• No results found

(1S,2S,4S,5S) 2,5 Di­benzyl 1,4 diazo­niabi­cyclo­[2 2 2]octane dichloride methanol solvate

N/A
N/A
Protected

Academic year: 2020

Share "(1S,2S,4S,5S) 2,5 Di­benzyl 1,4 diazo­niabi­cyclo­[2 2 2]octane dichloride methanol solvate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2668

Qiuet al. C

20H26N22+2ClCH4O doi:10.1107/S1600536805022762 Acta Cryst.(2005). E61, o2668–o2670

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(1

S

,2

S

,4

S

,5

S

)-2,5-Dibenzyl-1,4-diazoniabicyclo-[2.2.2]octane dichloride methanol solvate

Li-Hua Qiu,aWen Yang,bYawen Zhangaand De-Chun Zhangb*

a

Key Laboratory of Organic Synthesis, College of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006, People’s Republic of China, andbDepartment of Chemistry, College of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006, People’s Republic of China

Correspondence e-mail: dczhang@suda.edu.cn

Key indicators

Single-crystal X-ray study

T= 193 K

Mean(C–C) = 0.006 A˚

Rfactor = 0.043

wRfactor = 0.128

Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the cation of the title compound, C20H26N2 2+

2ClCH4O,

there is an approximate twofold rotation axis. All the four

chiral centers are in the S configuration. All three

six-membered rings in the central part of the cation adopt a boat conformation. Both chloride anions and the O atom in the solvent molecule form hydrogen bonds with the cation, resulting in a chain along [010].

Comment

1,4-Diazabicyclo[2.2.2]octane (DABCO) has been reported to catalyze many asymmetric organic reactions due to its strong basicity (Minato et al., 1990). Several chiral trans -2,3-disub-stituted DABCOs have been synthesized and applied to the

asymmetric Baylis-Hillman reaction (Oishi et al., 1995). In a

broad sense, the Baylis–Hillman reaction (Baylis & Hillman, 1972) can be regarded as a one-pot combination of Michael and aldol reactions. It is an atom-economical C—C

bond-forming reaction between the-position of activated alkenes

and carbon electrophiles under the influence of DABCO, producing an interesting class of highly functionalized mol-ecules that have been extensively used in various organic transformation methodologies, often involving high levels of stereoselectivity (Basavaiahet al., 2003). DABCO is also used in vicinal hydroxylation (Oishi & Hirama, 1992) and its bis-ammonium salt is a prospective chiral phase-transfer catalyst. Reported here is the structure of (3) (see reaction scheme), as its dihydrochloride methanol solvate, (I).

In the central part of the cation, there are three

six-membered rings (Fig. 1), viz. ring 1 (atoms C1–C4/N1/N2),

(2)

ring 2 (C1/C2/C5/C6/N1/N2) and ring 3 (C3–C6/N1/N2). Each of these rings adopts a boat conformation. There are four chiral atoms in the cation, namely C1, C3, N1 and N2, and all

are in the S configuration. A careful comparison of

corre-sponding pairs of geometrical parameters (Table 1), indicates that there is an approximate twofold rotation axis passing through the midpoints of the vector N1 N2 and the bond C5—C6. The maximum differences between the corre-sponding pairs of bond lengths, angles and torsion angles are

0.02 A˚ , 2 and 2, respectively. The pseudo-torsion angles

C1—N1 N2—C2, C4—N1 N2—C3 and C5—N1 N2— C6 are 12.4 (3), 12.6 (3) and 10.4 (4), respectively..

The title salt crystallized with a methanol solvent molecule. In the crystal structure, both the solvent molecule and the anions form O—H Cl, N—H Cl, C—H O and C— H Cl hydrogen bonds (Desiraju, 2002) with the cation (Table 2 and Fig. 2), resulting in a chain along [010].

Experimental

The title compound, (I), was simply and conveniently prepared (see reaction scheme) from naturall-phenylalanine in three steps (Qiuet

al., 2003). The intermediate (2) (1.00 g, 3.75 mmol) was heated directly with 1,2-dibromoethane (0.43 g, 2.30 mmol) and triethyl-amine (2 ml) in toluene (10 ml) for 12 h, then cooled to room temperature. The reaction mixture was brought to pH 9–10 with 1 mol l1aqueous NaOH, and the organic phase was separated. The aqueous phase was extracted three times with chloroform (15 ml). The combined organic phase was dried over anhydrous Na2SO4, and

concentratedin vacuo. The residue was placed in a column and eluted with chloroform/methanol (50:1v/v) to give compounds (3) and (4). The dihydrochloride of (3) was dissolved in methanol. After standing for a week, suitable crystals of (I) formed gradually.

Crystal data

C20H26N22+2Cl

CH4O

Mr= 397.37 Monoclinic,P21

a= 11.7262 (13) A˚ b= 7.6968 (7) A˚ c= 11.8788 (13) A˚

= 109.970 (5) V= 1007.65 (18) A˚3

Z= 2

Dx= 1.310 Mg m 3

MoKradiation Cell parameters from 3734

reflections

= 3.0–25.5

= 0.34 mm1

T= 193 (2) K Prism, colorless 0.700.500.50 mm

Data collection

Rigaku Mercury diffractometer

!scans

Absorption correction: multi-scan (Jacobson, 1998)

Tmin= 0.799,Tmax= 0.850

6594 measured reflections 2874 independent reflections

2855 reflections withI> 2(I) Rint= 0.017

max= 25.5

h=14!14 k=9!8 l=13!14

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.043

wR(F2) = 0.128

S= 1.13 2874 reflections 236 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0733P)2

+ 0.7886P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.60 e A˚

3

min=0.49 e A˚

3

Absolute structure: Flack (1983), 855 Friedel pairs

[image:2.610.313.567.112.431.2]

Flack parameter: 0.02 (9)

Table 1

Selected geometric parameters (A˚ ,).

O1—C21 1.401 (10)

N1—C5 1.492 (5)

N1—C1 1.507 (4)

N1—C4 1.507 (4)

N2—C2 1.495 (4)

N2—C3 1.512 (5)

N2—C6 1.512 (4)

C1—C7 1.522 (5)

C1—C2 1.543 (5)

C3—C14 1.525 (5)

C3—C4 1.532 (5)

C5—C6 1.532 (5)

C7—C8 1.517 (5)

C14—C15 1.508 (5)

C5—N1—C1 111.2 (3)

C5—N1—C4 108.7 (3)

C1—N1—C4 109.0 (3)

C2—N2—C3 109.3 (3)

C2—N2—C6 109.5 (3)

C3—N2—C6 110.9 (3)

N1—C1—C7 110.6 (3)

N1—C1—C2 107.2 (3)

C7—C1—C2 113.2 (3)

N2—C2—C1 107.8 (3)

N2—C3—C14 110.5 (3)

N2—C3—C4 106.6 (2)

C14—C3—C4 114.3 (3)

N1—C4—C3 108.4 (3)

N1—C5—C6 108.6 (3)

N2—C6—C5 107.4 (3)

C8—C7—C1 113.7 (3)

C13—C8—C9 117.9 (3)

C15—C14—C3 112.6 (3)

C16—C15—C20 118.5 (3)

C5—N1—C1—C7 76.2 (4) C4—N1—C1—C7 164.0 (3)

C5—N1—C1—C2 47.7 (3)

C4—N1—C1—C2 72.1 (3)

C3—N2—C2—C1 49.2 (3)

C6—N2—C2—C1 72.6 (3)

N1—C1—C2—N2 19.9 (3)

C7—C1—C2—N2 142.2 (3) C2—N2—C3—C14 162.0 (3) C6—N2—C3—C14 77.0 (3) C2—N2—C3—C4 73.3 (3)

C6—N2—C3—C4 47.7 (4)

C5—N1—C4—C3 73.3 (3)

C1—N1—C4—C3 48.1 (4)

N2—C3—C4—N1 20.5 (3)

C14—C3—C4—N1 142.8 (3) C1—N1—C5—C6 69.7 (4)

C4—N1—C5—C6 50.3 (3)

C2—N2—C6—C5 50.7 (4)

C3—N2—C6—C5 70.1 (4)

N1—C5—C6—N2 16.8 (4)

N1—C1—C7—C8 176.4 (3)

C2—C1—C7—C8 63.2 (4)

C1—C7—C8—C13 146.2 (3)

C1—C7—C8—C9 36.1 (5)

[image:2.610.313.563.495.602.2]

C7—C8—C9—C10 177.6 (4) C7—C8—C13—C12 177.4 (3) N2—C3—C14—C15 177.2 (2) C4—C3—C14—C15 62.6 (4) C3—C14—C15—C16 123.7 (4) C3—C14—C15—C20 62.5 (4) C14—C15—C16—C17 174.1 (5) C14—C15—C20—C19 174.4 (4)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1A Cl1 0.94 (4) 2.03 (4) 2.967 (3) 176 (4)

C5—H5A O1 0.99 2.51 3.331 (7) 140

N2—H2 Cl2i 0.92 (5) 2.18 (5) 3.045 (3) 157 (4) C6—H6A Cl1i

0.99 2.75 3.563 (4) 139

O1—H1 Cl2ii

0.82 2.38 3.201 (4) 180

C6—H6B O1ii 0.99 2.41 3.151 (9) 131

C14—H14B O1ii

0.99 2.68 3.389 (7) 129

C6—H6B Cl1ii

0.99 2.94 3.715 (4) 136

C4—H4A O1iii

0.99 2.51 3.329 (8) 140

C3—H3 Cl2iv 0.99 2.68 3.526 (4) 142

Symmetry codes: (i)x;y1;z; (ii)xþ1;y1

2;zþ1; (iii)xþ1;yþ 1

2;zþ1; (iv)

x;y1 2;zþ1.

H atoms attached to N atoms were refined freely [N1—H1A= 0.94 (4) A˚ and N2—H2 = 0.92 (5) A˚]. H atoms attached to C and O were positioned geometrically (C—H = 0.95–1.00 A˚ and O—H = 0.84 A˚ ) and treated as riding, with Uiso(H) = xUeq(carrier

atom),-wherex= 1.5 for methyl C and O, andx= 1.2 for all other C atoms. Data collection: CRYSTALCLEAR (Rigaku, 1990); cell refine-ment:CRYSTALCLEAR; data reduction:CrystalStructure(Rigaku/ MSC, 2003); program(s) used to solve structure:SHELXS97 (Shel-drick, 1997); program(s) used to refine structure: SHELXL97

(Sheldrick, 1997); molecular graphics: ORTEPIII for Windows

organic papers

Acta Cryst.(2005). E61, o2668–o2670 Qiuet al. C

(3)

(Farrugia, 1997); software used to prepare material for publication:

SHELXL97.

This work was supported by by the Key Laboratory of Organic Synthesis of Jiangsu province (No. JSK015).

References

Basavaiah, D., Jaganmohan Rao, A. & Satyanarayana, T. (2003).Chem. Rev. 103, 811–892.

Baylis, A. B. & Hillman, M. E. D. (1972). Ger. Offen. 2155113. Desiraju, G. R. (2002).Acc. Chem. Res.35, 565–573.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.

Minato, M., Yamamoto, K. & Tsuji, J. (1990).J. Org. Chem.55, 766–769. Oishi, T. & Hirama, M. (1992).Tetrahedron Lett.33, 639–640.

Oishi, T., Oguri, H. & Hirama, M. (1995).Tetrahedron Asymmetry,6, 1241– 1245.

Qiu, L. H., Shen, Z. X., Chen, W. H., Zhang, Y. & Zhang, Y. W. (2003).Chin. J. Chem .21, 1098–1100.

Rigaku (1990).CrystalClear. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2003).CrystalStructure. Version 3.5.1. Rigaku/MSC, 909 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

organic papers

o2670

Qiuet al. C

[image:3.610.46.294.71.254.2]

20H26N22+2ClCH4O Acta Cryst.(2005). E61, o2668–o2670

Figure 1

A view of the title compound. Displacement ellipsoids are drawn at the 40% probablitity level.

Figure 2

A packing diagram, viewed down the b axis. Dashed lines indicate

[image:3.610.315.565.73.221.2]
(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o2668–o2670

supporting information

Acta Cryst. (2005). E61, o2668–o2670 [https://doi.org/10.1107/S1600536805022762]

(1

S

,2

S

,4

S

,5

S

)-2,5-Dibenzyl-1,4-diazoniabicyclo[2.2.2]octane dichloride

methanol solvate

Li-Hua Qiu, Wen Yang, Yawen Zhang and De-Chun Zhang

(1S,2S,4S,5S)-2,5-Dibenzyl-1,4-diazoniabicyclo[2.2.2]octane dichloride methanol solvate

Crystal data

C20H26N22+·2Cl−·CH4O Mr = 397.37

Monoclinic, P21 Hall symbol: p 2yb a = 11.7262 (13) Å b = 7.6968 (7) Å c = 11.8788 (13) Å β = 109.970 (5)° V = 1007.65 (18) Å3 Z = 2

F(000) = 424 Dx = 1.310 Mg m−3

Mo radiation, λ = 0.71070 Å Cell parameters from 3734 reflections θ = 3.0–25.5°

µ = 0.34 mm−1 T = 193 K Prism, colorless 0.70 × 0.50 × 0.50 mm

Data collection

Rigaku Mercury diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 14.62 pixels mm-1 ω scans

Absorption correction: multi-scan (Jacobson, 1998)

Tmin = 0.799, Tmax = 0.850

6594 measured reflections 2874 independent reflections 2855 reflections with I > 2σ(I) Rint = 0.017

θmax = 25.5°, θmin = 3.0° h = −14→14

k = −9→8 l = −13→14

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.043 wR(F2) = 0.128 S = 1.13 2874 reflections 236 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0733P)2 + 0.7886P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.60 e Å−3 Δρmin = −0.49 e Å−3

Absolute structure: Flack (1983), 855 Friedel pairs

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o2668–o2670

Special details

Experimental. Compound 3: pale yellow oil, yield 29%, [a\]D25 + 104 (c, 0.8, CH3OH). 1H NMR (400 MHz, CDCl3): d\ 2.49–2.57 (m, 2H, PhCH2), 2.65–2.75 (m, 4H, CHH), 2.89–2.96 (m, 6H, 2- and 5-CHH, 3- and 6-CH, PhCH X 2), 3.03– 3.0 (m, 2H, 7-and 8-CHH), 7.17–7.29 (m, 10H, PhH); MS: m/z: 292.19 (M+, 73%), 250.16 (8), 201.13 (100), 160.11 (20), 146.16 (25), 117.07 (29), 91.05 (31).

Compound 3 with 2HCl: white crystal, m.p.: 188–190°C. Anal. calcd for (%) C20H26N2Cl2: C 65.75, H 7.17, N 7.67. Found (%): C 65.48, H 7.42, N 7.63. IR ν: 3455, 3070, 2988, 2240, 1499 cm-1.

Compound 4: pale yellow oil, yield 25%, [a\]D25 + 134 (c, 0.8, CH3OH). 1H NMR (400 MHz, CDCl3) d\: 2.69–2.78 (m, 10H), 2.89–3.00 (m, 4H), 7.20–7.33 (m, 10H, PhH). MS m/z (%): 292.19 (71, M+), 250.16 (9), 201.13 (100),

160.11 (21), 146.16 (25), 117.07 (32), 91.05 (35).

Compound 4 with 2HCl: white crystal, m.p.: 136–138°C. IR (KBr) νmax: 3456, 3070, 2986, 2238, 1497 cm-1.

Compound 4 with 2picrate: yellow crystal, m.p.: 158–160°C. Anal. calcd (%) for C32H30N8O14: C 51.20, H 4.03, N 14.93. Found (%): C 50.87, H 4.01, N 14.91.

Scheme 2. Synthesis of the title compound

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.40910 (7) 0.56743 (12) 0.32834 (8) 0.0320 (2) Cl2 0.09437 (7) 0.65047 (12) 0.48121 (10) 0.0385 (3) O1 0.6239 (6) 0.1698 (12) 0.3596 (6) 0.128 (2)*

H1 0.6978 0.1647 0.4014 0.193*

N1 0.2888 (2) 0.2593 (4) 0.3883 (3) 0.0254 (6) N2 0.1871 (2) 0.0101 (4) 0.4494 (3) 0.0260 (6) C1 0.1563 (3) 0.2582 (5) 0.3125 (3) 0.0238 (7)

H1B 0.1146 0.3536 0.3406 0.029*

C2 0.1036 (3) 0.0827 (5) 0.3340 (3) 0.0260 (7)

H2A 0.0216 0.0997 0.3384 0.031*

H2B 0.0973 0.0016 0.2674 0.031*

C3 0.2144 (3) 0.1487 (5) 0.5453 (3) 0.0241 (7)

H3 0.1370 0.2101 0.5380 0.029*

C4 0.3004 (3) 0.2787 (5) 0.5180 (3) 0.0261 (7)

H4A 0.2790 0.3986 0.5335 0.031*

H4B 0.3850 0.2555 0.5701 0.031*

C5 0.3495 (3) 0.0946 (5) 0.3740 (3) 0.0301 (8)

H5A 0.4385 0.1058 0.4124 0.036*

H5B 0.3313 0.0694 0.2879 0.036*

C6 0.3024 (3) −0.0531 (5) 0.4327 (3) 0.0302 (8)

H6A 0.2856 −0.1576 0.3810 0.036*

H6B 0.3636 −0.0836 0.5111 0.036*

C7 0.1402 (3) 0.2903 (5) 0.1815 (3) 0.0292 (8)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o2668–o2670

H7B 0.1799 0.1949 0.1528 0.035*

C8 0.0086 (3) 0.3021 (5) 0.1006 (3) 0.0253 (7) C9 −0.0819 (3) 0.3776 (6) 0.1361 (4) 0.0334 (9)

H9 −0.0625 0.4208 0.2154 0.040*

C10 −0.2006 (3) 0.3904 (6) 0.0562 (4) 0.0381 (9)

H10 −0.2613 0.4418 0.0817 0.046*

C11 −0.2310 (3) 0.3292 (6) −0.0595 (4) 0.0372 (9)

H11 −0.3119 0.3384 −0.1136 0.045*

C12 −0.1416 (4) 0.2540 (6) −0.0956 (3) 0.0376 (9)

H12 −0.1613 0.2116 −0.1751 0.045*

C13 −0.0236 (3) 0.2404 (5) −0.0160 (3) 0.0308 (8)

H13 0.0364 0.1877 −0.0418 0.037*

C14 0.2644 (3) 0.0669 (6) 0.6694 (3) 0.0296 (7)

H14A 0.2059 −0.0208 0.6777 0.035*

H14B 0.3413 0.0062 0.6777 0.035*

C15 0.2872 (3) 0.1989 (5) 0.7685 (3) 0.0279 (8) C16 0.4021 (3) 0.2126 (7) 0.8542 (4) 0.0423 (10)

H16 0.4672 0.1467 0.8457 0.051*

C17 0.4230 (4) 0.3220 (8) 0.9525 (4) 0.0583 (15)

H17 0.5025 0.3317 1.0096 0.070*

C18 0.3295 (4) 0.4162 (7) 0.9678 (4) 0.0504 (12)

H18 0.3433 0.4867 1.0368 0.060*

C19 0.2154 (4) 0.4068 (6) 0.8812 (4) 0.0391 (10)

H19 0.1514 0.4762 0.8889 0.047*

C20 0.1932 (3) 0.2974 (5) 0.7832 (3) 0.0319 (8)

H20 0.1137 0.2893 0.7259 0.038*

C21 0.5785 (10) 0.1697 (18) 0.2341 (9) 0.143 (4)*

H21A 0.5069 0.2449 0.2059 0.214*

H21B 0.5560 0.0510 0.2051 0.214*

H21C 0.6410 0.2130 0.2036 0.214*

H1A 0.324 (4) 0.357 (6) 0.366 (3) 0.025 (10)* H2 0.158 (4) −0.084 (7) 0.479 (4) 0.034 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o2668–o2670

C9 0.0305 (17) 0.039 (2) 0.0288 (18) −0.0013 (16) 0.0072 (14) −0.0043 (17) C10 0.0304 (18) 0.040 (2) 0.041 (2) 0.0007 (16) 0.0086 (16) −0.0019 (19) C11 0.0307 (17) 0.036 (2) 0.035 (2) −0.0043 (16) −0.0022 (14) 0.0057 (18) C12 0.045 (2) 0.038 (2) 0.0242 (18) −0.0110 (18) 0.0058 (15) −0.0015 (17) C13 0.0361 (18) 0.028 (2) 0.0274 (19) −0.0022 (16) 0.0100 (15) −0.0005 (16) C14 0.0317 (15) 0.0302 (18) 0.0268 (17) 0.0051 (16) 0.0100 (13) 0.0008 (17) C15 0.0264 (15) 0.032 (2) 0.0246 (17) 0.0029 (14) 0.0080 (13) 0.0012 (15) C16 0.0272 (17) 0.058 (3) 0.042 (2) 0.0044 (18) 0.0115 (15) −0.014 (2) C17 0.0295 (19) 0.084 (4) 0.053 (3) 0.002 (2) 0.0026 (18) −0.035 (3) C18 0.040 (2) 0.063 (3) 0.047 (3) −0.003 (2) 0.0130 (18) −0.029 (2) C19 0.0331 (18) 0.046 (3) 0.040 (2) 0.0085 (18) 0.0162 (16) −0.010 (2) C20 0.0256 (16) 0.036 (2) 0.032 (2) 0.0035 (15) 0.0074 (14) 0.0004 (16)

Geometric parameters (Å, º)

O1—C21 1.401 (10) C8—C13 1.388 (5)

O1—H1 0.8400 C8—C9 1.396 (5)

N1—C5 1.492 (5) C9—C10 1.395 (5)

N1—C1 1.507 (4) C9—H9 0.9500

N1—C4 1.507 (4) C10—C11 1.379 (6)

N1—H1A 0.94 (4) C10—H10 0.9500

N2—C2 1.495 (4) C11—C12 1.387 (6)

N2—C3 1.512 (5) C11—H11 0.9500

N2—C6 1.512 (4) C12—C13 1.388 (5)

N2—H2 0.92 (5) C12—H12 0.9500

C1—C7 1.522 (5) C13—H13 0.9500

C1—C2 1.543 (5) C14—C15 1.508 (5)

C1—H1B 1.0000 C14—H14A 0.9900

C2—H2A 0.9900 C14—H14B 0.9900

C2—H2B 0.9900 C15—C16 1.388 (5)

C3—C14 1.525 (5) C15—C20 1.398 (5)

C3—C4 1.532 (5) C16—C17 1.392 (6)

C3—H3 1.0000 C16—H16 0.9500

C4—H4A 0.9900 C17—C18 1.377 (6)

C4—H4B 0.9900 C17—H17 0.9500

C5—C6 1.532 (5) C18—C19 1.384 (6)

C5—H5A 0.9900 C18—H18 0.9500

C5—H5B 0.9900 C19—C20 1.387 (6)

C6—H6A 0.9900 C19—H19 0.9500

C6—H6B 0.9900 C20—H20 0.9500

C7—C8 1.517 (5) C21—H21A 0.9800

C7—H7A 0.9900 C21—H21B 0.9800

C7—H7B 0.9900 C21—H21C 0.9800

C21—O1—H1 124.7 C8—C7—H7B 108.8

C5—N1—C1 111.2 (3) C1—C7—H7B 108.8

C5—N1—C4 108.7 (3) H7A—C7—H7B 107.7

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, o2668–o2670

C5—N1—H1A 112 (2) C13—C8—C7 118.9 (3)

C1—N1—H1A 107 (2) C9—C8—C7 123.2 (3)

C4—N1—H1A 109 (2) C10—C9—C8 120.5 (4)

C2—N2—C3 109.3 (3) C10—C9—H9 119.7

C2—N2—C6 109.5 (3) C8—C9—H9 119.7

C3—N2—C6 110.9 (3) C11—C10—C9 120.8 (4)

C2—N2—H2 116 (3) C11—C10—H10 119.6

C3—N2—H2 106 (3) C9—C10—H10 119.6

C6—N2—H2 105 (3) C10—C11—C12 119.0 (3)

N1—C1—C7 110.6 (3) C10—C11—H11 120.5

N1—C1—C2 107.2 (3) C12—C11—H11 120.5

C7—C1—C2 113.2 (3) C11—C12—C13 120.2 (4)

N1—C1—H1B 108.6 C11—C12—H12 119.9

C7—C1—H1B 108.6 C13—C12—H12 119.9

C2—C1—H1B 108.6 C8—C13—C12 121.5 (3)

N2—C2—C1 107.8 (3) C8—C13—H13 119.2

N2—C2—H2A 110.1 C12—C13—H13 119.2

C1—C2—H2A 110.1 C15—C14—C3 112.6 (3)

N2—C2—H2B 110.1 C15—C14—H14A 109.1

C1—C2—H2B 110.1 C3—C14—H14A 109.1

H2A—C2—H2B 108.5 C15—C14—H14B 109.1

N2—C3—C14 110.5 (3) C3—C14—H14B 109.1

N2—C3—C4 106.6 (2) H14A—C14—H14B 107.8

C14—C3—C4 114.3 (3) C16—C15—C20 118.5 (3)

N2—C3—H3 108.4 C16—C15—C14 119.5 (3)

C14—C3—H3 108.4 C20—C15—C14 121.7 (3)

C4—C3—H3 108.4 C15—C16—C17 120.7 (4)

N1—C4—C3 108.4 (3) C15—C16—H16 119.7

N1—C4—H4A 110.0 C17—C16—H16 119.7

C3—C4—H4A 110.0 C18—C17—C16 120.6 (4)

N1—C4—H4B 110.0 C18—C17—H17 119.7

C3—C4—H4B 110.0 C16—C17—H17 119.7

H4A—C4—H4B 108.4 C17—C18—C19 119.1 (4)

N1—C5—C6 108.6 (3) C17—C18—H18 120.5

N1—C5—H5A 110.0 C19—C18—H18 120.5

C6—C5—H5A 110.0 C18—C19—C20 120.8 (4)

N1—C5—H5B 110.0 C18—C19—H19 119.6

C6—C5—H5B 110.0 C20—C19—H19 119.6

H5A—C5—H5B 108.4 C19—C20—C15 120.3 (3)

N2—C6—C5 107.4 (3) C19—C20—H20 119.9

N2—C6—H6A 110.2 C15—C20—H20 119.9

C5—C6—H6A 110.2 O1—C21—H21A 109.5

N2—C6—H6B 110.2 O1—C21—H21B 109.5

C5—C6—H6B 110.2 H21A—C21—H21B 109.5

H6A—C6—H6B 108.5 O1—C21—H21C 109.5

C8—C7—C1 113.7 (3) H21A—C21—H21C 109.5

C8—C7—H7A 108.8 H21B—C21—H21C 109.5

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, o2668–o2670

C5—N1—C1—C7 −76.2 (4) C1—C7—C8—C13 −146.2 (3) C4—N1—C1—C7 164.0 (3) C1—C7—C8—C9 36.1 (5) C5—N1—C1—C2 47.7 (3) C13—C8—C9—C10 −0.1 (6) C4—N1—C1—C2 −72.1 (3) C7—C8—C9—C10 177.6 (4) C3—N2—C2—C1 49.2 (3) C8—C9—C10—C11 −0.2 (6) C6—N2—C2—C1 −72.6 (3) C9—C10—C11—C12 0.2 (6) N1—C1—C2—N2 19.9 (3) C10—C11—C12—C13 0.2 (6) C7—C1—C2—N2 142.2 (3) C9—C8—C13—C12 0.5 (5) C2—N2—C3—C14 162.0 (3) C7—C8—C13—C12 −177.4 (3) C6—N2—C3—C14 −77.0 (3) C11—C12—C13—C8 −0.5 (6) C2—N2—C3—C4 −73.3 (3) N2—C3—C14—C15 −177.2 (2) C6—N2—C3—C4 47.7 (4) C4—C3—C14—C15 62.6 (4) C5—N1—C4—C3 −73.3 (3) C3—C14—C15—C16 −123.7 (4) C1—N1—C4—C3 48.1 (4) C3—C14—C15—C20 62.5 (4) N2—C3—C4—N1 20.5 (3) C20—C15—C16—C17 0.0 (7) C14—C3—C4—N1 142.8 (3) C14—C15—C16—C17 −174.1 (5) C1—N1—C5—C6 −69.7 (4) C15—C16—C17—C18 1.2 (9) C4—N1—C5—C6 50.3 (3) C16—C17—C18—C19 −2.9 (9) C2—N2—C6—C5 50.7 (4) C17—C18—C19—C20 3.3 (8) C3—N2—C6—C5 −70.1 (4) C18—C19—C20—C15 −2.2 (7) N1—C5—C6—N2 16.8 (4) C16—C15—C20—C19 0.5 (6) N1—C1—C7—C8 −176.4 (3) C14—C15—C20—C19 174.4 (4) C2—C1—C7—C8 63.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1A···Cl1 0.94 (4) 2.03 (4) 2.967 (3) 176 (4)

C5—H5A···O1 0.99 2.51 3.331 (7) 140

N2—H2···Cl2i 0.92 (5) 2.18 (5) 3.045 (3) 157 (4)

C6—H6A···Cl1i 0.99 2.75 3.563 (4) 139

O1—H1···Cl2ii 0.82 2.38 3.201 (4) 180

C6—H6B···O1ii 0.99 2.41 3.151 (9) 131

C14—H14B···O1ii 0.99 2.68 3.389 (7) 129

C6—H6B···Cl1ii 0.99 2.94 3.715 (4) 136

C4—H4A···O1iii 0.99 2.51 3.329 (8) 140

C3—H3···Cl2iv 0.99 2.68 3.526 (4) 142

Figure

Table 1Selected geometric parameters (A˚ , �).
Figure 2

References

Related documents

Unfortunately student loans didn’t cover all my school expenses so I started getting credit cards to buy the things I needed for school and to pay school-related bills. I worked

Three different blood pressure estimation models were evaluated in the present study, including the conventional Maximum Amplitude Algorithm (MAA) method based on fixed

It is known that the rheology of liquid crystalline poly- mers shows some unique behaviors which arise from complex interaction between crystals and flow. Among these behaviors

To better utilize textual evidence for im- proving QA over incomplete KBs, this paper presents a new end-to-end model, which con- sists of (1) a simple yet effective subgraph

In short, our contributions are two-fold: (i) an effective syntax- based evaluator is built as a post-hoc checker, yielding compression with better quality based upon the

We use two proxies of Financial Inclusion: the overall rate of demographic penetration of financial services (DemoF) that represents the access and the available supply of

La rareté de plus en plus importante de l’offre de travail dans les années à venir aura un effet à la hausse sur le stock de capital par rapport au travail ce qui aura

The second rule says that if the distance in words between antecedent VP and candidate VP is less than or equal to 14, and the VPs are in the same sentence, and the antecedent VP