• No results found

2 (1H 1,2,3 Benzotriazol 1 ylmeth­yl) 1 (4 chloro­benzo­yl)ethyl nicotinate

N/A
N/A
Protected

Academic year: 2020

Share "2 (1H 1,2,3 Benzotriazol 1 ylmeth­yl) 1 (4 chloro­benzo­yl)ethyl nicotinate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2302

Wanet al. C

21H15ClN4O3 doi:10.1107/S1600536806017065 Acta Cryst.(2006). E62, o2302–o2303

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

2-(1

H

-1,2,3-Benzotriazol-1-ylmethyl)-1-(4-chloro-benzoyl)ethyl nicotinate

Jun Wan,aZheng-Zhong Peng,b Xue-Mei Li,bPing-Kai Ouyanga and Shu-Sheng Zhanga*

aCollege of Life Science and Pharmaceutical

Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People’s Republic of China, andbCollege of Chemistry and Molecular

Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People’s Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.043

wRfactor = 0.089

Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 24 April 2006 Accepted 9 May 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, C21H15ClN4O3, molecules are linked

into chains along thebaxis by C—H O hydrogen bonds. The chains are further connected by intermolecular C—H O hydrogen bonds, forming two-dimensional layers parallel to theabplane.

Comment

We have recently reported the structure of 2-(1H-1,2,3-benzotriazol-1-ylmethyl)-1-benzoylethyl 4-chlorobenzoate, (II) (Wanet al., 2006). In our ongoing studies of benzotriazole compounds, the title compound, (I), was obtained.

The bond lengths and angles in (I) show normal values (Allenet al., 1987) and are comparable to those found in (II). The benzotriazole system is essentially planar, with a dihedral angle of 1.0 (2) between the triazole (A, atoms N1–N3/C10/

C15) and benzene rings (B, atoms C10–C15). The dihedral angles between the mean plane of the benzotriazole system and ringsC (atoms C1–C6) andD(atoms N4/C17–C21) are 6.9 (1) and 71.1 (1), respectively. The dihedral angle between

ringsCandDis 74.4 (1).

There exists an intramolecular C21—H21A O2 hydrogen bond, forming a five-membered ring. In the crystal structure, molecules of (I) are linked into chains along thebaxis by C— H O hydrogen bonds. Further C—H O interactions connect the chains into two-dimensional layers parallel to the abplane (Fig. 2 and Table 2 for geometry values and symmetry code).

Experimental

(2)

anhydrous magnesium sulfate and the chloroform solution filtered. After cooling with ice–water, an acetone solution (10 ml) of nicotinic acid (3.1 g, 0.02 mol) and triethylamine (2.8 ml) were added. The mixture was stirred at room temperature for about 2 h, then filtered, concentrated and purified by flash column chromatography (silica gel, petroleum ether–ethyl acetate, 3:1 v/v) to afford the title compound. Single crystals were obtained by slow evaporation of a petroleum ether–ethyl acetate (1:1v/v) solution at room temperature over a period of one week.

Crystal data

C21H15ClN4O3

Mr= 406.82

Orthorhombic,Pca21 a= 18.820 (2) A˚ b= 5.3367 (6) A˚ c= 19.027 (2) A˚ V= 1911.0 (4) A˚3

Z= 4

Dx= 1.414 Mg m 3

MoKradiation

= 0.23 mm1 T= 293 (2) K Column, colourless 0.400.190.10 mm

Data collection

Siemens SMART 1000 CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.913,Tmax= 0.977

10277 measured reflections 3763 independent reflections 2880 reflections withI> 2(I) Rint= 0.036

max= 26.1

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.043

wR(F2) = 0.089

S= 1.01 3763 reflections 262 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.036P)2

+ 0.0701P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.19 e A˚

3

min=0.12 e A˚

3

Absolute structure: Flack (1983), 1811 Friedel pairs

Flack parameter: 0.01 (7)

Table 1

Selected bond lengths (A˚ ).

Cl1—C3 1.732 (3) O1—C7 1.212 (3) O2—C16 1.356 (3) O2—C8 1.437 (3)

O3—C16 1.194 (3) C7—C8 1.520 (4) C8—C9 1.525 (4)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C9—H9B O1i 0.97 2.57 3.058 (3) 111 C13—H13A O3ii

0.93 2.49 3.351 (4) 155 C21—H21A O2 0.93 2.39 2.739 (4) 102

Symmetry codes: (i)x;y1;z; (ii)x1 2;yþ3;z.

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H = 0.93–0.98 A˚ andUiso(H) = 1.2Ueq(C).

Data collection:SMART(Siemens, 1996); cell refinement:SAINT

(Siemens, 1996); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL,PARST(Nardelli, 1995) andPLATON(Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (No. 05–2-JC-80) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Flack, H. D. (1983).Acta Cryst.A39, 876–881. Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997).SHELXTL. Version 5.1. Bruker AXS Inc., Madison,

Wisconsin, USA.

Siemens (1996).SMARTandSAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

[image:2.610.44.295.70.243.2] [image:2.610.46.297.291.496.2]

Wan, J., Peng, Z.-Z., Li, X.-M. & Zhang, S.-S. (2006).Acta Cryst.E62, o634– o636.

Figure 1

The structure of the compound (I), showing 50% probability displace-ment ellipsoids and the atom-numbering scheme.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2302–o2303

supporting information

Acta Cryst. (2006). E62, o2302–o2303 [https://doi.org/10.1107/S1600536806017065]

2-(1

H

-1,2,3-Benzotriazol-1-ylmethyl)-1-(4-chlorobenzoyl)ethyl nicotinate

Jun Wan, Zheng-Zhong Peng, Xue-Mei Li, Ping-Kai Ouyang and Shu-Sheng Zhang

2-(1H-1,2,3-Benzotriazol-1-ylmethyl)-1-(4-chlorobenzoyl)ethyl nicotinate

Crystal data C21H15ClN4O3

Mr = 406.82

Orthorhombic, Pca21

Hall symbol: P 2c -2ac a = 18.820 (2) Å b = 5.3367 (6) Å c = 19.027 (2) Å V = 1911.0 (4) Å3

Z = 4

F(000) = 840 Dx = 1.414 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1989 reflections θ = 3.0–20.9°

µ = 0.23 mm−1

T = 293 K

Column, colourless 0.40 × 0.19 × 0.10 mm

Data collection

Siemens SMART 1000 CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.33 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.913, Tmax = 0.977

10277 measured reflections 3763 independent reflections 2880 reflections with I > 2σ(I) Rint = 0.036

θmax = 26.1°, θmin = 2.1°

h = −17→23 k = −6→6 l = −23→23

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.089

S = 1.01 3763 reflections 262 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.036P)2 + 0.0701P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.19 e Å−3

Δρmin = −0.12 e Å−3

Absolute structure: Flack (1983), 1811 Friedel pairs

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2302–o2303

C17 0.28422 (14) 1.4591 (5) 0.51739 (13) 0.0470 (6) C18 0.32881 (16) 1.5671 (6) 0.46915 (16) 0.0758 (9) H18A 0.3754 1.5115 0.4647 0.091* C19 0.3041 (2) 1.7579 (7) 0.42753 (18) 0.0818 (10) H19A 0.3333 1.8325 0.3941 0.098* C20 0.23668 (19) 1.8347 (6) 0.43612 (17) 0.0760 (10) H20A 0.2210 1.9666 0.4082 0.091* C21 0.21599 (17) 1.5499 (6) 0.52124 (17) 0.0694 (9) H21A 0.1854 1.4766 0.5537 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0825 (6) 0.1024 (7) 0.0773 (5) 0.0155 (5) −0.0322 (5) 0.0053 (5) O1 0.0779 (13) 0.0344 (11) 0.0660 (11) 0.0038 (9) −0.0131 (10) 0.0064 (9) O2 0.0458 (11) 0.0522 (10) 0.0497 (10) 0.0018 (9) −0.0021 (8) 0.0093 (8) O3 0.0509 (12) 0.0860 (15) 0.0636 (12) 0.0164 (10) 0.0078 (10) 0.0157 (11) N1 0.0494 (13) 0.0499 (13) 0.0487 (13) 0.0010 (10) 0.0032 (11) 0.0076 (11) N2 0.0671 (17) 0.0770 (18) 0.0477 (14) 0.0072 (15) 0.0034 (12) 0.0030 (13) N3 0.0721 (18) 0.0817 (19) 0.0633 (17) 0.0110 (15) 0.0103 (15) −0.0080 (14) N4 0.0724 (18) 0.094 (2) 0.099 (2) 0.0158 (15) −0.0082 (17) 0.0373 (19) C1 0.0562 (17) 0.0413 (15) 0.0572 (17) 0.0050 (13) 0.0022 (14) −0.0017 (13) C2 0.0699 (19) 0.0602 (19) 0.0474 (16) 0.0015 (16) −0.0042 (15) −0.0037 (14) C3 0.0460 (15) 0.0609 (19) 0.0563 (17) 0.0019 (14) −0.0076 (13) 0.0089 (15) C4 0.0470 (17) 0.0466 (17) 0.0666 (19) 0.0068 (12) −0.0055 (14) 0.0029 (14) C5 0.0534 (15) 0.0392 (14) 0.0535 (15) 0.0034 (12) 0.0008 (13) −0.0005 (12) C6 0.0422 (13) 0.0340 (14) 0.0451 (14) 0.0000 (11) 0.0014 (11) 0.0058 (11) C7 0.0474 (14) 0.0305 (14) 0.0474 (14) 0.0052 (11) 0.0084 (12) 0.0046 (11) C8 0.0512 (15) 0.0355 (13) 0.0461 (13) 0.0073 (12) −0.0004 (12) 0.0029 (12) C9 0.0538 (16) 0.0353 (15) 0.0632 (16) 0.0001 (12) 0.0011 (14) 0.0083 (13) C10 0.0421 (15) 0.0490 (16) 0.0500 (16) −0.0047 (12) 0.0065 (13) 0.0093 (13) C11 0.0541 (18) 0.075 (2) 0.063 (2) −0.0042 (16) 0.0015 (16) −0.0001 (17) C12 0.055 (2) 0.116 (3) 0.068 (2) 0.010 (2) −0.0093 (17) 0.015 (2) C13 0.056 (2) 0.092 (3) 0.101 (3) 0.0208 (18) 0.009 (2) 0.029 (2) C14 0.063 (2) 0.064 (2) 0.097 (3) 0.0131 (16) 0.022 (2) 0.0128 (19) C15 0.0519 (17) 0.0522 (18) 0.0632 (19) 0.0047 (14) 0.0161 (15) 0.0052 (15) C16 0.0450 (15) 0.0518 (16) 0.0445 (15) 0.0026 (13) 0.0017 (13) −0.0016 (13) C17 0.0527 (16) 0.0502 (16) 0.0381 (13) 0.0011 (13) −0.0022 (12) 0.0003 (12) C18 0.072 (2) 0.088 (2) 0.068 (2) 0.0220 (18) 0.0167 (18) 0.0224 (19) C19 0.095 (3) 0.088 (3) 0.0622 (19) 0.006 (2) 0.0110 (19) 0.0291 (19) C20 0.104 (3) 0.064 (2) 0.060 (2) 0.005 (2) −0.018 (2) 0.0165 (16) C21 0.0583 (18) 0.081 (2) 0.069 (2) −0.0015 (17) −0.0011 (16) 0.0216 (18)

Geometric parameters (Å, º)

(6)

O2—C8 1.437 (3) C9—H9B 0.9700 O3—C16 1.194 (3) C10—C15 1.382 (4) N1—C10 1.361 (3) C10—C11 1.386 (4) N1—N2 1.363 (3) C11—C12 1.384 (5) N1—C9 1.443 (3) C11—H11A 0.9300 N2—N3 1.303 (3) C12—C13 1.393 (5) N3—C15 1.373 (4) C12—H12A 0.9300 N4—C20 1.335 (4) C13—C14 1.350 (5) N4—C21 1.336 (4) C13—H13A 0.9300 C1—C2 1.374 (4) C14—C15 1.396 (4) C1—C6 1.392 (4) C14—H14A 0.9300 C1—H1A 0.9300 C16—C17 1.479 (4) C2—C3 1.378 (4) C17—C18 1.371 (4) C2—H2B 0.9300 C17—C21 1.375 (4) C3—C4 1.372 (4) C18—C19 1.372 (4) C4—C5 1.381 (4) C18—H18A 0.9300 C4—H4B 0.9300 C19—C20 1.343 (5) C5—C6 1.388 (3) C19—H19A 0.9300 C5—H5A 0.9300 C20—H20A 0.9300 C6—C7 1.480 (3) C21—H21A 0.9300 C7—C8 1.520 (4)

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o2302–o2303

O1—C7—C8 119.3 (2) C17—C18—C19 119.4 (3) C6—C7—C8 120.2 (2) C17—C18—H18A 120.3 O2—C8—C7 108.34 (18) C19—C18—H18A 120.3 O2—C8—C9 106.3 (2) C20—C19—C18 118.5 (3) C7—C8—C9 112.1 (2) C20—C19—H19A 120.8 O2—C8—H8A 110.0 C18—C19—H19A 120.8 C7—C8—H8A 110.0 N4—C20—C19 125.0 (3) C9—C8—H8A 110.0 N4—C20—H20A 117.5 N1—C9—C8 112.3 (2) C19—C20—H20A 117.5 N1—C9—H9A 109.1 N4—C21—C17 124.6 (3) C8—C9—H9A 109.1 N4—C21—H21A 117.7 N1—C9—H9B 109.1 C17—C21—H21A 117.7

C10—N1—N2—N3 0.6 (3) N2—N1—C10—C11 −178.6 (3) C9—N1—N2—N3 171.6 (2) C9—N1—C10—C11 11.8 (5) N1—N2—N3—C15 −1.0 (3) N1—C10—C11—C12 179.4 (3) C6—C1—C2—C3 0.3 (4) C15—C10—C11—C12 0.9 (4) C1—C2—C3—C4 0.4 (4) C10—C11—C12—C13 0.5 (5) C1—C2—C3—Cl1 179.8 (2) C11—C12—C13—C14 −1.4 (5) C2—C3—C4—C5 −1.5 (4) C12—C13—C14—C15 0.8 (5) Cl1—C3—C4—C5 179.1 (2) N2—N3—C15—C10 1.1 (3) C3—C4—C5—C6 1.9 (4) N2—N3—C15—C14 −179.3 (3) C4—C5—C6—C1 −1.3 (4) N1—C10—C15—N3 −0.7 (3) C4—C5—C6—C7 175.0 (2) C11—C10—C15—N3 178.2 (2) C2—C1—C6—C5 0.2 (4) N1—C10—C15—C14 179.6 (3) C2—C1—C6—C7 −176.2 (2) C11—C10—C15—C14 −1.5 (4) C5—C6—C7—O1 −149.1 (2) C13—C14—C15—N3 −179.0 (3) C1—C6—C7—O1 27.1 (4) C13—C14—C15—C10 0.6 (4) C5—C6—C7—C8 34.4 (3) C8—O2—C16—O3 16.8 (3) C1—C6—C7—C8 −149.4 (2) C8—O2—C16—C17 −161.64 (19) C16—O2—C8—C7 65.7 (3) O3—C16—C17—C18 4.0 (4) C16—O2—C8—C9 −173.7 (2) O2—C16—C17—C18 −177.6 (2) O1—C7—C8—O2 16.2 (3) O3—C16—C17—C21 −171.8 (3) C6—C7—C8—O2 −167.3 (2) O2—C16—C17—C21 6.6 (4) O1—C7—C8—C9 −100.8 (3) C21—C17—C18—C19 0.1 (5) C6—C7—C8—C9 75.8 (3) C16—C17—C18—C19 −176.0 (3) C10—N1—C9—C8 83.9 (3) C17—C18—C19—C20 0.7 (5) N2—N1—C9—C8 −84.9 (3) C21—N4—C20—C19 0.9 (5) O2—C8—C9—N1 −62.2 (3) C18—C19—C20—N4 −1.3 (6) C7—C8—C9—N1 55.9 (3) C20—N4—C21—C17 0.0 (5) N2—N1—C10—C15 0.1 (3) C18—C17—C21—N4 −0.4 (5) C9—N1—C10—C15 −169.4 (2) C16—C17—C21—N4 175.5 (3)

Hydrogen-bond geometry (Å, º)

(8)

C13—H13A···O3ii 0.93 2.49 3.351 (4) 155

C21—H21A···O2 0.93 2.39 2.739 (4) 102

Figure

Figure 1The structure of the compound (I), showing 50% probability displace-ment ellipsoids and the atom-numbering scheme.

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical