• No results found

On a relation between de Rham cohomology of $H^1 {(f)}(R)$ and the Koszul cohomology of $\partial(f)

N/A
N/A
Protected

Academic year: 2020

Share "On a relation between de Rham cohomology of $H^1 {(f)}(R)$ and the Koszul cohomology of $\partial(f)"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

ON A RELATION BETWEEN de RHAM COHOMOLOGY OFH(1f)(R)AND THE KOSZUL COHOMOLOGY OF(f)INR/(f)

Tony J. Puthenpurakal and Rakesh B. T. Reddy

Department of Mathematics, IIT Bombay, Powai, Mumbai 400 076, India

e-mails: tputhen@math.iitb.ac.in; rakesh@math.iitb.ac.in

(Received 22 July 2016; accepted 26 May 2017)

LetKbe a field of characteristic zero,R=K[X1, . . . , Xn]. LetAn(K) =K < X1, . . . , Xn, ∂1, . . . , ∂n >be thenthWeyl algebra overK. We consider the case whenRandAn(K)is graded by givingdegXi =ωi anddeg∂i = −ωi fori = 1, . . . , n(hereωiare positive integers). Set ω=Pnk=1ωk. LetIbe a graded ideal inR. By a result due to Lyubeznik the local cohomology modulesHi

I(R)are holonomicAn(K)-modules for eachi≥0. In this article we compute the de Rham cohomology modulesHj(∂;H1

(f)(R))forj≤n−2whenV(f)is a smooth hypersurface inPn(equivalentlyA=R/(f)is an isolated singularity).

Key words : Local cohomology; associated primes; D-modules; Koszul homology.

1. INTRODUCTION

LetK be a field of characteristic zero and let R = K[X1, . . . , Xn]. We considerR graded with degXi = ωi for i = 1, . . . , n; hereωi are positive integers. Set m = (X1, . . . , Xn). Let I be

a graded ideal in R. The local cohomology modules HI(R) are clearly graded R-modules. Let An(K) = K < X1, . . . , Xn, ∂1, . . . , ∂n > be the nth Weyl algebra over K. By a result due to Lyubeznik, see [2], the local cohomology modulesHIi(R) are holonomicAn(K)-modules for each

i≥0. We can considerAn(K)graded by givingdeg∂i=−ωifori= 1, . . . , n.

LetN be a graded leftAn(K)module. Now = 1, . . . , ∂nare pairwise commutingK-linear

maps. So we can consider the de Rham complexK(;N). Notice that the de Rham cohomology modulesH∗(;N)are in general only gradedK-vector spaces. They are finite dimensional ifN is holonomic; [1, Chapter 1, Theorem 6.1]. In particularH∗(;HI(R))are finite dimensional graded K-vector spaces. By [4, Theorem 1] the de Rham cohomology modulesH∗(;H

I(R))is

(2)

Letf be a homogenous polynomial in R and setA = R/(f). By [3, Theorem 2.7] we have H0(;H1

(f)(R)) = 0. In this paper we extend a technique from [4]. In that paper the first author relatedHn−1(;H(1f)(R)) with Hn−1((f);A). In this paper quite generally we prove that (see, Theorem 3.9):

Theorem 1 — Assume Hi−1(∂f;A) = 0. Then there exists a filtration {Fν}ν≥0 consisting

ofK−subspaces of Hi(;Rf) withFν = Hi(;Rf) for ν À 0,Fν ⊇ Fν−1 andF0 = 0 and K−linear maps

ηυ : Fυ Fυ−1 →H

i(∂f;A)

(υ+n−i) degf−ω.

such that

(a)ηυis injective for allυ≥2.

(b) Ifi6= 1.Thenη1also injective.

(c) Ifi= 1.Thenker(η1) =K.

IfHn−i(∂f;A) = 0fori≥α+ 1. Then as a corollary we obtain (see, Corollary 3.10)

Hn−i(;Rf) =  

0 ifα+ 1≤i≤n−2

K ifi=n−1.

WhenAis an isolated singularity, i.e.,AP is regular for all homogeneous prime idealsP 6= m.

Note thatV(f)is a smooth hypersurface inPn. As a corollary we prove that (see, Corollary 3.11)

Hi(;H(1f)(R)) =  

0 ifi≤n−2 andi6= 1

K ifi= 1.

We now describe in brief the contents of the paper. In Section 2 we discuss a few preliminaries that we need. In Section 3 we construct certain functions which we need to defineην. In Section 4

we construct our filtration ofHi(;H(1f)(R))and prove our result.

2. PRELIMINARIES

In this section we discuss a few preliminary results that we need.

Remark 2.1 : Although all the results are stated for de Rham cohomology of aAn(K)-module

(3)

An(K)-moduleM. LetS = K[1, . . . , ∂n]. Consider it as a subring of An(K). Then note that

Hi(∂, M)is theithKoszul homology module ofMwith respect to∂.

2.2 LetA be commutative ring anda = a1,· · · , an A.Let I ⊆ {1,· · · , n}, |I| = m.Say

I ={i1 < i2 <· · ·< im}.Let

eI:=ei1 ∧ei2 ∧ · · · ∧eim.

Then the Koszul complex ofAwith respect toais

K(a;A) := 0Kn−→φn Kn−1 φn−→ · · · →−1 K1−→φ1 K0 0.

HereKm= L

|I|=mAeI.

Letξ =

X

|I|=m

ξIeI Km we write ξ = (ξI| |I|=m). For the mapKp −→φp Kp−1,

sayφp(ξ) =U.WriteU = (UJ | |J|=p−1). Then

UJ =X i6∈J

(1)σ(J∪{i}aiξJ∪{i} ¢

.

HereJ ={j1 < j2 <· · ·< jp−1}and

σ(J∪ {i}) =     

   

0, ifi < j1;

p, ifi > jp−1

r, ifjr< i < jr+1.

2.3 Letf ∈Rbe a homogeneous polynomial. We consider elements ofRmf as column-vectors. For x∈Rm

f we write it asx= (x1, . . . , xm)0; here0indicates transpose.

2.4 Let f R be a homogeneous polynomial. Set = 1,· · · , ∂n. Consider the commutative

subringS =K[1,· · · , ∂n]ofAn(K). The de Rham complex on a holonomic moduleN is just the

Koszul complexK(;N)ofN with respect toS. In particular whenN =Rf we have,

K(;Rf) = 0Kn−→φn Kn−1 → · · ·Kp φp

−→Kp−1 → · · · →K1 −→φ1 K0 0.

Here K0 =Rf and Kp= M

|I|=p

(4)

The mapsKp φp

−→Kp−1, sayξ= (ξI | |I|=p)0.Then

φp(ξ) = 

X

i6∈J

(1)σ(J∪{i}) µ

∂xiξJ∪{i}

: |J|=p−1 

.

2.5 Letf Rbe a homogeneous polynomial. SetA =R/(f), and∂f =∂f /∂x1,· · · , ∂f /∂xn.

Consider the Koszul complexK0(∂f;A)onAwith respect to∂f.

K0(∂f;A) = 0K0n−→ψn K0n1· · · →K0p −→ψp Kp01→ · · · →K01 ψ1

−→K000.

Here K0p =

M

|I|=p

A(−pdegf+ωi1 +· · ·+ωip).

2.6 By [4, Theorem 1],Hi(;Rf)j = 0forj6=ω,whereω=ω1+· · ·+ωn.

2.7 Letξ ∈Rm

f \Rm. The element(a1/fi, a2/fi, . . . , am/fi)0, withaj ∈Rfor allj, is said to be

a normal form ofξif

(1) ξ = (a1/fi, a2/fi, . . . , am/fi)0.

(2) f does not divideaj for somej.

(3) i≥1.

It can be easily shown that normal form ofξexists and is unique (see [4, Proposition 5.1]).

2.8 Letξ ∈Rmf . We defineL(f)as follows.

Case 1 :ξ∈Rmf \Rm.

Let(a1/fi, a2/fi, . . . , am/fi)0 be the normal form ofξ. SetL(ξ) = i. NoticeL(ξ) 1in this

case.

Case 2 :ξ∈Rm\ {0}.

SetL(ξ) = 0.

Case 3 :ξ= 0.

SetL(ξ) =−∞.

The following properties of the functionLcan be easily verified.

(5)

(1) IfL(ξ1)< L(ξ2)thenL(ξ1+ξ2) =L(ξ2).

(2) IfL(ξ1) =L(ξ2)thenL(ξ1+ξ2)≤L(ξ2).

(3)L(ξ1+ξ2)max{L(ξ1), L(ξ2)}.

(4) Ifα∈K∗thenL(αξ) =L(ξ).

(5)L(αξ)≤L(ξ)for allα∈K.

(6)L(α1ξ1+α2ξ2)max{L(ξ1), L(ξ2)}.

(7) Letξ1, . . . , ξr∈Rmf and letα1, . . . , αr∈K. Then

L

Xr j=1

αjξj

max{L(ξ1), L(ξ2), . . . , L(ξr)}.

3. CONSTRUCTION OFCERTAINFUNCTIONS

In this section we construct few functions.

We define a function,θ:Zp(;Rf)\R( n

p) −→Hp(∂f;A), as follows.

Letξ ∈Zp(;Rf)\R( n

p) and let(ξ

I/fc | |I|=p)0 be the normal form ofξ.Asφp(ξ) = 0.We

have for everyJ such that|J|=p−1,

X

i6∈J

(1)σ(J∪{i})

∂xi µ

ξJ∪{i} fc

¶ =0.

This implies

X

i6∈J

(1)σ(J∪{i}) Ã

∂xi(ξJ∪{i})

fc −cξJ∪{i} ∂f ∂xi

fc+1

! =0.

So f.X

i6∈J

(1)σ(J∪{i}) µ

∂xi(ξJ∪{i}) ¶

=c.X

i6∈J

(1)σ(J∪{i}) µ

ξJ∪{i}∂f ∂xi

.

Thusf dividesPi6∈J(1)σ(J∪{i})

³

ξJ∪{i}∂xi∂f

´

.Therefore

( ¯ξI | |I|=p)0 ∈Zp(∂f;A).

Setθ(ξ) = [( ¯ξI | |I|=p)0]∈Hp(∂f;A).

The following Lemma identifies the degree ofθ(ξ).

(6)

(a)ξ∈R(

n p) f \R(

n p).

(b) IfL(ξ) =c.Thenθ(ξ)∈Hp(∂f;A)(c+p) degf−ω.

PROOF:(a)Letξ= (ξI)0 be non-zero inZp(;Rf)−ω. Note that

ξ M

|I|=p

(Rf(ωi1+· · ·+ωip))−ω.

It follows that

ξI(Rf)ω+Pp s=1ωis.

It follows thatξ ∈R(

n p) f \R(

n p).

(b) Let(aI/fc | |I| = p)0 be the normal form ofξ.As aI/fc Rf(ωi1 +· · ·+ωip)−ω.It follows that

deg(aI) =cdegf−ω+ p X

s=1 ωis.

Asθ(ξ) = [(¯aI | |I|=p)0].Let

¯

aI ∈A(−pdegf + p X

s=1 ωis)t.

Then

¯

aI ∈A(−pdegf+Pps=1ωis)+t.

It follows that

t= (c+p) degf−ω.

Thusθ(ξ)∈Hp(∂f;A)(c+p) degf−ω. 2

A natural condition we want inθis that it vanishes on boundaries. The following result gives a sufficient condition when this happens.

Proposition 3.2 — Letp < n. AssumeHp+1(∂f;A) = 0. Thenθ(Bp(;Rf)−ω\{0}) = 0.

PROOF : Let U Bp(;Rf)−ω be non zero. As Bp(;Rf)−ω Zp(;Rf)−ω. We get by

Lemma 3.1(a) thatU ∈R(

n p) f \R(

n p).Set

(7)

Noticec≥1. Letξ (Kp+1)−ωbe such thatL(ξ) =candφp+1(ξ) = U.Let(bG/fc | |G|=

p+ 1)0be the normal form ofξ. LetU = (U

I | |I|=p)0. Then

UI=X i6∈I

(1)σ(I∪{i})

∂xi µ

bI∪{i} fc

=X

i6∈I

(1)σ(I∪{i}) Ã

∂xibI∪{i}

fc −c

bI∪{i}∂xi∂f fc+1

!

= f

fc+1

X

i6∈I

(1)σ(I∪{i}) µ

∂xi(bI∪{i}) ¶

c

fc+1

X

i6∈I

(1)σ(I∪{i}) µ

bI∪{i} ∂f ∂xi

.

Set

VI =−c X

i6∈I

(1)σ(I∪{i}) µ

bI∪{i}∂f ∂xi

.

Then

UI = ffc++1VI.

Claim :f does not dividesVI for someI with|I|=p.

First assume the claim. Then U = (UI | |I| = p)0 = ( (f +VI)/fc+1 | |I| = p)0 is the

normal form ofU. Therefore

θ(U) = [( ¯VI)0] = [ψp+1(−c¯bG | |G|=p+ 1)0] = 0.

We now prove our claim. Suppose if possiblef|VI for allI with|I|=p. Letb= (bG | |G|=

p+ 1)0.Then

ψp+1(−c¯b) = ( ¯VI)0= (0,0,· · ·,0)0.

So−c¯b∈Zp+1(∂f;A).AsHp+1(∂f;A) = 0, we get−c¯b∈Bp+1(∂f;A).Thus

(8)

Forp=n−1we have

−c¯b= 0

cbG= ˜αGf for some α˜G∈R.

Thus f /bG for all G. This contradicts that (bG/fc| |G| = p+ 1)0 is the normal form of ξ.

Thereforep < n−1. So

−cbG= X

k6∈G

(1)σ(G∪{k}) µ

rG∪{k} ∂f ∂xk

+ ˜αGf. (3.2.1)

Now we compute the degrees ofrL. Note thatξ (Kp+1)−ω.So

bG

fc ∈Rf(ωi1+· · ·+ωip+1)−ω.

It follows that

degbG=cdegf−ω+ p+1

X

s=1

ωis. (3.2.2)

It can be easily checked that

¯bI∪{i} A((p+ 1) degf+ωi

1 +· · ·+ωip+1)(c+p+1) degf−ω.

So

¯

rL∈A((p+ 2) degf+ωi1+· · ·+ωip+2)(c+p+1) degf−ω.

It follows that

degrL= (c−1) degf−ω+ p+2

X

j=1

ωij. (3.2.3)

Case (1) : Letc= 1. Then by equation (3.2.1) we getα˜G= 0. Also notice

degrL=−ω+ p+2

X

j=1

ωij <0 if n > p+ 2.

(9)

Now considern =p+ 2.ThenrL = r12···n =constant. SayrL = r. So by equation (3.2.1) it

follows

b= (bG | |G|=n−1)0 = (−r∂f /∂x1,· · ·,(1)nr∂f /∂xn)0. (3.2.4)

As UI = X

i6∈I

(1)σ(I∪{i}) µ

∂xi

(bI∪{i}/f) ¶

.

Using equation (3.2.4) we getUI = 0for allIwith|I|=p.ThereforeU = 0a contradiction.

Case (2) : Letc≥2.By equation (3.2.1) we have

−cbG fc =

1

fc X

k6∈G

(1)σ(G∪{k}) µ

rG∪{k} ∂f ∂xk

¶ + α˜G

fc−1.

Notice

rG∪{k}∂f /∂xk

fc =

∂xk

µ

rG∪{k}/(1−c)

fc−1

fc−1.

Put r˜G∪{k} =

rG∪{k}

c(c−1). We obtain

bG fc =

X

k6∈G

(1)σ(G∪{k}) µ

∂xk

µ ˜

rG∪{k} fc−1

¶¶

+

fc−1.

Set

δ= µ

˜

rG∪{k} fc−1

and ξ˜= µ

fc−1

.

Then

ξ =φp+2(δ) + ˜ξ.

So we haveU =φp+1(ξ) =φp+1(˜ξ)andL(ξ)≤c−1. This contradicts our choice ofc. 2

4. CONSTRUCTION OF AFILTRATION ONHp(;Rf)

In this section we construct a filtration of Hp(;Rf). Throughout this section 1 p < n and

Hp+1(∂f;A) = 0.

4.1 By 2.6 we have

Hp(;Rf) =Hp(;Rf)−ω =

Zp(;Rf)−ω

(10)

Letx∈Hp(;Rf)be non-zero. Define

L(x) =min{L(ξ)| x= [ξ], where ξ ∈Zp(;Rf)−ω}.

Let ξ = (ξI/fc | |I| = p)0 Zp(;Rf)−ω be such that x = [ξ]. So ξ (Kp)−ω. Thus

ξ R(

n p)

f (ωi1 +· · ·+ωip)−ω. So if ξ 6= 0thenξ R

(n p) f \R(

n

p).It follows thatL(ξ) 1.Thus

L(x)1.Ifx= 0setL(x) =−∞.

We now define a function

˜

θ:Hp(;Rf)→Hp(∂f;A)

x→  

0 ifx= 0

θ(ξ) ifx6= 0, x= [ξ], and L(x) =L(ξ).

Proposition 4.2 — (with hypothesis as above).θ˜(x)is independent ofξ.

PROOF: Supposex = [ξ1] = [ξ2]is non zero andL(x) =L(ξ1) = L(ξ2) =c.Let(aI/fc)0 be

the normal form ofξ1 and(bI/fc)0 be the normal of ξ2.As[ξ1] = [ξ2]it follows thatξ1 = ξ2 +δ for someδ ∈Bp(;Rf)−w.We getj =L(δ)≤cby 2.9. Let(cI/fj)0 be the normal form ofδ.We

consider two cases.

Case (1) :j < c.Then note thataI =bI+fc−jcI, for|I|=p.It follows that

θ(ξ1) = [( ¯aI)0] = [( ¯bI)0] =θ(ξ2).

Case (2) :j=c.Note thataI =bI+cI for|I|=p.It follows that

θ(ξ1) =θ(ξ2) +θ(δ).

However by Proposition 3.2θ(δ) = 0.Soθ(ξ1) =θ(ξ2).Henceθ˜(x)is independent of choice of

ξ. 2

4.3 We now construct a filtrationF={Fυ}υ≥0ofHp(;Rf).Set

Fυ={x∈Hp(;Rf) | L(x)≤υ}.

Proposition 4.4 —(1) is aK−subspace ofHp(;Rf).

(11)

(3) =Hp(;Rf)for allυÀ0.

(4)F0 = 0.

PROOF: (1)Letx ∈ Fυand letα K.Letx = [ξ]withL(x) =L(ξ) ≤υ.Thenαx= [αξ].

So

L(αx)≤L(αξ)≤υ.

Soαx∈ Fυ.

Letx, x0 ∈ Fυbe non-zero. Letξ, ξ0 Zp(;Rf)be such thatx = [ξ], x0 = [ξ0]andL(x) =

L(ξ), L(x0) =L(ξ0).Thenx+x0 = [ξ+ξ0].It follows that

L(x+x0)≤L(ξ+ξ0)≤max{L(ξ), L(ξ0)} ≤υ.

Thusx+x0 ∈ Fυ.

(2)This is clear from the definition.

(3)LetB={x1,· · · , xl}be aK−basis ofHp(;Rf) =Hp(;Rf)−ω. Let

c=max{L(xi) | i= 1,· · · , l}.

We claim that

Fυ =Hp(;Rf) for all υ≥c.

Fixυ≥c.Letξi ∈Zp(;Rf)−ωbe such thatxi = [ξi]andL(xi) =L(ξi)fori= 1,· · ·, l.

Letu Hp(;Rf).Sayu = Pl

i=1αixi for someα1,· · · , αl K. Thenu = [ Pl

i=1αiξi]. It

follows that

L(u)≤L( l X

i=1

αiξi)≤max{L(ξ) | i= 1,· · · , l}=c≤υ.

Sou∈ Fυ. Hence=Hp(;Rf).

(4)Ifx∈Hp(;Rf)is non-zero thenL(x)1.ThereforeF0 = 0. 2

4.5 LetG =Lυ1Fυ/Fυ−1. Forυ≥1we define

ηυ : Fυ−1

→Hp(∂f;A)(υ+p) degfω

u→  

0 ifu= 0 ˜

(12)

Proposition 4.6 — (with hypothesis as above).ηυ(u)is independent of choice ofx.

PROOF: Supposeu=x+Fυ−1 =x0+Fυ−1 be non-zero. Thenx =x0+ywherey ∈ Fυ−1. Asu 6= 0we havex, x0 ∈ Fυ\Fυ−1. SoL(x) = L(x0) = υ. Sayx = [ξ],x0 = [ξ0], andy = [δ]

whereξ, ξ0, δ ∈Zp(;Rf)−ωwithL(ξ) = L(ξ0) =υandL(δ) = L(y) = k≤υ−1. So we have

ξ=ξ0+δ+αwhereαB

p(;Rf)−ω. LetL(α) =r.Not thatr ≤υ.

Let(aI/fυ)0,(a0I/fυ)0,(bI/fk)0and(cI/fr)0be normal forms ofξ, ξ0, δandαrespectively, here |I|=p.So we have

aI=a0I+fυ−kbI+fυ−rcI with |I|=p.

Case(1):r < υ. In this case we have that¯aI = ¯a0IinA. Soθ(ξ) =θ(ξ0). Thusθ˜(x) = ˜θ(x0).

Case(2): r =υ. In this case we have¯aI = ¯a0I + ¯cIinA. Soθ(ξ) = θ(ξ0) +θ(α). However

θ(α) = 0asα∈Bp(;Rf)−ω. Thusθ˜(x) = ˜θ(x0). 2

Proposition 4.7 — (with notation as above). For allυ≥1,ηυisK−linear.

PROOF: Letu, u0 ∈ Fυ/Fυ−1. We first show thatηυ(αu) =αηυ(u). Ifα= 0oru= 0we have

nothing to show. So assumeα6= 0andu6= 0. Sayu=x+Fυ−1.Thenαu=αx+Fυ−1.It can be easily shown thatθ˜(αx) =αθ˜(x). So we get the result.

Next we show thatηυ(u+u0) =ηυ(u) +ηυ(u0). We have nothing to show ifuoru0is zero. Now

consider the case whenu+u0= 0. Thenu=−u0. Soηυ(u) =−ηυ(u0). Thus in this case

ηυ(u+u0) = 0 =ηυ(u) +ηυ(u0).

Now consider the case whenu, u0 are non-zero andu+u0 non-zero. Sayu = x+Fυ−1 and u0 =x0+F

υ−1. Note that asu+u0 is non-zerox+x0 ∈ Fυ\Fυ−1. Letx= [ξ]andx0 = [ξ0]where ξ, ξ0 Z

p(;Rf)−ωandL(ξ) = L(ξ0) =υ. Thenx+x0 = [ξ+ξ0]. Note thatL(ξ+ξ0)≤υ. But

L(x+x0) =υ.SoL(ξ+ξ0) =υ. Let(a

I/fυ)0,(a0I/fυ)0be the normal forms ofξ,andξ0respectively.

Note that((aI+a0I)/fυ)0is the normal form ofξ+ξ0. It follows thatθ(ξ+ξ0) =θ(ξ) +θ(ξ0). Thus ˜

θ(x+x0) = ˜θ(x) + ˜θ(x0). Therefore

ηυ(u+u0) =ηυ(u) +ηυ(u0).2

Surprisingly the following result holds.

(13)

(a)ηυis injective for allυ≥2.

(b) Ifp6=n−1.Thenη1also injective.

(c) Ifp=n−1.Thenker(η1) =K.

PROOF: Suppose if possibleην is not injective. Then there exists non-zerou ∈ Fν/Fν−1 with ην(u) = 0. Sayu=x+Fν−1. Also letx= [ξ]whereξ∈Zp(;Rf)−ωandL(ξ) =L(x) =ν. Let (aI/fυ | |I|=p)0be the normal form ofξ. So we have

0 =ην(u) =θe(x) =θ(ξ) = [(aI)0].

It follows that(aI)0 =ψp+1(b), whereb= (bG | |G|=p+ 1)0. It follows that

aI= X

i6∈I

(1)σ(I∪{i}) µ

¯bI∪{i}∂f¯

∂xi

.

It follows that for|I|=pwe have the following equation inR:

aI=X i6∈I

(1)σ(I∪{i}) µ

bI∪{i}∂f ∂xi

+dIf, (4.8.1)

for somedI R. Note that the above equation is of homogeneous elements inR. So we have the

following

aI =

P

i6∈I(1)σ(I∪{i})bI∪{i}∂xi∂f

+

dI

fυ−1. (4.8.2)

We consider two cases:

(a): Letν 2. SetebI∪{i} =−bI∪{i}/(υ−1). Then note that

bI∪{i}∂xi∂f

=

∂xi

à eb

I∪{i}

fν−1

!

fν−1.

By equation (4.8.2) we have

aI

= X

i6∈I

(1)σ(I∪{i})

∂xi

à eb

I∪{i}

fυ−1

!

fν−1.

Putξ0∗/fν−1:|I|=p¢0 andδ =

³ eb

I∪{i}/fν−1 |i6∈I,|I|=p ´0

. Then we have

(14)

So we havex= [ξ] = [ξ0]. This yieldsL(x)≤L(ξ0)≤ν−1. This is a contradiction.

(b): Letν = 1andp6=n−1.Note thatn≥p+ 2.Also note thatξ (Kp)−ω. Thus for|I|=p

we have

aI

f (Rf(ωi1+· · ·+ωip)−ω.

It follows that

degaI = degf −ω+ (ωi1+· · ·+ωip).

Also note thatdeg∂f /∂xi= degf−ωi. By comparing degrees in equation (4.8.1) we getaI = 0

for allI with|I|=p. Thusξ= 0. Sox= 0.Thereforeu= 0a contradiction.

(c): Letp=n−1.By comparing degrees in equation (4.8.1) we getdI = 0andbI∪{i}=constant.

But

ξ= µ

∂f ∂xn/f,−

∂f

∂xn−1/f,· · · ,(1)

n−1 ∂f ∂x1/f

0

.

It is easily verified thatξ∈Zn−1(;Rf)and that ifx= [ξ]thenη1(x) = 0.

We prove thatξ6∈Bn−1(;Rf). Suppose if possible letg∈R, g.c.d(g, f) = 1and µ

∂xn,−

∂xn1,· · ·,(1)

n−1 ∂x1

0

(g/fc) =ξ.

Thus

∂xi

(g/fc) = ∂f

∂xi

/f for i= 1,· · ·, n.

By computing left hand side we see thatf dividesg∂f /∂xifori= 1,· · · , n.

Let g∂f

∂xi =f hi.

Let

f =fa1

1 f2a2· · ·fsas, fjirreducible andaj 1.

Then

∂f ∂xi =

s X

j=1 fa1

1 · · ·f

aj−1

j−1 (ajfjaj−1

∂fj

∂xi)f aj+1

j+1 · · ·fsas.

(15)

Ifaj 2⇒fjaj−1divides∂f /∂xiandfjaj does not divides∂f /∂xi.So we can write

∂f ∂xi =f

a11

1 f2a21· · ·fsas−1Vi, wherefj does not dividesVi∀j.

LetU = f1f2· · ·fs.Then we havegVi = U hi.As g.c.d(g, f) = 1so g.c.d(g, U) = 1.Sofj

dividesVia contradiction. Thereforeξ6∈Bn−1(;Rf).Henceker(η1) =K. 2

By summarizing the above results, we obtain our main Theorem:

Theorem 4.9 — Assume Hp+1(∂f;A) = 0. Then there exists a filtration{Fν}ν≥0 consisting

ofK−subspaces of Hp(;Rf) with = Hp(;Rf) forν À 0,Fν ⊇ Fν−1 andF0 = 0 and K−linear maps

ηυ: F

υ−1 →Hp(∂f;A)(υ+p) degf−ω.

such that

(a)ηυis injective for allυ≥2.

(b) Ifp6=n−1.Thenη1also injective.

(c) Ifp=n−1.Thenker(η1) =K.

Corollary 4.10 — IfHi(∂f;A) = 0fori≥α+ 1. Then

Hi(;Rf) =  

0 ifα+ 1≤i≤n−2

K ifi=n−1.

PROOF: Letα+ 1≤i≤n−2..By Theorem 4.9 there exist a filtration{Fυ}υ≥0ofHi(;Rf)

and injective maps

ηυ: Fυ−1

−→Hi(∂f;A).

Note thatF0= 0. AsHi(∂f;A) = 0we getF1= 0.Continuing this way we get= 0for all

υ.As=Hi(;Rf)forυÀ0.HenceHi(;Rf) = 0.

Leti=n−1.Thenker(η1) =K.SoF1/K= 0.ThusF1 =K.

As dimKHn−1(;Rf) = X

dimK(Fυ/Fυ1)

= dimKF1

(16)

WhenAis smooth we get: Ä

Corollary 4.11 — Letf ∈Rbe quasi homogeneous. LetA=R/(f)be smooth. Then

Hi(;H(1f)(R)) =  

0 if 2≤i≤n−2ori=n

K if i=n−1.

PROOF: AsAis smooth, soHi(∂f;A) = 0fori≥2. Therefore by Corollary 4.10.

Hi(;Rf) =  

0 ifα+ 1≤i≤n−2

K ifi=n−1.

By [3, Theorem 2.7]

Hn(;H(1f)(R)) = 0 and Hi(;Rf)≡Hi(;H(1f)(R))for i < n.

Hence the result. 2

REFERENCES

1. J.-E. Bj¨ork, Rings of differential operators, North-Holland Mathematical Library, 21, North-Holland Publishing Co., Amsterdam-New York, 1979.

2. G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules to com-mutative algebra), Invent. Math., 113(1) (1993), 41-55.

3. T. J. Puthenpurakal, de Rham cohomology of local cohomology modules, Algebra and its applications, 159-181, Springer Proc. Math. Stat., 174, Springer, Singapore, 2016.

References

Related documents

We begin with those rights assertions of the form “A has a right to phi” that indicate the privilege, the first of the four Hohfeldian

The squeegee force has to overcome the force which is necessary to press the paste through the screen, which depends on the hardness of the squeegee material hardness, the

The main aims of the paper are to (1) clarify the interaction process of abiotic factors (sunlight, temperature and water) in regulating maize photosynthesis by a field

the preferred walking velocity, the fast walking vel- ocity, the symmetry ratio, the duration of the gait cycle, and the duration of the stance phase for subjects in the FAC = 1

astori has been reported in the Gulf of California, the Galapagos Archipelago, nearby Clipperton atoll and mainland Ecuador (Holthuis and Loesch 1967; Holthuis 1991; Hendrickx

The real parameter enables to write the each splitted equation as close to the Korteweg de Vries (KdV) equation as we wish and as far from the Burgers equation as we wish or vice

Acer Δ males, like controls, showed an extended lifespan on DR food compared to FF food, however Acer Δ females did not show the normal response to DR,

COMPUTERS IN THE LIFE SCIENCES: 32- page brochure describes computer techniques that can be performed with a general purpose laboratory comput- er while the experiment