• No results found

Ethyl 1 [5 amino 1 tert butyl 3 (methyl­sulfan­yl) 1H pyrazole 4 carbon­yl] 5 methyl 3 (methyl­sulfan­yl) 1H pyrazole 4 carboxyl­ate

N/A
N/A
Protected

Academic year: 2020

Share "Ethyl 1 [5 amino 1 tert butyl 3 (methyl­sulfan­yl) 1H pyrazole 4 carbon­yl] 5 methyl 3 (methyl­sulfan­yl) 1H pyrazole 4 carboxyl­ate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o1679–o1681 doi:10.1107/S1600536806011500 Liet al. C

17H25N5O3S2

o1679

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Ethyl 1-[5-amino-1-

tert

-butyl-3-(methyl-sulfanyl)-1

H

-pyrazole-4-carbonyl]-5-methyl-3-(methylsulfanyl)-1

H

-pyrazole-4-carboxylate

Jun-Fei Li, Hai-Bin Song, You-Quan Zhu and Hua-Zheng Yang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Weijin Road No. 94, Tianjin, People’s Republic of China

Correspondence e-mail: lijunfei@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study T= 294 K

Mean(C–C) = 0.003 A˚ Disorder in main residue Rfactor = 0.043 wRfactor = 0.117

Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 6 March 2006 Accepted 29 March 2006

#2006 International Union of Crystallography

All rights reserved

The title molecule, C17H25N5O3S2, belongs to the family of

bis-heterocycles. In the crystal structure, there are one intra- and two intermolecular hydrogen bonds. One of the two pyrazole rings and the six-membered ring formed by the intramolecular hydrogen bond are approximately coplanar.

Comment

4-Hydroxyphenylpyruvate dioxygenase (4-HPPD, EC1.1 3.11.27) is an important enzyme involved in the catabolism of tyrosine in most organisms and a relatively new target for herbicides. Due to their herbicidal activity and the fact that they belong to the inhibitor of this enzyme, many benzoyl-pyrazole derivatives have received much more attention, for example pyrazolate (Yamaoka et al., 1987, 1988), pyroxyfen (Kimura, 1984) and benzofenap (Kaoru & Atsushi, 1991). All the compounds are prodrugs for a shared active entity, the free hydroxypyrazole destosylpryazolate. It has also been noticed that NH and OH possess a similar capability for forming hydrogen bonds and both pyrazole and benzene rings are aromatic. However, pyrazole derivatives containing two pyrazole rings have rarely been reported to act as herbicides. Here we describe the crystal structure of the title compound, (I).

In (I), an intramolecular hydrogen bond is formed between N1 and O1 (Fig. 1 and Table 2). Atom O1 lies 0.135 (4)A˚ from the plane defined by atoms C5, C6, C9 and N1; the largest deviation from plane A is 0.041 (1) A˚ for atom C5. The dihedral angles between this plane and planes Band Care 59.63 (8) and 5.95 (15), respectively. Thus, planesAandCare

practically coplanar (Table 1). Adjacent molecules are linked

viaN1—H1B O1iihydrogen bonds, forming rings along the

b axis [symmetry code: (ii) x + 1,y + 1,z] and glide-related molecules are linked via N1—H1B O3iii hydrogen bonds, forming chains along the c axis [symmetry code: (iii)

(2)

Experimental

To a solution of ethyl 2-[bis(methylsulfanyl)methylene]-3-oxobu-tanoate (5.0 mmol) in ethanol (15 ml) was added 1-tert -butyl-5-amino-3-(methylsulfanyl)-1H-pyrazole-4-carbohydrazide (5.5 mmol). The mixture was refluxed for 8 h and cooled to room temperature, then poured into water (30 ml). The white precipitate was purified by recrystallization from ethanol/water (3:1v/v). Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Crystal data

C17H25N5O3S2 Mr= 411.54

Monoclinic,P21=c a= 9.3972 (14) A˚ b= 22.870 (3) A˚ c= 10.4065 (16) A˚

= 105.976 (2) V= 2150.1 (6) A˚3

Z= 4

Dx= 1.271 Mg m3

MoKradiation

= 0.27 mm1 T= 294 (2) K Block, colorless 0.200.160.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.940,Tmax= 0.968

12099 measured reflections 4426 independent reflections 3188 reflections withI> 2(I) Rint= 0.033

max= 26.5

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.043 wR(F2) = 0.117 S= 1.03 4426 reflections 270 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.0506P)2 + 0.8773P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.27 e A˚3

min=0.25 e A˚3

[image:2.610.316.568.71.220.2]

Extinction correction:SHELXL97 Extinction coefficient: 0.0097 (11)

Table 1

Selected geometric parameters (A˚ ,).

O1—C9 1.221 (2)

N1—C5 1.344 (3)

C5—C6 1.419 (3)

C6—C9 1.407 (3)

N1—C5—C6 126.78 (19) C9—C6—C5 122.55 (17)

O1—C9—C6 125.98 (17)

N1—C5—C6—C9 4.8 (3) N2—C5—C6—C9 174.66 (18) N1—C5—C6—C7 179.9 (2) N2—C5—C6—C7 0.6 (2)

C5—C6—C9—O1 4.2 (3) C7—C6—C9—O1 169.5 (2) C5—C6—C9—N4 177.32 (17) C7—C6—C9—N4 9.0 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1A O3i

0.84 (3) 2.25 (3) 3.045 (2) 158 (2) N1—H1B O1 0.87 (3) 2.20 (3) 2.830 (3) 129 (2) N1—H1B O1ii 0.87 (3) 2.35 (3) 3.091 (3) 143 (2)

Symmetry codes: (i)x1;y;z1; (ii)xþ1;yþ1;z.

The C8 methyl group is disordered over two sites, with refined occupancies of 0.61 (3) and 0.39 (3). H atoms attached to the C atoms

were included in calculated positions and treated as riding atoms usingSHELXL97(Sheldrick, 1997) default parameters: C—H = 0.96 (CH3) or 0.97 A˚ (CH2), andUiso(H) = 1.5Ueqand 1.2Ueq, respectively.

H atoms of the amino group were located in difference Fourier maps and refined isotropically with no restraints.

Data collection:SMART(Bruker, 1999); cell refinement:SAINT

(Bruker, 1999); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1999); software used to prepare material for publication:SHELXTL.

This work was supported by the National Key Project for Basic Research (No. 2003CB114400), the National Natural Science Foundation of China (No. 20572054), and the Research Foundation for the Doctoral Program of Higher Education.

References

Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45) and SHELXTL(Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA. Kaoru, I. & Atsushi, G. (1991).Jpn Pestic. Inf.59, 16–18.

Kimura, F. P. (1984).Jpn Pestic. Inf.45, 24–27.

organic papers

o1680

Liet al. C

[image:2.610.316.568.280.423.2]

17H25N5O3S2 Acta Cryst.(2006). E62, o1679–o1681

Figure 2

Packing diagram of (I), showing the intra- and intermolecular hydrogen bonds as dashed lines.

Figure 1

[image:2.610.43.295.505.601.2]
(3)

Sheldrick, G. M. (1996).SADABS. Version 4.202. University of Go¨ttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Yamaoka, K., Nakagawa, M. & Ishida, M. (1987).J. Pestic. Sci.12, 209– 212.

Yamaoka, K., Tohjigamori, M., Tsujino, Y., Nakagawa, M. & Ishida, M. J. (1988).Pestic. Sci.13, 261–268.

organic papers

Acta Cryst.(2006). E62, o1679–o1681 Liet al. C

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, o1679–o1681

supporting information

Acta Cryst. (2006). E62, o1679–o1681 [https://doi.org/10.1107/S1600536806011500]

Ethyl 1-[5-amino-1-

tert

-butyl-3-(methylsulfanyl)-1

H

-pyrazole-4-carbonyl]-5-methyl-3-(methylsulfanyl)-1

H

-pyrazole-4-carboxylate

Jun-Fei Li, Hai-Bin Song, You-Quan Zhu and Hua-Zheng Yang

Ethyl 1-[5-amino-1-tert-butyl-3-(methylsulfanyl)-1H-pyrazole-4-carbonyl]-5-methyl- 3-(methylsulfanyl)-1H

-pyrazole-4-carboxylate

Crystal data

C17H25N5O3S2

Mr = 411.54

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 9.3972 (14) Å b = 22.870 (3) Å c = 10.4065 (16) Å β = 105.976 (2)° V = 2150.1 (6) Å3

Z = 4

F(000) = 872 Dx = 1.271 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4518 reflections θ = 2.3–26.4°

µ = 0.27 mm−1

T = 294 K Block, colorless 0.20 × 0.16 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.940, Tmax = 0.968

12099 measured reflections 4426 independent reflections 3188 reflections with I > 2σ(I) Rint = 0.033

θmax = 26.5°, θmin = 2.2°

h = −11→11 k = −28→19 l = −13→9

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.117

S = 1.03 4426 reflections 270 parameters 14 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0506P)2 + 0.8773P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.27 e Å−3

Δρmin = −0.25 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, o1679–o1681 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

S1 0.92761 (7) 0.70418 (3) 0.13797 (8) 0.0656 (2) S2 1.26585 (6) 0.57454 (3) 0.32655 (6) 0.0595 (2) O1 0.62341 (17) 0.53735 (7) 0.09893 (16) 0.0559 (5) O2 0.98514 (16) 0.57696 (7) 0.63008 (13) 0.0443 (4) O3 1.21248 (16) 0.57262 (8) 0.60173 (14) 0.0514 (4) N1 0.4636 (2) 0.58976 (9) −0.1444 (2) 0.0472 (5) H1A 0.406 (3) 0.5929 (11) −0.222 (3) 0.055 (7)* H1B 0.475 (3) 0.5573 (11) −0.100 (3) 0.052 (7)* N2 0.57795 (18) 0.68268 (8) −0.15333 (17) 0.0381 (4) N3 0.70151 (19) 0.71360 (8) −0.08017 (19) 0.0448 (5) N4 0.84380 (17) 0.57749 (7) 0.21711 (15) 0.0350 (4) N5 0.97877 (17) 0.57748 (8) 0.18924 (16) 0.0388 (4) C1 0.4786 (3) 0.71036 (10) −0.2749 (2) 0.0487 (6) C2 0.3228 (3) 0.71312 (13) −0.2592 (3) 0.0724 (8) H2A 0.2859 0.6742 −0.2560 0.109* H2B 0.2596 0.7336 −0.3338 0.109* H2C 0.3243 0.7333 −0.1779 0.109* C3 0.4856 (4) 0.67481 (14) −0.3965 (3) 0.0795 (9) H3A 0.5840 0.6765 −0.4066 0.119* H3B 0.4169 0.6906 −0.4748 0.119* H3C 0.4602 0.6349 −0.3847 0.119* C4 0.5316 (3) 0.77288 (12) −0.2858 (3) 0.0715 (8) H4A 0.5235 0.7951 −0.2099 0.107* H4B 0.4715 0.7906 −0.3662 0.107* H4C 0.6329 0.7722 −0.2882 0.107* C5 0.5694 (2) 0.63003 (9) −0.09820 (19) 0.0330 (4) C6 0.69136 (19) 0.62546 (8) 0.01742 (18) 0.0313 (4) C7 0.7676 (2) 0.67966 (9) 0.0196 (2) 0.0381 (5)

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, o1679–o1681

H8′3 0.8206 0.7928 0.1506 0.100* 0.39 (3) C9 0.7101 (2) 0.57774 (9) 0.10579 (19) 0.0347 (4)

C10 0.7206 (2) 0.57544 (11) 0.3999 (2) 0.0469 (5) H10A 0.6383 0.5917 0.3332 0.070* H10B 0.7399 0.5987 0.4796 0.070* H10C 0.6976 0.5361 0.4198 0.070* C11 0.8541 (2) 0.57519 (9) 0.34895 (19) 0.0332 (4) C12 1.0046 (2) 0.57463 (9) 0.41263 (19) 0.0336 (4) C13 1.0757 (2) 0.57557 (9) 0.30863 (19) 0.0365 (5) C14 1.2664 (3) 0.57944 (16) 0.1538 (3) 0.0788 (9) H14A 1.2179 0.5458 0.1062 0.118* H14B 1.3667 0.5809 0.1483 0.118* H14C 1.2150 0.6142 0.1148 0.118* C15 1.0797 (2) 0.57446 (9) 0.55597 (19) 0.0353 (4) C16 1.0455 (3) 0.57582 (11) 0.77412 (19) 0.0461 (5) H16A 1.1124 0.6085 0.8036 0.055* H16B 1.0997 0.5398 0.8020 0.055* C17 0.9185 (3) 0.57986 (15) 0.8317 (3) 0.0761 (9) H17A 0.8702 0.6169 0.8088 0.114* H17B 0.9531 0.5764 0.9272 0.114* H17C 0.8497 0.5489 0.7966 0.114*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, o1679–o1681

C13 0.0283 (9) 0.0462 (13) 0.0322 (10) −0.0012 (9) 0.0035 (8) −0.0036 (9) C14 0.0483 (15) 0.138 (3) 0.0557 (16) −0.0093 (16) 0.0241 (13) −0.0028 (17) C15 0.0356 (10) 0.0360 (11) 0.0308 (10) 0.0019 (8) 0.0035 (8) −0.0036 (8) C16 0.0532 (13) 0.0549 (15) 0.0271 (10) 0.0045 (11) 0.0058 (9) −0.0012 (9) C17 0.076 (2) 0.112 (3) 0.0444 (15) 0.0106 (17) 0.0238 (14) 0.0002 (15)

Geometric parameters (Å, º)

S1—C7 1.753 (2) C4—H4A 0.9600 S1—C8′ 1.774 (8) C4—H4B 0.9600 S1—C8 1.838 (6) C4—H4C 0.9600 S2—C13 1.745 (2) C5—C6 1.419 (3) S2—C14 1.803 (3) C6—C9 1.407 (3) O1—C9 1.221 (2) C6—C7 1.429 (3) O2—C15 1.328 (2) C8—H8A 0.9600 O2—C16 1.450 (2) C8—H8B 0.9600 O3—C15 1.208 (2) C8—H8C 0.9600 N1—C5 1.344 (3) C8′—H8′1 0.9600 N1—H1A 0.84 (3) C8′—H8′2 0.9600 N1—H1B 0.87 (3) C8′—H8′3 0.9600 N2—C5 1.346 (3) C10—C11 1.490 (3) N2—N3 1.393 (2) C10—H10A 0.9600 N2—C1 1.491 (3) C10—H10B 0.9600 N3—C7 1.308 (3) C10—H10C 0.9600 N4—C11 1.350 (2) C11—C12 1.387 (3) N4—N5 1.377 (2) C12—C13 1.420 (3) N4—C9 1.456 (2) C12—C15 1.464 (3) N5—C13 1.324 (2) C14—H14A 0.9600 C1—C2 1.519 (4) C14—H14B 0.9600 C1—C3 1.521 (4) C14—H14C 0.9600 C1—C4 1.528 (3) C16—C17 1.479 (4) C2—H2A 0.9600 C16—H16A 0.9700 C2—H2B 0.9600 C16—H16B 0.9700 C2—H2C 0.9600 C17—H17A 0.9600 C3—H3A 0.9600 C17—H17B 0.9600 C3—H3B 0.9600 C17—H17C 0.9600 C3—H3C 0.9600

(8)

supporting information

sup-5

Acta Cryst. (2006). E62, o1679–o1681

N3—N2—C1 118.76 (17) O1—C9—N4 117.35 (18) C7—N3—N2 105.95 (17) C6—C9—N4 116.65 (17) C11—N4—N5 113.69 (15) C11—C10—H10A 109.5 C11—N4—C9 127.86 (16) C11—C10—H10B 109.4 N5—N4—C9 118.41 (15) H10A—C10—H10B 109.5 C13—N5—N4 103.77 (15) C11—C10—H10C 109.5 N2—C1—C2 108.90 (19) H10A—C10—H10C 109.5 N2—C1—C3 108.6 (2) H10B—C10—H10C 109.5 C2—C1—C3 112.0 (2) N4—C11—C12 105.33 (17) N2—C1—C4 108.65 (18) N4—C11—C10 121.98 (17) C2—C1—C4 108.2 (2) C12—C11—C10 132.65 (18) C3—C1—C4 110.4 (2) C11—C12—C13 105.53 (17) C1—C2—H2A 109.5 C11—C12—C15 128.99 (18) C1—C2—H2B 109.5 C13—C12—C15 125.47 (17) H2A—C2—H2B 109.5 N5—C13—C12 111.66 (17) C1—C2—H2C 109.5 N5—C13—S2 121.37 (15) H2A—C2—H2C 109.5 C12—C13—S2 126.97 (15) H2B—C2—H2C 109.5 S2—C14—H14A 109.5 C1—C3—H3A 109.5 S2—C14—H14B 109.5 C1—C3—H3B 109.5 H14A—C14—H14B 109.5 H3A—C3—H3B 109.5 S2—C14—H14C 109.5 C1—C3—H3C 109.5 H14A—C14—H14C 109.5 H3A—C3—H3C 109.5 H14B—C14—H14C 109.5 H3B—C3—H3C 109.5 O3—C15—O2 123.80 (18) C1—C4—H4A 109.5 O3—C15—C12 123.91 (19) C1—C4—H4B 109.5 O2—C15—C12 112.29 (17) H4A—C4—H4B 109.5 O2—C16—C17 106.75 (19) C1—C4—H4C 109.5 O2—C16—H16A 110.4 H4A—C4—H4C 109.5 C17—C16—H16A 110.4 H4B—C4—H4C 109.5 O2—C16—H16B 110.4 N1—C5—N2 125.86 (18) C17—C16—H16B 110.4 N1—C5—C6 126.78 (19) H16A—C16—H16B 108.6 N2—C5—C6 107.36 (16) C16—C17—H17A 109.5 C9—C6—C5 122.55 (17) C16—C17—H17B 109.5 C9—C6—C7 133.70 (17) H17A—C17—H17B 109.5 C5—C6—C7 103.53 (16) C16—C17—H17C 109.5 N3—C7—C6 112.07 (17) H17A—C17—H17C 109.5 N3—C7—S1 119.74 (16) H17B—C17—H17C 109.5 C6—C7—S1 128.16 (16)

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, o1679–o1681

C5—N2—C1—C4 175.0 (2) N5—N4—C11—C10 179.34 (18) N3—N2—C1—C4 −5.0 (3) C9—N4—C11—C10 −3.1 (3) N3—N2—C5—N1 180.0 (2) N4—C11—C12—C13 −1.1 (2) C1—N2—C5—N1 0.0 (4) C10—C11—C12—C13 −179.2 (2) N3—N2—C5—C6 0.5 (2) N4—C11—C12—C15 177.60 (19) C1—N2—C5—C6 −179.5 (2) C10—C11—C12—C15 −0.4 (4) N1—C5—C6—C9 −4.8 (3) N4—N5—C13—C12 −0.3 (2) N2—C5—C6—C9 174.66 (18) N4—N5—C13—S2 179.80 (15) N1—C5—C6—C7 179.9 (2) C11—C12—C13—N5 0.9 (2) N2—C5—C6—C7 −0.6 (2) C15—C12—C13—N5 −177.88 (19) N2—N3—C7—C6 −0.3 (2) C11—C12—C13—S2 −179.17 (16) N2—N3—C7—S1 −178.54 (14) C15—C12—C13—S2 2.0 (3) C9—C6—C7—N3 −173.9 (2) C14—S2—C13—N5 2.0 (2) C5—C6—C7—N3 0.6 (2) C14—S2—C13—C12 −177.9 (2) C9—C6—C7—S1 4.1 (3) C16—O2—C15—O3 −1.7 (3) C5—C6—C7—S1 178.65 (16) C16—O2—C15—C12 178.70 (17) C8′—S1—C7—N3 25.9 (9) C11—C12—C15—O3 178.3 (2) C8—S1—C7—N3 4.3 (7) C13—C12—C15—O3 −3.3 (3) C8′—S1—C7—C6 −152.1 (9) C11—C12—C15—O2 −2.2 (3) C8—S1—C7—C6 −173.7 (7) C13—C12—C15—O2 176.31 (19) C5—C6—C9—O1 −4.2 (3) C15—O2—C16—C17 179.3 (2) C7—C6—C9—O1 169.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1A···O3i 0.84 (3) 2.25 (3) 3.045 (2) 158 (2)

N1—H1B···O1 0.87 (3) 2.20 (3) 2.830 (3) 129 (2) N1—H1B···O1ii 0.87 (3) 2.35 (3) 3.091 (3) 143 (2)

Figure

Figure 1

References

Related documents

Registrar, Department of Urology, Lokmanya Tilak Municipal General Hospital and Lokmanya Tilak Municipal Medical College, Sion, Mumbai, Maharashtra, India. Associate

Knowledge-based WSD methods mainly ex- ploit two kinds of knowledge to disambiguate pol- ysemous words: 1) The gloss, which defines a word sense meaning, is mainly used in Lesk

This situation is more grave while receiving dental or medical treatment as the health professionals might be unaware about the special modes of communication causing

We study the role of labor market mismatch in the adjustment to a trade lib- eralization that results in the o¤shoring of high-tech production.. Our model features

The main contributions of our work, are as fol- lows: 1) We present a novel use for a neural lan- guage modeling approach that leverages shared context between documents within

To assess the effect of exchange rate misalignment on Senegal's economic performance, we estimate the real GDP growth equation explained by misalignment (measured by the BEER

However, in a follow-up experiment using a high-quality sample of high-income consumers, we find debt can no longer be explained by poor cognitive reflection and lack of self

In particular, the baseline 2SLS estimates indicates that one additional year of schooling is causally linked to a 6 percentage point increase in the likelihood of