects the developmental fate of the optic vesicle and patterns the optic neuroepithelium. Dev. Growth Differ. 47, 523-536.

Kim, R. Y., Robertson, E. J. and Solloway, M. J.(2001). Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart.

Dev. Biol. 235, 449-466.

Koshiba-Takeuchi, K., Takeuchi, J. K., Matsumoto, K., Momose, T., Uno, K., Hoepker, V., Ogura, K., Takahashi, N., Nakamura, H., Yasuda, K. et al. (2000). Tbx5 and the retinotectum projection. Science287, 134-137. Kurose, H., Bito, T., Adachi, T., Shimizu, M., Noji, S. and Ohuchi, H.(2004).

Expression of Fibroblast growth factor 19 (Fgf19) during chicken embryogenesis and eye development, compared with Fgf15 expression in the mouse. Gene Expr. Patterns4, 687-693.

Larsson, J. and Karlsson, S. (2005). The role of Smad signaling in hematopoiesis.

Oncogene 24, 5676-5692.

Liu, J., Wilson, S. and Reh, T.(2003). BMP receptor 1b is required for axon guidance and cell survival in the developing retina. Dev. Biol. 256, 34-48. Lyons, K. M., Hogan, B. L. and Robertson, E. J.(1995). Colocalization of BMP 7

and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev. 50, 71-83. Martinez-Morales, J. R., Signore, M., Acampora, D., Simeone, A. and

Bovolenta, P.(2001). Otx genes are required for tissue specification in the developing eye. Development128, 2019-2030.

Martinez-Morales, J. R., Dolez, V., Rodrigo, I., Zaccarini, R., Leconte, L., Bovolenta, P. and Saule, S.(2003). OTX2 activates the molecular network underlying retina pigment epithelium differentiation. J. Biol. Chem. 278, 21721-21731.

Martinez-Morales, J. R., Rodrigo, I. and Bovolenta, P.(2004). Eye

development: a view from the retina pigmented epithelium. BioEssays 26, 766-777.

Martinez-Morales, J. R., Del Bene, F., Nica, G., Hammerschmidt, M., Bovolenta, P. and Wittbrodt, J.(2005). Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev. Cell8, 565-574.

Mathers, P. H., Grinberg, A., Mahon, K. A. and Jamrich, M.(1997). The Rx

homeobox gene is essential for vertebrate eye development. Nature 387, 603-607.

Mishina, Y.(2003). Function of bone morphogenetic protein signaling during mouse development. Front. Biosci. 8, d855-d869.

Mochii, M., Agata, K., Kobayashi, H., Yamamoto, T. S. and Eguchi, G.(1988). Expression of gene coding for a melanosomal matrix protein transcriptionally regulated in the transdifferentiation of chick embryo pigmented epithelial cells.

Cell Differ. 24, 67-74.

Mochii, M., Mazaki, Y., Mizuno, N., Hayashi, H. and Eguchi, G.(1998). Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Dev. Biol. 193, 47-62.

Müller, F. and Rohrer, H.(2002). Molecular control of ciliary neuron development: BMPs and downstream transcriptional control in the parasympathetic lineage. Development 129, 5707-5717.

Murali, D., Yoshikawa, S., Corrigan, R. R., Plas, D. J., Crair, M. C., Oliver, G., Lyons, K. M., Mishina, Y. and Furuta, Y.(2005). Distinct developmental programs require different levels of Bmp signaling during mouse retinal development. Development 132, 913-923.

Nakayama, A., Nguyen, M. T., Chen, C. C., Opdecamp, K., Hodgkinson, C. A. and Arnheiter, H.(1998). Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech. Dev. 70, 155-166.

Nguyen, M.-T. and Arnheiter, H.(2000). Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF.

Development 127, 3581-3591.

Oh, S. H., Johnson, R. and Wu, D. K.(1996). Differential expression of bone morphogenetic proteins in the developing vestibular and auditory sensory organs. J. Neurosci. 16, 6463-6475.

Ohkubo, Y., Chiang, C. and Rubenstein, J. L. R.(2002). Coordinate regulation

and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience

111, 1-17.

Pittack, C., Grunwald, G. B. and Reh, T. A.(1997). Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development124, 805-816.

Planque, N., Turque, N., Opdecamp, K., Bailly, M., Martin, P. and Saule, S. (1999). Expression of the Microthalmia-associated basic helix-loop-helix leucine zipper transcription factor Mi in avian neuroretina cells induces a pigmented phenotype. Cell Growth Differ. 10, 525-536.

Reissmann, E., Ernsberger, U., Francis-West, P. H., Rueger, D., Brickell, P. M. and Rohrer, H.(1996). Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons.Development122, 2079-2088. Rowan, S., Chen, A., Young, T. L., Fisher, D. E. and Cepko, C. L.(2004).

Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development131, 5139-5152.

Sakai, D., Tanaka, Y., Endo, Y., Osumi, N., Okamoto, H. and Wakamatsu, Y. (2005). Regulation of Slug transcription in embryonic ectoderm by ß-catenin-Lef/Tcf and BMP-Smad signaling. Dev. Growth Differ. 47, 471-482. Sakuta, H., Suzuki, R., Takahashi, H., Kato, A., Shintani, T., Iemura, S.,

Yamamoto, T. S., Ueno, N. and Noda, M.(2001). Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science293, 111-115.

Sasagawa, S., Takabatake, T., Takabatake, Y., Muramatsu, T. and Takeshima, K.(2002). Axes establishment during eye morphogenesis in Xenopus by coordinate and antagonistic actions of BMP4, Shh, and RA. Genesis, 33, 86-96. Simeoni, I. and Gurdon, J. B.(2007). Interpretation of BMP signaling in early

Xenopus development. Dev. Biol. 308, 82-92.

Solloway, M. J. and Robertson, E. J.(1999). Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development126, 1753-1768.

Solloway, M. J., Dudley, A. T., Bikoff, E. K., Lyons, K. M., Hogan, B. L. and Robertson, E. J.(1998). Mice lacking Bmp6 function. Dev. Genet. 22, 321-339. Stern, C. D., Yu, R. T., Kakizuka, A., Kintner, C. R., Methews, L. S., Vale, W.

W., Evans, R. M. and Umesono, K.(1995). Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo. Dev. Biol. 172, 192-205.

Sullivan, C. H., Braunstein, L., Hazard-Leonards, R. M., Holen, A. L., Samaha, F., Stephens, L. and Grainger, R. M.(2004). A re-examination of lens induction in chicken embryos: in vitro studies of early tissue interactions. Int. J. Dev. Biol. 48, 771-782.

Trousse, F., Esteve, P. and Bovolenta, P.(2001). Bmp4 mediates apoptotic cell death in the developing chick eye. J. Neurosci. 21, 1292-1301.

Uemonsa, T., Sakagami, K., Yasuda, K. and Araki, M.(2002). Development of dorsal-ventral polarity in the optic vesicle and its presumptive role in eye morphogenesis as shown by embryonic transplantation and in ovo explant culturing. Dev. Biol. 248, 319-330.

Vogel, A., Rodriguez, C., Warnken, W. and Izpisua-Belmonte, J. C.(1995). Dorsal cell fate specified by chick Lmx-1 during vertebrate limb development.

Nature378, 716-720.

Vogel, A., Rodriguez, C. and Izpisua-Belmonte, J.-C.(1996). Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb.

Development122, 1737-1750.

Vogel-Höpker, A. and Rohrer, H.(2002). The specification of noradrenergic locus coeruleus (LC) neurones depends on bone morphogenetic proteins (BMPs).

Development129, 983-991.

Vogel-Höpker, A., Momose, T., Rohrer, H., Yasuda, K., Ishihara, L. and Rapaport, D. H.(2000). Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development. Mech. Dev. 94, 25-36.

Wawersik, S., Purcell, P., Rauchman, M., Dudley, A. T., Robertson, E. J. and Maas, R.(1999). BMP7 acts in murine lens placode development. Dev. Biol.

207, 176-188.

Wilkinson, D. G.(1993). Whole mount in situ hybridisation of vertebrate embryos. In In Situ Hybridisation(ed. D. G. Wilkinson), pp. 75-83. Oxford: Oxford University Press.

Wilson, P. A., Lagne, G., Suzuki, A. and Hemmati-Brivanlou, A.(1997). Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development124, 3177-3184.

Yoshikawa, S., Aota, S., Shirayoshi, Y. and Okazaki, K.(2000). The ActR-I activin receptor protein is expressed in notochord, lens placode and pituitary primordium cells in the mouse embryo. Mech. Dev. 91, 439-444.

Zhao, G.-Q.(2002). Consequences of knocking out BMP signaling in the mouse.

Figure

Fig. 1. Division of the chick optic vesicle into a NR and RPEdomain at stage 10.region of the optic vesicle (arrowheads)
Fig. 2. Comparison of the Sox10, Mitf and Bmp expression
Fig. 3. Effects of BMP and noggin application on the Wnt2bexpression is downregulated in the entire outer optic cup (arrowheads).In the surface ectoderm (arrow) and anterior lens, (site of the BMP5-soaked bead in E
Fig. 5. Effects of BMP4 application at the optic
+4

References

Related documents

Field experiments were conducted at Ebonyi State University Research Farm during 2009 and 2010 farming seasons to evaluate the effect of intercropping maize with

Effectiveness of a normative nutrition intervention (diet, physical activity and breastfeeding) on maternal nutrition and offspring growth the Chilean maternal and infant nutrition

In case of single structure, to arrive at the optimum slip force in the friction damper, the variation of peak displacement , peak acceleration of SDOF structure are plotted with

In Diamond Shamrock Refining and Marketing Co. Kerr, 79 the Texas Supreme Court left open the issue whether the court will recognize the tort of intentional

It was decided that with the presence of such significant red flag signs that she should undergo advanced imaging, in this case an MRI, that revealed an underlying malignancy, which

The total coliform count from this study range between 25cfu/100ml in Joju and too numerous to count (TNTC) in Oju-Ore, Sango, Okede and Ijamido HH water samples as

19% serve a county. Fourteen per cent of the centers provide service for adjoining states in addition to the states in which they are located; usually these adjoining states have