• No results found

2,2 Di­chloro 6 meth­oxy 3,4 di­hydro 2H naphthalene

N/A
N/A
Protected

Academic year: 2020

Share "2,2 Di­chloro 6 meth­oxy 3,4 di­hydro 2H naphthalene"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o1239±o1240 DOI: 10.1107/S1600536802018688 Christopher L. Brownet al. C11H10Cl2O2

o1239

organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2-Dichloro-6-methoxy-3,4-dihydro-2

H

-naphthalene

Christopher L. Brown, James A. Freiberg and Peter C. Healy*

School of Science, Griffith University, Nathan, Brisbane 4111, Australia

Correspondence e-mail: p.healy@sct.gu.edu.au

Key indicators Single-crystal X-ray study T= 295 K

Mean(C±C) = 0.004 AÊ Rfactor = 0.042 wRfactor = 0.125

Data-to-parameter ratio = 18.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The structure of the title compound, C11H10Cl2O2, shows that

the asymmetric unit contains two closely related independent molecules that pack in a head-to-tail arrangement.

Comment

The title compound, (I), was isolated as a by-product in the synthesis of the mono chloro compound, being synthesized as part of an ongoing program of discovery of biologically active compounds based on the andtetralone core. The asym-metric unit of (I) comprises two independent molecules, which are separated by normal van der Waals distances (Fig. 1). The two molecules lie approximately orthogonal to each other in a head-to-tail arrangement. The bond lengths and angles of both molecules (Table 1) are very similar and are in accord with conventional values (Allenet al., 1987). The conformational structure of the two molecules is also similar. The methoxy group, the aromatic ring and the carbonyl group of the tetralone group are all approximately coplanar. The cyclo-hexanone rings adopt a half chair conformation, with C3 lying out of the plane of the molecule by approximately 0.5 AÊ.

Experimental

Sulfuryl choride (9.18 g, 52 mmol) in anhydrous carbon tetrachloride (60 ml) was added dropwise to a stirred solution of 6-methoxy-3,4-dihydro-2H-naphthalene (7.01 g, 52 mmol) in anhydrous carbon tetrachloride (60 ml), over 1 h at 273 K under an inert atmosphere. The mixture was then stirred at room temperature for 24 h, followed by heating at 328±333 K for 6 h. After this time a further aliquot of sulfuryl chloride (9.18 g, 52 mmol) in carbon tetrachloride (120 ml) was added and heating maintained at 328±333 K for a further 12 h. Removal of the solvent and column chromotography of the resulting crude product (ether:hexane 1:1 v/v, then dichloromethane:hexane 1:1v/v) yielded (I) as a white solid (9.18 g, 71.8%), m.p. 358±360 K. 1H NMR (200 MHz, CDCl3);(p.p.m.) 2.90±3.30 (2H,m, CH2), 3.18 (2H,t,CH2), (2H,t, CH2), 3.89 (3H,s, CH3), 6.72 (1H,s, ArÐH), 6.95 (1H,dd, ArÐH), 8.15 (1H,d, ArÐH). Crystals suitable for X-ray diffraction studies were grown by slow evaporation of the solvent from a saturated solution of (I) in diethyl ether.

(2)

Crystal data

C11H10Cl2O2

Mr= 245.09 Monoclinic,P21=c

a= 17.569 (5) AÊ

b= 10.745 (3) AÊ

c= 12.239 (4) AÊ

= 109.83 (2)

V= 2173.5 (12) AÊ3

Z= 8

Dx= 1.498 Mg mÿ3 MoKradiation Cell parameters from 25

re¯ections

= 12.6±17.1 = 0.57 mmÿ1

T= 295 K Prismatic, colorless 0.300.300.14 mm

Data collection

Rigaku AFC-7Rdiffractometer

!±2scans

Absorption correction: none 6026 measured re¯ections 4967 independent re¯ections 2849 re¯ections withI> 2(I)

Rint= 0.040

max= 27.5

h=ÿ10!22

k=ÿ13!6

l=ÿ15!14 3 standard re¯ections

every 150 re¯ections intensity decay: 4.8%

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.042

wR(F2) = 0.125

S= 0.99 4967 re¯ections 271 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0484P)2 + 0.7378P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.24 e AÊÿ3

min=ÿ0.30 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,). Cl1ÐC2 1.762 (2) Cl2ÐC2 1.805 (3) Cl10ÐC20 1.770 (2)

Cl20ÐC20 1.808 (3)

O1ÐC1 1.212 (3)

O6ÐC6 1.362 (3) O6ÐC61 1.435 (4) O10ÐC10 1.215 (3)

O60ÐC60 1.359 (3)

O60ÐC610 1.435 (4)

C6ÐO6ÐC61 118.2 (2) C60ÐO60ÐC610 117.5 (2)

O1ÐC1ÐC9 123.7 (3) O1ÐC1ÐC2 120.2 (2) Cl1ÐC2ÐCl2 108.24 (14) Cl1ÐC2ÐC3 109.61 (16) Cl2ÐC2ÐC1 104.85 (16) Cl1ÐC2ÐC1 111.31 (18) Cl2ÐC2ÐC3 110.33 (19) O6ÐC6ÐC5 124.0 (2)

O6ÐC6ÐC7 115.4 (2) O10ÐC10ÐC20 120.4 (2)

O10ÐC10ÐC90 123.4 (2)

Cl10ÐC20ÐCl20 108.26 (15)

Cl10ÐC20ÐC10 111.38 (17)

Cl10ÐC20ÐC30 109.64 (18)

Cl20ÐC20ÐC10 104.99 (18)

Cl20ÐC20ÐC30 109.94 (19)

O60ÐC60ÐC50 124.6 (2)

O60ÐC60ÐC70 115.2 (2)

H atoms were located at calculated positions with CÐH set to 0.95 AÊ.Uisovalues for the H atoms were set at 1.2Ueqof the parent atoms.

Data collection: MSC/AFC-7 Diffractometer Control Software

(Molecular Structure Corporation, 1999); cell re®nement:MSC/AFC -7Diffractometer Control Software; data reduction:teXsan(Molecular Structure Corporation, 1997±2001); program(s) used to solve struc-ture:teXsan; program(s) used to re®ne structure:teXsan;SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:teXsan;PLATON

(Spek, 2001).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans.2, pp. S1±19.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Molecular Structure Corporation (1999).MSC/AFC-7Diffractometer Control Software for Windows. Version 1.02. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

Molecular Structure Corporation (1997±2001).teXsanfor Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA. Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (2001).PLATONfor Windows. Version 121201. University of

Utrecht, The Netherlands. Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2002). E58, o1239–o1240

supporting information

Acta Cryst. (2002). E58, o1239–o1240 [https://doi.org/10.1107/S1600536802018688]

2,2-Dichloro-6-methoxy-3,4-dihydro-2

H

-naphthalene

Christopher L. Brown, James A. Freiberg and Peter C. Healy

2,2-dichloro-6-methoxy-3,4-dihydro-2H-naphthalene

Crystal data

C11H10Cl2O2

Mr = 245.09

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 17.569 (5) Å

b = 10.745 (3) Å

c = 12.239 (4) Å

β = 109.83 (2)°

V = 2173.5 (12) Å3

Z = 8

F(000) = 1008

Dx = 1.498 Mg m−3

Melting point = 358–360 K Mo radiation, λ = 0.71069 Å Cell parameters from 25 reflections

θ = 12.6–17.1°

µ = 0.57 mm−1

T = 295 K

Prismatic, colorless 0.30 × 0.30 × 0.14 mm

Data collection

Rigaku AFC7R diffractometer

Radiation source: Rigaku rotating anode Graphite monochromator

ω–2θ scans

6026 measured reflections 4967 independent reflections 2849 reflections with I > 2σ(I)

Rint = 0.040

θmax = 27.5°, θmin = 2.6°

h = −10→22

k = −13→6

l = −15→14

3 standard reflections every 150 reflections intensity decay: −4.8%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.042

wR(F2) = 0.125

S = 0.99 4967 reflections 271 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters not refined

w = 1/[σ2(F

o2) + (0.0484P)2 + 0.7378P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.24 e Å−3

Δρmin = −0.30 e Å−3

Special details

(4)

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3

Acta Cryst. (2002). E58, o1239–o1240

H61 0.55200 0.18390 0.51450 0.0740* H62 0.54360 0.09400 0.60900 0.0740* H63 0.62290 0.16890 0.63110 0.0740* H5′ 0.87540 0.66580 0.91080 0.0510* H7′ 0.99930 0.56140 1.24140 0.0540* H8′ 0.95870 0.35770 1.19530 0.0530* H31′ 0.77550 0.29940 0.71410 0.0540* H32′ 0.86830 0.29930 0.77790 0.0540* H41′ 0.75930 0.47090 0.81030 0.0590* H42′ 0.83000 0.50090 0.76540 0.0590* H61′ 0.94800 0.82940 0.96210 0.0800* H62′ 0.88400 0.86050 1.01960 0.0800* H63′ 0.96860 0.92320 1.06440 0.0800*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

Geometric parameters (Å, º)

Cl1—C2 1.762 (2) C7—H7 0.9507 Cl2—C2 1.805 (3) C8—H8 0.9499 Cl1′—C2′ 1.770 (2) C61—H62 0.9502 Cl2′—C2′ 1.808 (3) C61—H63 0.9501 O1—C1 1.212 (3) C61—H61 0.9502 O6—C6 1.362 (3) C1′—C2′ 1.534 (3) O6—C61 1.435 (4) C1′—C9′ 1.469 (3) O1′—C1′ 1.215 (3) C2′—C3′ 1.514 (4) O6′—C6′ 1.359 (3) C3′—C4′ 1.517 (5) O6′—C61′ 1.435 (4) C4′—C10′ 1.500 (3) C1—C2 1.543 (4) C5′—C6′ 1.377 (3) C1—C9 1.468 (3) C5′—C10′ 1.390 (3) C2—C3 1.523 (3) C6′—C7′ 1.398 (4) C3—C4 1.518 (3) C7′—C8′ 1.368 (4) C4—C10 1.507 (4) C8′—C9′ 1.405 (3) C5—C6 1.379 (4) C9′—C10′ 1.403 (3) C5—C10 1.395 (3) C3′—H31′ 0.9489 C6—C7 1.396 (4) C3′—H32′ 0.9505 C7—C8 1.366 (4) C4′—H41′ 0.9505 C8—C9 1.409 (4) C4′—H42′ 0.9506 C9—C10 1.400 (3) C5′—H5′ 0.9501 C3—H32 0.9503 C7′—H7′ 0.9504 C3—H31 0.9504 C8′—H8′ 0.9497 C4—H41 0.9497 C61′—H61′ 0.9499 C4—H42 0.9495 C61′—H62′ 0.9505 C5—H5 0.9499 C61′—H63′ 0.9509

Cl1···O1 2.911 (3) C10′···Cl2′ 3.580 (3) Cl1···C61i 3.440 (4) C10′···C7′xi 3.578 (4)

Cl1···Cl2′ii 3.6080 (16) C61···Cl1iii 3.440 (4)

Cl1′···C61′iii 3.603 (4) C61′···Cl1′i 3.603 (4)

Cl1′···O1′ 2.909 (2) C1···H61vi 3.0831

Cl1′···Cl2iii 3.6579 (16) C5···H31′ 3.0988

Cl2···O1 3.331 (3) C5···H61 2.7402 Cl2···Cl1′i 3.6579 (16) C5···H63 2.7648

Cl2···C10 3.600 (3) C5′···H61′ 2.6376 Cl2···C6′ii 3.488 (3) C5′···H62′ 2.8573

Cl2′···C10′ 3.580 (3) C9···H31 3.0608 Cl2′···C6 3.612 (3) C9′···H32′ 3.0551 Cl2′···Cl1iv 3.6080 (16) C61···H5 2.5039

Cl2′···O1′ 3.348 (3) C61′···H5′ 2.5003 Cl1···H63i 3.0510 H5···H41 2.4553

Cl1′···H62′iii 3.1456 H5···C61 2.5039

Cl2···H42 2.8197 H5···Cl2′xii 2.8744

(7)

supporting information

sup-5

Acta Cryst. (2002). E58, o1239–o1240

Cl2′···H41′ 2.7813 H5′···C61′ 2.5003 Cl2′···H41v 3.1424 H5′···H62′ 2.4569

O1···Cl1 2.911 (3) H5′···H42′ 2.4453 O1···Cl2 3.331 (3) H5′···H61′ 2.1373 O1′···Cl1′ 2.909 (2) H5′···Cl2 2.9666 O1′···C3′v 3.357 (4) H7···O1ix 2.6146

O1′···Cl2′ 3.348 (3) H7′···O1′x 2.7276

O1···H61vi 2.8815 H8···O6vii 2.5187

O1···H62i 2.8225 H8···H31iv 2.5702

O1···H8 2.5410 H8···O1 2.5410 O1···H7vii 2.6146 H8′···O1′ 2.5433

O1···H31iv 2.8649 H8′···O6′viii 2.5304

O1′···H7′viii 2.7276 H31···O1ii 2.8649

O1′···H8′ 2.5433 H31···H8ii 2.5702

O1′···H32′v 2.7577 H31···C9 3.0608

O6···H8ix 2.5187 H31···O6vi 2.7618

O6···H31vi 2.7618 H31′···C5 3.0988

O6′···H8′x 2.5304 H32′···O6′xi 2.7466

O6′···H32′xi 2.7466 H32′···O1′xii 2.7577

C3′···O1′xii 3.357 (4) H32′···C9′ 3.0551

C5···C8vi 3.571 (4) H41···Cl2′xii 3.1424

C5···C7vi 3.596 (4) H41···H5 2.4553

C5′···C8′xi 3.577 (4) H41′···Cl2′ 2.7813

C6···C10vi 3.567 (4) H42···Cl2 2.8197

C6···Cl2′ 3.612 (3) H42′···H5′ 2.4453 C6···C9vi 3.570 (4) H61···C5 2.7402

C6′···C9′xi 3.571 (4) H61···O1vi 2.8815

C6′···Cl2iv 3.488 (3) H61···C1vi 3.0831

C7···C10vi 3.576 (4) H61···H5 2.2606

C7···C5vi 3.596 (4) H61′···H5′ 2.1373

C7′···C10′xi 3.578 (4) H61′···C5′ 2.6376

C8···C5vi 3.571 (4) H62···O1iii 2.8225

C8′···C5′xi 3.577 (4) H62′···C5′ 2.8573

C9···C6vi 3.570 (4) H62′···H5′ 2.4569

C9′···C6′xi 3.571 (4) H62′···Cl1′i 3.1456

C10···C7vi 3.576 (4) H63···H5 2.3377

C10···Cl2 3.600 (3) H63···Cl1iii 3.0510

C10···C6vi 3.567 (4) H63···C5 2.7648

(8)

C1—C2—C3 112.3 (2) C1′—C2′—C3′ 112.5 (2) Cl2—C2—C3 110.33 (19) C2′—C3′—C4′ 111.3 (2) C2—C3—C4 111.71 (19) C3′—C4′—C10′ 113.0 (2) C3—C4—C10 112.6 (2) C6′—C5′—C10′ 120.8 (2) C6—C5—C10 120.4 (2) O6′—C6′—C5′ 124.6 (2) O6—C6—C5 124.0 (2) O6′—C6′—C7′ 115.2 (2) O6—C6—C7 115.4 (2) C5′—C6′—C7′ 120.2 (2) C5—C6—C7 120.5 (2) C6′—C7′—C8′ 119.6 (2) C6—C7—C8 119.5 (3) C7′—C8′—C9′ 121.1 (2) C7—C8—C9 121.1 (2) C1′—C9′—C8′ 119.1 (2) C1—C9—C10 122.2 (2) C1′—C9′—C10′ 122.0 (2) C8—C9—C10 119.1 (2) C8′—C9′—C10′ 119.0 (2) C1—C9—C8 118.7 (2) C4′—C10′—C5′ 119.3 (2) C4—C10—C9 121.7 (2) C4′—C10′—C9′ 121.3 (2) C5—C10—C9 119.4 (2) C5′—C10′—C9′ 119.4 (2) C4—C10—C5 118.9 (2) C2′—C3′—H31′ 109.11 C2—C3—H32 108.98 C2′—C3′—H32′ 109.01 C4—C3—H31 108.87 C4′—C3′—H31′ 108.99 C4—C3—H32 108.83 C4′—C3′—H32′ 108.96 H31—C3—H32 109.47 H31′—C3′—H32′ 109.43 C2—C3—H31 108.96 C3′—C4′—H41′ 108.55 C3—C4—H41 108.68 C3′—C4′—H42′ 108.54 C3—C4—H42 108.65 C10′—C4′—H41′ 108.59 C10—C4—H42 108.68 C10′—C4′—H42′ 108.60 H41—C4—H42 109.46 H41′—C4′—H42′ 109.55 C10—C4—H41 108.71 C6′—C5′—H5′ 119.63 C6—C5—H5 119.71 C10′—C5′—H5′ 119.62 C10—C5—H5 119.84 C6′—C7′—H7′ 120.30 C8—C7—H7 120.20 C8′—C7′—H7′ 120.09 C6—C7—H7 120.32 C7′—C8′—H8′ 119.48 C7—C8—H8 119.42 C9′—C8′—H8′ 119.45 C9—C8—H8 119.49 O6′—C61′—H61′ 109.48 O6—C61—H62 109.49 O6′—C61′—H62′ 109.48 O6—C61—H63 109.44 O6′—C61′—H63′ 109.47 O6—C61—H61 109.47 H61′—C61′—H62′ 109.49 H61—C61—H63 109.50 H61′—C61′—H63′ 109.41 H62—C61—H63 109.43 H62′—C61′—H63′ 109.50

(9)

supporting information

sup-7

Acta Cryst. (2002). E58, o1239–o1240

O1—C1—C9—C10 175.3 (3) O1′—C1′—C9′—C10′ 174.4 (3) C2—C1—C9—C8 174.3 (2) C2′—C1′—C9′—C8′ 173.9 (3) C9—C1—C2—Cl1 156.68 (18) Cl1′—C2′—C3′—C4′ −179.8 (2) O1—C1—C2—C3 −148.3 (2) Cl2′—C2′—C3′—C4′ 61.3 (3) C1—C2—C3—C4 −54.8 (3) C1′—C2′—C3′—C4′ −55.3 (3) Cl2—C2—C3—C4 61.7 (3) C2′—C3′—C4′—C10′ 49.2 (3) Cl1—C2—C3—C4 −179.2 (2) C3′—C4′—C10′—C9′ −22.6 (4) C2—C3—C4—C10 48.9 (3) C3′—C4′—C10′—C5′ 157.8 (3) C3—C4—C10—C9 −22.3 (3) C6′—C5′—C10′—C4′ −179.9 (3) C3—C4—C10—C5 158.2 (2) C10′—C5′—C6′—C7′ −0.9 (4) C10—C5—C6—C7 −1.0 (4) C10′—C5′—C6′—O6′ 178.9 (3) C6—C5—C10—C4 −179.8 (2) C6′—C5′—C10′—C9′ 0.5 (4) C6—C5—C10—C9 0.7 (4) O6′—C6′—C7′—C8′ −178.8 (3) C10—C5—C6—O6 178.8 (2) C5′—C6′—C7′—C8′ 0.9 (4) C5—C6—C7—C8 1.1 (4) C6′—C7′—C8′—C9′ −0.6 (5) O6—C6—C7—C8 −178.7 (2) C7′—C8′—C9′—C10′ 0.2 (4) C6—C7—C8—C9 −0.8 (4) C7′—C8′—C9′—C1′ 179.4 (3) C7—C8—C9—C10 0.4 (4) C1′—C9′—C10′—C4′ 1.1 (4) C7—C8—C9—C1 179.8 (2) C1′—C9′—C10′—C5′ −179.3 (3) C8—C9—C10—C5 −0.4 (4) C8′—C9′—C10′—C4′ −179.7 (3) C8—C9—C10—C4 −179.9 (2) C8′—C9′—C10′—C5′ −0.1 (4)

Symmetry codes: (i) x, y+1, z; (ii) x, −y+3/2, z−1/2; (iii) x, y−1, z; (iv) x, −y+3/2, z+1/2; (v) x, −y+1/2, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) −x+1, y+1/2, −z+3/2; (viii) −x+2, y−1/2, −z+5/2; (ix) −x+1, y−1/2, −z+3/2; (x) −x+2, y+1/2, −z+5/2; (xi) −x+2, −y+1, −z+2; (xii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C8—H8···O6vii 0.95 2.52 3.438 (3) 163

C8′—H8′···O6′viii 0.95 2.53 3.445 (3) 162

C4′—H41′···Cl2′ 0.95 2.78 3.126 (3) 102 C4—H42···Cl2 0.95 2.82 3.154 (3) 102

References

Related documents

If the value of σ is higher, the firm tends to hire more temporary workers than permanent workers in response to a positive technology shock. This e ff ect results in an increase in

La réduction de l’output gap et la stabilisation de l’économie réduit l’écart entre les taux (le spread), cela est expliqué par l’augmentation des taux courts et la

That is, the real gross domestic product (RGDP), public sector contributory pension scheme (CPSPU), private sector contributory pension scheme (CPSPP), total pension

The study concluded by emphasizing the relevance of queuing theory to the effective service delivery of the banking sector in Nigeria and strongly recommends

During EM training procedure, the transition probability, exclusive the transition probability from document states which is fixed to 100% to the Initial State, will

By and large, the experiment results show that no matter what kind of reordering knowledge is used, the preprocessing of syntax-based reordering does greatly improve

Also, unlike in Tsionas and Kumbhakar (2014) we find that a posteriori persistent inefficiency distribution

Some issues which need further research include the types of communication to be used in mHealth interventions, outcomes of such interventions, uptake of mHealth by the