4 Methyl­phenyl 4 toluene­sulfonate: supramolecular aggregation through weak C—H⋯O and C—H⋯π interactions

Loading....

Loading....

Loading....

Loading....

Loading....

Full text

(1)

organic papers

o242

Vadivelu Manivannanet al. C14H14O3S doi:10.1107/S1600536804033343 Acta Cryst.(2005). E61, o242±o244 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-Methylphenyl 4-toluenesulfonate: supramolecular

aggregation through weak CÐH

O and CÐH

p

interactions

Vadivelu Manivannan,a

Nagarajan Vembu,b,c* Maruthai Nallu,bKandasamy Sivakumard and Frank R. Fronczeke

aDepartment of Physics, Presidency College,

Chennai 600 005, India,bDepartment of

Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India,cDepartment

of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, Tamil Nadu, India,

dDepartment of Physics, Anna University,

Chennai 600 025, India, andeDepartment of

Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: vembu57@yahoo.com

Key indicators

Single-crystal X-ray study T= 150 K

Mean(C±C) = 0.003 AÊ Rfactor = 0.039 wRfactor = 0.083

Data-to-parameter ratio = 20.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the crystal structure of the title compound, C14H14O3S, the

dihedral angle between the mean planes of the two rings is 51.97 (8). There are weak CÐH O hydrogen bonds which

generate rings of graph-set motifsS(5),S(6),R12(4) andR21(9).

The supramolecular aggregation is completed by the presence of CÐH interactions.

Comment

Aromatic sulfonates are used in monitoring the merging of lipids (Yachiet al., 1989) and in many other ®elds (Spunginet al., 1992; Tharakanet al., 1992; Alfordet al., 1991; Jianget al., 1990; Narayanan & Krakow, 1983); for example, 1-anilino-8-naphthalenesulfonate, an aromatic sulfonate is used in moni-toring the merging of lipids in the binding of Rose bengal, a model organic anion, to sinusoidal and bile canalicular membrane fractions isolated from rat liver. The crystal structure of the title compound, (I), was determined because of the biological importance of its analogues. A search of Version 5.23 (July 2002 updates) of the Cambridge Structural Database (Allen, 2002) revealed 16 structures (refcodes KAWDAN, FIXCAQ, NEDXUP, NEDYAW, NEDYIE, NUNCII, RASSOT, RELVUZ, SIMVUF, TCPTOS, TEBFOV, TMPDTS, TSMIPH, WOHCUR, ZZZBDA10 and MIWHIJ) that are closely related to the title compound. The SÐC, SÐO and S O bond lengths (Table 1) are comparable to those found in related structures in that they all contain the

p-toluenesulfonyl group (Vembu, Nallu, Garrison & Youngs, 2003a,b,c,d,e,f; Vembu, Nallu, Spencer & Howard, 2003ab,c,d,e,f,g; Vembu, Nallu, Garrison, Hindi & Youngs (2003; Vembu, Nallu, Durmus, Panzner, Garrison & Youngs, 2004a,b,c).

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The dihedral angle between the mean planes of the two rings is 51.97 (8). This shows their non-coplanar orientation, similar

to that reported for other aromatic sulfonates (Vembu, Nallu, Garrison & Youngs, 2003b,c,d,e; Vembu, Nallu, Spencer & Howard, 2003a,b,c,d,f,g; Vembu, Nallu, Durmus, Panzner, Garrison & Youngs, 2004a,b,c) and in contrast to the near-coplanar orientation observed in 2,dinitrophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison & Youngs, 2003a), 4-methoxyphenyl 4-toluenesulfonate (Vembu, Nallu, Garrison, Hindi & Youngs, 2003) and 8-quinolyl 3-nitro-benzenesulfonate (Vembu, Nallu, Spencer & Howard, 2003e).

(2)

In Fig. 2, the molecule is viewed along the SÐO bond taking C8 as reference. The orientations of the two sulfonyl atoms O1 and O2 and the tolyl carbon C1, attached to sulfur, have been deduced from the corresponding torsion angles (C8ÐO3Ð S1ÐO1/O2/C1) and depicted in Fig. 2. Since the C1ÐS1Ð O3ÐC8 torsion angle is 64.0 (2), which corresponds to a

+synclinal disposition, the two aromatic planes are, as expected, not coplanar [51.97 (8)].

The crystal structure of (I) is stabilized by weak CÐH O interactions (Table 2). The H O distances in (I) agree with those found for weak CÐH O bonds (Desiraju & Steiner, 1999). In (I), each of the C2ÐH2 O2 and C6ÐH6 O1 interactions generates an S(5) graph-set motif (Bernstein et al., 1995; Etter, 1990). The C9ÐH9 O2 interaction generates anS(6) motif. The C2ÐH2 O2 and C9ÐH9 O2 interac-tions together constitute a pair of bifurcated acceptor bonds. The C3ÐH3 O1iand C3ÐH3 O3iinteractions

consti-tute a pair of bifurcated donor bonds, generating an R12(4)

chelate motif. The C6ÐH6 O2ii and C13ÐH13 O2ii

interactions form a pair of bifurcated acceptor bonds, gener-ating anR21(9) motif.

There are a few other CÐH O and CÐH and inter-actions which contribute to the supramolecular aggregation (Fig. 3) of the title compound.

Experimental

4-Toluenesulfonyl chloride (4.7 mmol) dissolved in acetone (4 ml) was added dropwise to 4-cresol (4.3 mmol) in aqueous NaOH (2.5 ml, 10%) with constant shaking. The precipitated title compound (2.9 mmol, yield 67%) was ®ltered off and recrystallized from aqueous ethanol.

Crystal data

C14H14O3S Mr= 262.31

Orthorhombic,Pca21 a= 27.6120 (2) AÊ

b= 7.9470 (3) AÊ

c= 5.9770 (10) AÊ

V= 1311.5 (2) AÊ3 Z= 4

Dx= 1.328 Mg mÿ3

MoKradiation

Cell parameters from 11 929 re¯ections

= 2.5±30.0

= 0.24 mmÿ1 T= 150 (2) K Plate, colorless 0.370.200.02 mm

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

!scans withoffsets

Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)

Tmin= 0.926,Tmax= 0.995

19 182 measured re¯ections 3402 independent re¯ections 1991 re¯ections withI> 2(I)

max= 30.0 h= 0!37

k= 0!11

l=ÿ8!8

organic papers

Acta Cryst.(2005). E61, o242±o244 Vadivelu Manivannanet al. C14H14O3S

o243

Figure 2

A Newman projection along the SÐO bond.

Figure 1

The molecular structure of the title molecule, showing 50% probability displacement ellipsoids. H atoms have been omitted.

Figure 3

(3)

Refinement

Re®nement onF2 R[F2> 2(F2)] = 0.039 wR(F2) = 0.083 S= 0.85 3402 re¯ections 167 parameters

H-atom parameters not re®ned

w= 1/[2(F

o2) + (0.0392P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.17 e AÊÿ3

min=ÿ0.29 e AÊÿ3

Absolute structure: Flack (1983), 2093 Friedel pairs

Flack parameter = 0.36 (8)

Table 1

Selected geometric parameters (AÊ,).

S1ÐO1 1.4153 (14) S1ÐO2 1.4199 (16) S1ÐO3 1.6023 (15)

S1ÐC1 1.749 (2) O3ÐC8 1.415 (2) O1ÐS1ÐO2 120.89 (12)

O1ÐS1ÐO3 102.99 (9) O2ÐS1ÐO3 108.15 (9) O1ÐS1ÐC1 110.54 (10)

O2ÐS1ÐC1 109.12 (10) O3ÐS1ÐC1 103.59 (9) C8ÐO3ÐS1 117.81 (12) O1ÐS1ÐO3ÐC8 179.25 (15)

O2ÐS1ÐO3ÐC8 ÿ51.70 (16) C1ÐS1ÐO3ÐC8 64.02 (17)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C2ÐH2 O2 0.93 2.54 2.912 (2) 104 C6ÐH6 O1 0.93 2.75 3.036 (3) 99 C9ÐH9 O2 0.93 2.80 3.091 (3) 99 C3ÐH3 O1i 0.93 2.70 3.442 (2) 137

C3ÐH3 O3i 0.93 2.85 3.727 (2) 158

C6ÐH6 O2ii 0.93 2.86 3.144 (3) 99

C13ÐH13 O2ii 0.93 2.60 3.506 (3) 166

C7ÐH7A O1iii 0.96 2.54 3.428 (2) 154

C7ÐH7B O1iv 0.96 3.00 3.566 (3) 119

C5ÐH5 Cg1iii 0.93 2.84 3.58 137

C9ÐH9 Cg2v 0.93 3.18 3.70 117

C10ÐH10 Cg2v 0.93 3.36 3.80 111

Symmetry codes: (i)x;yÿ1;z; (ii)x;y;zÿ1; (iii)1

2ÿx;yÿ1;zÿ21; (iv)x;yÿ1;zÿ1; (v)ÿx;1ÿy;1

2‡z.Cg1 andCg2 are the centroids of the C1±C6 and C8±C13 rings, respectively.

All H atoms were included in calculated positions, with aromatic CÐH distances of 0.93 AÊ and methyl CÐH distances of 0.96 AÊ, and re®ned as riding. Displacement parameters were re®ned for the aromatic and methyl groups. The Flack (1983) parameter, with low precision, indicates partial inversion twinning.

Data collection: COLLECT (Nonius, 1997); cell re®nement:

DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2003); software used to prepare material for publication:SHELXL97.

References

Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991).Virology,

183, 611±619.

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555±1573.

Desiraju, G. R. & Steiner, T. (1999).The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Etter, M. C. (1990).Acc. Chem. Res.23, 120±126.

Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990).J. Immunol. Methods,134, 139±149.

Narayanan, C. S. & Krakow, J. S. (1983).Nucleic Acids Res.11, 2701±2716. Nonius (1997).COLLECT.Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307±326. New York: Academic Press.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (2003).J. Appl. Cryst.36, 7±13.

Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992).FEBS Lett.

311, 155±160.

Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992).J. Chromatogr.595, 103±111.

Vembu, N., Nallu, M., Durmus, S., Panzner, M., Garrison, J. & Youngs, W. J. (2004a).Acta Cryst.E60, o1±o3.

Vembu, N., Nallu, M., Durmus, S., Panzner, M., Garrison, J. & Youngs, W. J. (2004b).Acta Cryst.C60, o65±o68.

Vembu, N., Nallu, M., Durmus, S., Panzner, M., Garrison, J. & Youngs, W. J. (2004c).Acta Cryst.C60, o248±o251.

Vembu, N., Nallu, M., Garrison, J. Hindi, K. & Youngs, W. J. (2003).Acta Cryst.

E59, o830±o832.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a).Acta Cryst.E59, o378±o380.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b).Acta Cryst.E59, o503±o505.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003c).Acta Cryst.E59, o776±o779.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003d).Acta Cryst.E59, o936±o938.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003e).Acta Cryst.E59, o939±o941.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003f).Acta Cryst.E59, o1019±o1021.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003a).Acta Cryst.

E59, o1009±o1011.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003b).Acta Cryst.

E59, o1033±o1035.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003c).Acta Cryst.

E59, o1213±o1215.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003d).Acta Cryst.

E59, o1216±o1219.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003e).Acta Cryst.

E59, o1379±o1382.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003f).Acta Cryst.

E59, o1387±o1389.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003g).Acta Cryst.

E59, o1390±o1392.

Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989).Biochim. Biophys. Acta,978, 1±7.

organic papers

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o242–o244

supporting information

Acta Cryst. (2005). E61, o242–o244 [https://doi.org/10.1107/S1600536804033343]

4-Methylphenyl 4-toluenesulfonate: supramolecular aggregation through weak

C

H

···

O and C

H

···

π

interactions

Vadivelu Manivannan, Nagarajan Vembu, Maruthai Nallu, Kandasamy Sivakumar and Frank R.

Fronczek

4-methylphenyl 4-toluenesulfonate

Crystal data

C14H14O3S Mr = 262.31

Orthorhombic, Pca21

Hall symbol: P 2c -2ac

a = 27.6120 (2) Å

b = 7.9470 (3) Å

c = 5.977 (1) Å

V = 1311.5 (2) Å3 Z = 4

F(000) = 552

Dx = 1.328 Mg m−3

Melting point = 341–342 K Mo radiation, λ = 0.71073 Å Cell parameters from 11929 reflections

θ = 2.5–30.0°

µ = 0.24 mm−1 T = 150 K Plate, colorless 0.37 × 0.20 × 0.02 mm

Data collection

KappaCCD (with an Oxford Cryosystems Cryostream cooler)

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans with κ offsets

Absorption correction: multi-scan

(SCALEPACK; Otwinowski & Minor, 1997)

Tmin = 0.926, Tmax = 0.995

19182 measured reflections 3402 independent reflections 1991 reflections with I > 2σ(I)

Rint = 0.000

θmax = 30.0°, θmin = 2.6° h = 0→37

k = 0→11

l = −8→8

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.083 S = 0.85 3402 reflections 167 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters not refined

w = 1/[σ2(F

o2) + (0.0392P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.17 e Å−3

Δρmin = −0.29 e Å−3

Absolute structure: Flack (1983), 2093 Friedel pairs

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o242–o244

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o242–o244

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0408 (3) 0.0269 (2) 0.0342 (3) 0.0000 (2) −0.0053 (3) −0.0015 (3) O1 0.0483 (8) 0.0320 (6) 0.0550 (11) −0.0088 (6) −0.0072 (9) −0.0038 (8) O2 0.0531 (10) 0.0430 (8) 0.0305 (9) 0.0048 (7) −0.0030 (8) −0.0033 (7) O3 0.0370 (8) 0.0235 (7) 0.0451 (9) 0.0000 (6) −0.0026 (7) 0.0029 (7) C1 0.0271 (11) 0.0270 (9) 0.0302 (12) −0.0006 (8) −0.0058 (9) −0.0001 (10) C2 0.0365 (11) 0.0331 (11) 0.0297 (13) −0.0029 (9) 0.0062 (10) 0.0043 (9) C3 0.0419 (13) 0.0248 (10) 0.0400 (14) 0.0003 (9) 0.0022 (11) 0.0069 (11) C4 0.0299 (12) 0.0337 (11) 0.0315 (12) 0.0050 (9) −0.0022 (10) −0.0011 (9) C5 0.0293 (10) 0.0455 (10) 0.0275 (13) 0.0005 (9) 0.0032 (11) 0.0051 (12) C6 0.0355 (12) 0.0319 (11) 0.0301 (14) −0.0037 (10) −0.0032 (10) 0.0048 (10) C7 0.0491 (13) 0.0411 (11) 0.0454 (16) 0.0057 (10) 0.0014 (14) −0.0099 (13) C8 0.0396 (13) 0.0252 (9) 0.0302 (12) 0.0083 (9) −0.0028 (11) 0.0001 (11) C9 0.0480 (14) 0.0373 (10) 0.0329 (15) 0.0123 (10) −0.0004 (12) −0.0065 (11) C10 0.0426 (13) 0.0515 (12) 0.0410 (14) 0.0141 (10) 0.0081 (14) 0.0075 (16) C11 0.0341 (14) 0.0396 (12) 0.0548 (18) 0.0055 (11) −0.0036 (13) 0.0086 (13) C12 0.0507 (15) 0.0400 (13) 0.0421 (16) 0.0044 (12) −0.0146 (13) −0.0064 (11) C13 0.0388 (13) 0.0427 (12) 0.0308 (14) 0.0071 (11) −0.0002 (10) −0.0040 (11) C14 0.0441 (16) 0.0709 (17) 0.095 (3) 0.0010 (14) −0.0122 (16) 0.0101 (18)

Geometric parameters (Å, º)

S1—O1 1.4153 (14) C7—H7B 0.9600

S1—O2 1.4199 (16) C7—H7C 0.9600

S1—O3 1.6023 (15) C8—C13 1.366 (3)

S1—C1 1.749 (2) C8—C9 1.386 (3)

O3—C8 1.415 (2) C9—C10 1.381 (3)

C1—C6 1.386 (3) C9—H9 0.9300

C1—C2 1.389 (3) C10—C11 1.385 (4)

C2—C3 1.382 (3) C10—H10 0.9300

C2—H2 0.9300 C11—C12 1.385 (4)

C3—C4 1.379 (3) C11—C14 1.508 (3)

C3—H3 0.9300 C12—C13 1.385 (3)

C4—C5 1.398 (3) C12—H12 0.9300

C4—C7 1.503 (3) C13—H13 0.9300

C5—C6 1.381 (3) C14—H14A 0.9600

C5—H5 0.9300 C14—H14B 0.9600

C6—H6 0.9300 C14—H14C 0.9600

C7—H7A 0.9600

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o242–o244

C8—O3—S1 117.81 (12) C10—C9—C8 118.9 (2) C6—C1—C2 120.99 (19) C10—C9—H9 120.6 C6—C1—S1 119.38 (15) C8—C9—H9 120.6 C2—C1—S1 119.59 (17) C9—C10—C11 121.7 (3) C3—C2—C1 118.68 (19) C9—C10—H10 119.2

C3—C2—H2 120.7 C11—C10—H10 119.2

C1—C2—H2 120.7 C10—C11—C12 117.6 (2) C4—C3—C2 122.19 (19) C10—C11—C14 122.2 (3) C4—C3—H3 118.9 C12—C11—C14 120.2 (3) C2—C3—H3 118.9 C13—C12—C11 121.8 (2) C3—C4—C5 117.64 (19) C13—C12—H12 119.1 C3—C4—C7 121.49 (19) C11—C12—H12 119.1 C5—C4—C7 120.9 (2) C8—C13—C12 119.1 (2) C6—C5—C4 121.8 (2) C8—C13—H13 120.5

C6—C5—H5 119.1 C12—C13—H13 120.5

C4—C5—H5 119.1 C11—C14—H14A 109.5

C5—C6—C1 118.69 (19) C11—C14—H14B 109.5 C5—C6—H6 120.7 H14A—C14—H14B 109.5

C1—C6—H6 120.7 C11—C14—H14C 109.5

C4—C7—H7A 109.5 H14A—C14—H14C 109.5 C4—C7—H7B 109.5 H14B—C14—H14C 109.5 H7A—C7—H7B 109.5

O1—S1—O3—C8 179.25 (15) C4—C5—C6—C1 −0.1 (3) O2—S1—O3—C8 −51.70 (16) C2—C1—C6—C5 0.8 (3) C1—S1—O3—C8 64.02 (17) S1—C1—C6—C5 −176.80 (14) O1—S1—C1—C6 −37.0 (2) S1—O3—C8—C13 −101.8 (2) O2—S1—C1—C6 −172.25 (16) S1—O3—C8—C9 82.6 (2) O3—S1—C1—C6 72.73 (18) C13—C8—C9—C10 0.4 (3) O1—S1—C1—C2 145.37 (16) O3—C8—C9—C10 175.83 (18) O2—S1—C1—C2 10.1 (2) C8—C9—C10—C11 −0.6 (3) O3—S1—C1—C2 −104.91 (17) C9—C10—C11—C12 0.8 (3) C6—C1—C2—C3 −0.7 (3) C9—C10—C11—C14 −177.2 (2) S1—C1—C2—C3 176.90 (16) C10—C11—C12—C13 −0.8 (3) C1—C2—C3—C4 −0.1 (3) C14—C11—C12—C13 177.3 (2) C2—C3—C4—C5 0.8 (3) C9—C8—C13—C12 −0.4 (3) C2—C3—C4—C7 179.99 (19) O3—C8—C13—C12 −175.85 (17) C3—C4—C5—C6 −0.7 (3) C11—C12—C13—C8 0.6 (3) C7—C4—C5—C6 −179.88 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C2—H2···O2 0.93 2.54 2.912 (2) 104

C6—H6···O1 0.93 2.75 3.036 (3) 99

C9—H9···O2 0.93 2.80 3.091 (3) 99

C3—H3···O1i 0.93 2.70 3.442 (2) 137

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, o242–o244

C6—H6···O2ii 0.93 2.86 3.144 (3) 99

C13—H13···O2ii 0.93 2.60 3.506 (3) 166

C7—H7A···O1iii 0.96 2.54 3.428 (2) 154

C7—H7B···O1iv 0.96 3.00 3.566 (3) 119

C5—H5···Cg1iii 0.93 2.84 3.58 137

C9—H9···Cg2v 0.93 3.18 3.70 117

C10—H10···Cg2v 0.93 3.36 3.80 111

Figure

Updating...

References

Updating...