• No results found

Chloro­{2 [tris­­(hy­droxy­meth­yl)methyl­imino­meth­yl]phenolato}copper(II)

N/A
N/A
Protected

Academic year: 2020

Share "Chloro­{2 [tris­­(hy­droxy­meth­yl)methyl­imino­meth­yl]phenolato}copper(II)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m2093–m2094 doi:10.1107/S1600536805025626 Niet al. [Cu(C

11H14NO4)Cl]

m2093

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Chloro{2-[tris(hydroxymethyl)methyliminomethyl]-phenolato}copper(II)

Jia Ni, Yao-Wen Chen* and Haidan Zhang

Central Laboratory of Shantou University, Shantou, Guangdong 515063, People’s Republic of China

Correspondence e-mail: jni@stu.edu.cn

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.035 wRfactor = 0.077

Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [Cu(C11H14NO4)Cl], the tridentate

Schiff base ligand coordinates to the metal atom through the N and O atoms, forming a square-planar coordination geometry.

Comment

The chemistry of transition metal ion complexes of hydroxy (aryl and alkyl OH) rich molecules containing imine/amine groups is important in biomimetic chemistry (Cornmanet al., 1992). Many complexes of this kind have been reported (Asgedom & Rao, 1996; Dey, Rao, Saarenketo & Rissanen, 2002; Dey, Rao, Saarenketo, Rissanen & Kolehmainen, 2002). We report here a new copper(II) complex, (I), with a triden-tate Schiff base ligand.

In compound (I), the CuII center is four-coordinated in a square-planar configuration by one N and two O atoms of the Schiff base ligand and one Cl atom. The Cu—O bond lengths

[image:1.610.273.392.346.437.2] [image:1.610.206.457.505.713.2]

Received 13 July 2005 Accepted 10 August 2005 Online 28 September 2005

Figure 1

(2)

are 1.885 (2) and 1.979 (2) A˚ ; the shorter distance between copper and the phenoxy O atom indicates that the electro-negativity of atom O1 is stronger than that of the other O atoms of the ligand.

Experimental

The ligand 2-[tris(hydroxymethyl)methyliminomethyl]phenol was prepared according to the literature procedure of Asgedom et al. (1996). Cuprous chloride (0.105 g, 0.5 mmol) was added to a solution of the ligand (0.111 g, 0.5 mmol) in water (10 ml). After stirring for a short time, the solution turned dark green. The filtrate was left for 2 d at room temperature and green needle-shaped crystals were obtained in about 62% yield.

Crystal data

[Cu(C11H14NO4)Cl] Mr= 323.22 Tetragonal,P421c a= 16.7345 (6) A˚ c= 8.7634 (6) A˚ V= 2454.1 (2) A˚3 Z= 8

Dx= 1.750 Mg m 3

MoKradiation Cell parameters from 1879

reflections

= 2.4–23.3

= 2.00 mm1 T= 293 (2) K Needle, green 0.210.090.07 mm

Data collection

Bruker APEX area-dectector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002) Tmin= 0.679,Tmax= 0.873

20984 measured reflections

2918 independent reflections 2661 reflections withI> 2(I) Rint= 0.049

max= 27.9

h=21!21 k=21!21 l=11!11

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.035 wR(F2) = 0.077 S= 1.01 2918 reflections 165 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0354P)2

+ 1.812P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.36 e A˚

3 min=0.21 e A˚

3

Absolute structure: Flack (1983), 1265 Friedel pairs

[image:2.610.314.565.93.155.2]

Flack parameter: 0.007 (15)

Table 1

Selected geometric parameters (A˚ ,).

Cu1—O1 1.885 (2)

Cu1—N1 1.951 (2)

Cu1—O2 1.979 (2)

Cu1—Cl1 2.2366 (8)

O1—Cu1—N1 94.92 (10) O1—Cu1—O2 169.50 (10) N1—Cu1—O2 81.81 (10)

O1—Cu1—Cl1 93.56 (7) N1—Cu1—Cl1 171.25 (8) O2—Cu1—Cl1 90.22 (7)

H atoms were placed in idealized positions [N—H = 0.82 A˚ , C— H = 0.93–0.97 A˚ andUiso(H) = 1.2Ueq(C,N)] and were included in the refinement in the riding-model approximation.

Data collection:SMART(Bruker, 2002); cell refinement:SAINT (Bruker, 2002); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the Central Laboratory of Shantou University for supporting this study.

References

Asgedom, G. & Rao, C. P. (1996).Inorg. Chem.35, 5674–5683.

Bruker (2002).SADABS,SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Cornman, C. R., Colpas, G. J., Hoeschele, J. D., Kampf, J. & Pecoraro, V. L. (1992).J. Am. Chem. Soc.114, 9925–9933.

Dey, M., Rao, C. P., Saarenketo, P. K. & Rissanen, K. (2002).Inorg. Chem. Comm.pp. 380–383.

Dey, M., Rao, C. P., Saarenketo, P., Rissanen, K. & Kolehmainen, E. (2002). Eur. J. Inorg. Chem.pp. 2207–2215.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, m2093–m2094

supporting information

Acta Cryst. (2005). E61, m2093–m2094 [doi:10.1107/S1600536805025626]

Chloro{2-[tris(hydroxymethyl)methyliminomethyl]phenolato}copper(II)

Jia Ni, Yao-Wen Chen and Haidan Zhang

S1. Comment

The chemistry of transition metal ion complexes of hydroxy (aryl and alkyl OH) rich molecules containing imine/amine

groups is important in biomimetic chemistry (Cornman et al., 1992). Many complexes of this kind have been reported

(Asgedom & Rao, 1996; Dey, Rao, Saarenketo & Rissanen, 2002; Dey, Rao, Saarenketo, Rissanen & Kolehmainen,

2002). We report here a new copper(II) complex, (I), with a tridentate Schiff base ligand.

In compound (I), the CuII center is four-coordinated in a square-planar configuration by one N and two O atoms of the

Schiff base ligand and one Cl atom. The Cu—O bond lengths are 1.885 (2) and 1.979 (2) Å; the shorter distance between

copper and the phenoxy O atom indicates that the electronegativity of atom O1 is stronger than that of the other O atoms

of the ligand.

S2. Experimental

The ligand 2-[tris(hydroxymethyl)methyliminomethyl]phenol was prepared according to the literature procedure of

Asgedom et al. (1996). Cuprous chloride (0.105 g, 0.5 mmol) was added to a solution of the ligand (0.111 g, 0.5 mmol) in

water (10 ml). After stirring for a short time, the solution turned dark green. The filtrate was left for 2 d at room

temperature and green needle-shaped crystals were obtained in about 62% yield.

S3. Refinement

H atoms were placed in idealized positions [N—H = 0.82 Å, C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C)] and were

(4)
[image:4.610.127.481.71.367.2]

Figure 1

An ORTEPII plot (Johnson, 1976) of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the

50% probability level. H atoms are drawn as spheres of arbitrary radii.

Chloro{2-[tris(hydroxymethyl)methyliminomethyl]phenolato}copper(II)

Crystal data

[Cu(C11H14NO4)Cl]

Mr = 323.22

Tetragonal, P421c

Hall symbol: P -4 2n

a = 16.7345 (6) Å

c = 8.7634 (6) Å

V = 2454.1 (2) Å3

Z = 8

F(000) = 1320

Dx = 1.750 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1879 reflections

θ = 2.4–23.3°

µ = 2.00 mm−1

T = 293 K Needle, green

0.21 × 0.09 × 0.07 mm

Data collection

Bruker APEX area-dectector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin = 0.679, Tmax = 0.873

20984 measured reflections 2918 independent reflections 2661 reflections with I > 2σ(I)

Rint = 0.049

θmax = 27.9°, θmin = 1.7°

h = −21→21

k = −21→21

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, m2093–m2094

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035

wR(F2) = 0.077

S = 1.01 2918 reflections 165 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0354P)2 + 1.812P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.36 e Å−3 Δρmin = −0.21 e Å−3

Absolute structure: Flack (1983), 1265 Friedel pairs

Absolute structure parameter: 0.007 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.18286 (2) 0.741879 (19) 0.09321 (5) 0.02794 (11) Cl1 0.28495 (5) 0.76534 (5) −0.06532 (11) 0.0405 (2) N1 0.09148 (14) 0.73905 (15) 0.2314 (3) 0.0234 (5) O1 0.21555 (13) 0.63628 (13) 0.1344 (3) 0.0335 (5) O2 0.13204 (14) 0.84338 (13) 0.0301 (3) 0.0351 (5)

H2A 0.1380 0.8636 −0.0544 0.053*

O3 −0.08821 (14) 0.86992 (15) 0.2373 (2) 0.0337 (5)

H3 −0.1088 0.8869 0.3158 0.051*

O4 0.07400 (15) 0.84538 (14) 0.5015 (3) 0.0337 (5)

H4 0.1005 0.8046 0.5127 0.051*

C1 0.1834 (2) 0.58627 (18) 0.2323 (3) 0.0289 (6) C2 0.2141 (2) 0.5080 (2) 0.2414 (4) 0.0376 (8)

H2 0.2556 0.4931 0.1770 0.045*

C3 0.1843 (2) 0.4534 (2) 0.3426 (4) 0.0439 (9)

H3A 0.2054 0.4020 0.3446 0.053*

C4 0.1232 (2) 0.4736 (2) 0.4422 (4) 0.0421 (9)

H4A 0.1051 0.4370 0.5140 0.051*

C5 0.0901 (2) 0.54798 (19) 0.4334 (4) 0.0354 (7)

H5 0.0483 0.5611 0.4987 0.043*

C6 0.11758 (19) 0.60572 (18) 0.3277 (4) 0.0278 (6) C7 0.07552 (17) 0.68002 (18) 0.3202 (3) 0.0249 (6)

H7 0.0324 0.6862 0.3860 0.030*

C8 0.04322 (17) 0.81324 (18) 0.2348 (3) 0.0234 (6) C9 0.05021 (18) 0.84912 (19) 0.0741 (4) 0.0298 (7)

H9A 0.0167 0.8198 0.0031 0.036*

H9B 0.0333 0.9046 0.0747 0.036*

C10 −0.04503 (17) 0.79829 (18) 0.2701 (3) 0.0273 (6)

H10A −0.0651 0.7547 0.2080 0.033*

H10B −0.0515 0.7840 0.3766 0.033*

C11 0.0808 (2) 0.87221 (18) 0.3487 (4) 0.0295 (7)

H11A 0.1368 0.8793 0.3239 0.035*

(6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.02737 (19) 0.02232 (17) 0.03414 (19) 0.00267 (14) 0.00942 (16) 0.00233 (16) Cl1 0.0386 (4) 0.0303 (4) 0.0527 (5) 0.0000 (3) 0.0219 (4) 0.0010 (4) N1 0.0232 (12) 0.0231 (12) 0.0239 (12) −0.0004 (10) 0.0004 (9) −0.0011 (10) O1 0.0352 (11) 0.0274 (10) 0.0378 (13) 0.0095 (10) 0.0115 (10) 0.0053 (9) O2 0.0352 (12) 0.0351 (12) 0.0350 (12) 0.0087 (10) 0.0143 (10) 0.0136 (10) O3 0.0281 (11) 0.0502 (14) 0.0228 (11) 0.0163 (11) 0.0025 (9) 0.0021 (10) O4 0.0450 (14) 0.0304 (12) 0.0258 (12) 0.0083 (10) −0.0084 (10) −0.0055 (9) C1 0.0315 (16) 0.0292 (15) 0.0261 (15) 0.0050 (13) −0.0033 (13) −0.0009 (12) C2 0.0416 (19) 0.0308 (16) 0.0404 (19) 0.0082 (15) 0.0033 (16) 0.0012 (15) C3 0.050 (2) 0.0251 (16) 0.056 (2) 0.0072 (16) −0.0002 (19) 0.0070 (15) C4 0.044 (2) 0.0311 (17) 0.051 (2) −0.0064 (15) 0.0007 (17) 0.0187 (16) C5 0.0349 (16) 0.0338 (16) 0.0376 (19) −0.0021 (14) 0.0031 (15) 0.0046 (14) C6 0.0310 (17) 0.0234 (15) 0.0291 (16) −0.0039 (12) −0.0021 (13) 0.0024 (13) C7 0.0228 (14) 0.0268 (15) 0.0251 (14) −0.0017 (12) 0.0024 (11) −0.0033 (13) C8 0.0231 (13) 0.0272 (14) 0.0197 (13) 0.0033 (13) 0.0002 (11) −0.0003 (12) C9 0.0282 (14) 0.0331 (15) 0.0282 (16) 0.0081 (12) 0.0063 (13) 0.0062 (14) C10 0.0235 (14) 0.0352 (17) 0.0232 (14) 0.0031 (13) −0.0003 (11) 0.0002 (13) C11 0.0331 (16) 0.0210 (14) 0.0344 (17) 0.0042 (13) −0.0034 (13) −0.0021 (13)

Geometric parameters (Å, º)

Cu1—O1 1.885 (2) C3—C4 1.386 (5)

Cu1—N1 1.951 (2) C3—H3A 0.93

Cu1—O2 1.979 (2) C4—C5 1.365 (5)

Cu1—Cl1 2.2366 (8) C4—H4A 0.93

N1—C7 1.286 (4) C5—C6 1.415 (4)

N1—C8 1.481 (4) C5—H5 0.93

O1—C1 1.313 (4) C6—C7 1.430 (4)

O2—C9 1.426 (3) C7—H7 0.93

O2—H2A 0.82 C8—C11 1.538 (4)

O3—C10 1.429 (4) C8—C10 1.529 (4)

O3—H3 0.82 C8—C9 1.535 (4)

O4—C11 1.417 (4) C9—H9A 0.97

O4—H4 0.82 C9—H9B 0.97

C1—C2 1.408 (4) C10—H10A 0.97

C1—C6 1.421 (4) C10—H10B 0.97

C2—C3 1.367 (5) C11—H11A 0.97

C2—H2 0.93 C11—H11B 0.97

O1—Cu1—N1 94.92 (10) C5—C6—C1 118.7 (3)

O1—Cu1—O2 169.50 (10) C5—C6—C7 117.6 (3)

N1—Cu1—O2 81.81 (10) C1—C6—C7 123.6 (3)

O1—Cu1—Cl1 93.56 (7) N1—C7—C6 126.4 (3)

N1—Cu1—Cl1 171.25 (8) N1—C7—H7 116.8

(7)

supporting information

sup-5

Acta Cryst. (2005). E61, m2093–m2094

C7—N1—C8 121.2 (2) N1—C8—C11 109.1 (2)

C7—N1—Cu1 123.9 (2) N1—C8—C10 113.2 (2)

C8—N1—Cu1 114.80 (18) C11—C8—C10 111.6 (2)

C1—O1—Cu1 127.2 (2) N1—C8—C9 105.5 (2)

C9—O2—Cu1 113.26 (17) C11—C8—C9 108.3 (3)

C9—O2—H2A 109.5 C10—C8—C9 108.9 (2)

Cu1—O2—H2A 123.7 O2—C9—C8 107.2 (2)

C10—O3—H3 109.5 O2—C9—H9A 110.3

C11—O4—H4 109.5 C8—C9—H9A 110.3

O1—C1—C2 118.7 (3) O2—C9—H9B 110.3

O1—C1—C6 123.7 (3) C8—C9—H9B 110.3

C2—C1—C6 117.5 (3) H9A—C9—H9B 108.5

C3—C2—C1 121.7 (3) O3—C10—C8 108.1 (2)

C3—C2—H2 119.1 O3—C10—H10A 110.1

C1—C2—H2 119.1 C8—C10—H10A 110.1

C2—C3—C4 120.9 (3) O3—C10—H10B 110.1

C2—C3—H3A 119.5 C8—C10—H10B 110.1

C4—C3—H3A 119.5 H10A—C10—H10B 108.4

C5—C4—C3 119.1 (3) O4—C11—C8 112.2 (2)

C5—C4—H4A 120.5 O4—C11—H11A 109.2

C3—C4—H4A 120.5 C8—C11—H11A 109.2

C4—C5—C6 121.9 (3) O4—C11—H11B 109.2

C4—C5—H5 119.1 C8—C11—H11B 109.2

C6—C5—H5 119.1 H11A—C11—H11B 107.9

Figure

Figure 1An ORTEPII plot (Johnson, 1976) of (I), showing the atom-numberingscheme. Displacement ellipsoids are drawn at the 50% probability level.H atoms are drawn as spheres of arbitrary radii.
Table 1
Figure 1

References

Related documents

MATERIALS AND METHODS: Velocities were calculated from RPC and CPC images of fluid flowing in a tube at a constant velocity. Error and the COV were computed for average and

We emphasize the 4 potential roles for MEG in the localization of the IOZ and functional cortex: 1) MEG confirmation of localization based on traditional noninvasive methods, allow-

BACKGROUND AND PURPOSE: We assessed the underestimation of cerebral perfusion measured by the flow-sensitive alternating inversion recovery (FAIR) technique in patients with

We have proposed that an intervention using motor learning principles with an implicit learning task could improve the adaptive abilities of obese individuals during movement

Whereas progress towards economic and monetary union requires a high degree of convergence of economic performances between Member States through greater compatibility

Dividen berinteraksi dengan ukuran perusahaan ( size ): Serupa dengan faktor profitabilitas, karena perusahaan besar dapat memperoleh sumber keuangan yang lebih mudah

STEP includes research into the environment and human health, assess- ment of risks associated with chemicals, atmospheric processes and air quality, water quality, soil

In a large international mobility capital environment, emerging economies are weakened by the vulnerabilities of their own, including financial structures often marked by