• No results found

N,N′ Bis[2 (4 pyrid­yl)eth­yl]perylene 3,4:9,10 bis­­(dicarboximide) m cresol disolvate

N/A
N/A
Protected

Academic year: 2020

Share "N,N′ Bis[2 (4 pyrid­yl)eth­yl]perylene 3,4:9,10 bis­­(dicarboximide) m cresol disolvate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o672

Hino and Mizuguchi C

38H24N4O42C7H8O doi:10.1107/S1600536805004447 Acta Cryst.(2005). E61, o672–o674 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

N

,

N

000

-Bis[2-(4-pyridyl)ethyl]perylene-3,4:9,10-bis(dicarboximide)

m

-cresol disolvate

Kazuyuki Hino and Jin Mizuguchi*

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study T= 93 K

Mean(C–C) = 0.008 A˚ Rfactor = 0.100 wRfactor = 0.118

Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C38H24N4O42C7H8O, is a 1:2 complex of a pyridylethylperylene derivative, EPY, with m-cresol. The EPY molecule has a centre of symmetry and the pyridylethyl groups are attached to the perylene–imide skeleton in atrans

fashion. The EPY molecules are stacked along theaaxis with a slip angle of about 47.

Comment

Perylene compounds are industrially important pigments, covering a variety of shades from red via maroon to black (Herbst & Hunger, 1993). N,N0

[image:1.610.204.473.535.655.2]

-Bis[2-(4-pyridyl)ethyl]-perylene-3,4:9,10-bis(dicarboximide) is a pyridylethyl deriva-tive, here abbreviated to EPY. It has a similar structure to that of the phenylethyl derivative, here abbreviated to EPH and also known as pigment black 31. The only difference between EPY and EPH is the pyridyl or phenyl ring. Nevertheless, the colours are strikingly different. EPY (Mizuguchi & Tojo, 2002) is vivid red, while two crystal modifications of EPH (Ha¨dicke & Graser, 1986; Mizuguchi, 1998) are black. In these two modifications of EPH, the phenylethyl groups are attached to the perylene imide skeleton in a trans fashion, while the pyridylethyl groups in EPY arecis(Mizuguchi & Tojo, 2002). Because of this, our attention has been focused on the preparation of the trans form of EPY, which is expected to show a black colour. We have recently isolated a black crystal of the trans form from a 1:1 mixed solvent of phenol and ethanol, EPY2(phenol) (Mizuguchi & Hino, 2005a). The present paper deals with another complex of thetransform, EPY2(m-cresol), (I), recrystallized fromm-cresol and which is red–black.

Fig. 1 shows the structure of (I), in which one molecule of EPY crystallizes with two m-cresol molecules. The EPY molecule has a centre of symmetry and the two pyridylethyl groups are arranged in a trans fashion (Ci symmetry), in

marked contrast to the previous cis form (C2 symmetry; Mizuguchi & Tojo, 2002). The pyridyl rings deviate from the perylene imide skeleton by 5.2 (2).

(2)

There is an intermolecular O—H N hydrogen bond (Table 2) between the m-cresol molecule and the pyridyl group of EPY. Them-cresol molecule is twisted by 18.6 (2)

with respect to the pyridyl ring. The colour of complex (I) is reddish-black, as expected (Mizuguchi & Hino, 2005b).

Fig. 2 shows the projection of the crystal structure along the

a axis. The EPY molecules form columns along the a axis, while there are two neighbouring columns composed of

m-cresol molecules. The polar m-cresol molecules of each column are arranged so as to cancel their dipole moments to reduce the electrostatic energy. Within a column, the EPY molecules are stacked with a slip angle of about 47, which is

defined, in a side view of two stacked molecules, as the slipped angle of the upper molecule relative to the lower one along the long molecular axis.

Experimental

EPY was prepared by the reaction of perylene tetracarboxylic dianhydride (10 g) with aminoethylpyridine (8.8 g) at 403 K in water (30 ml) for 5 h. The product was filtered and the red cake was then refluxed for 10 min inN,N0-dimethylformamide. Single crystals of a

reddish-black colour (transform) were grown from solution inm -cresol, whereas red crystals (cisform) were obtained from solution in nitrobenzene. The use of a protic solvent such asm-cresol was the key to the growth of black crystals of thetransform. Since the reddish-black crystal of (I) was found to include solvent molecules, X-ray intensity data were collected at 93 K. Obtaining single crystals from the vapour phase was also attempted but without success, leading to the decomposition of EPY to give a perylene imide derivative known as pigment violet 29.

Crystal data

C38H24N4O42C7H8O

Mr= 816.88

Monoclinic,P21=c

a= 4.903 (6) A˚

b= 29.26 (4) A˚

c= 13.96 (2) A˚

= 97.65 (6)

V= 1985 (4) A˚3

Z= 2

Dx= 1.367 Mg m

3

CuKradiation Cell parameters from 4038

reflections

= 3.0–65.6 = 0.73 mm1

T= 93.2 K Needle, red

0.400.100.10 mm

Data collection

Rigaku R-AXIS RAPID imaging plate diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.618,Tmax= 0.930

3443 measured reflections

3363 independent reflections 1335 reflections withF2> 2(F2)

Rint= 0.147 max= 68.2

h= 0!5

k= 0!35

l=16!16

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.100

wR(F2) = 0.118

S= 1.00 3363 reflections 280 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + {0.025[Max(Fo2,0) +

2Fc2]/3}2]

(/)max< 0.001

max= 1.08 e A˚ 3

min=0.90 e A˚3

[image:2.610.42.302.69.282.2] [image:2.610.47.295.329.530.2]

Extinction correction: none

Table 1

Selected bond lengths (A˚ ).

O1—C6 1.223 (7) O2—C16 1.233 (7) N2—C5 1.493 (7) N2—C6 1.405 (7) N2—C16 1.412 (7) C6—C7 1.469 (8) C7—C8 1.370 (7) C7—C19 1.406 (8) C8—C9 1.410 (7) C9—C10 1.384 (7)

C10—C11 1.437 (7) C10—C12i

1.485 (7) C11—C12 1.429 (8) C11—C19 1.425 (7) C12—C13 1.402 (7) C13—C14 1.393 (7) C14—C15 1.387 (8) C15—C16 1.465 (8) C15—C19 1.399 (8) C17—C18 1.387 (7)

[image:2.610.315.566.548.636.2]

Symmetry codes: (i)xþ1;yþ1;zþ2.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O3—H1 N1ii

1.00 1.80 2.761 (5) 161

organic papers

Acta Cryst.(2005). E61, o672–o674 Hino and Mizuguchi C

38H24N4O42C7H8O

o673

Figure 1

A view of the molecular conformation of (I), showing 50% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by 1x, 1y, 2z.

Figure 2

[image:2.610.312.567.698.729.2]
(3)

The H atom attached to the O atom was found in a difference-density map and its positional parameters were fixed withUiso(H) =

1.1Ueq(O). All other H atoms were positioned geometrically and

included in a riding-model approximation, with C—H = 0.95 A˚ and withUiso(H) = 1.2Ueq(C). The maximum residual density is located

1.25 A˚ from atom C5.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refine-ment: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure:

SYSTEM90(Houet al., 1994); program(s) used to refine structure:

TEXSAN; molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication:TEXSAN.

References

Burnett, M. N. & Johnson, C. K. (1996).ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Ha¨dicke, E. & Graser, F. (1986).Acta Cryst.C42, 189–195.

Herbst, W. & Hunger, K. (1993).Industrial Organic Pigments, pp. 467-475. Weinheim: VCH.

Higashi, T.(1995).ABSCOR. Rigaku Corporation, Tokyo, Japan. Hou, Y., Gao, M., Li, L. & Hou, P. (1994).Acta Cryst.A50, 748–753. Mizuguchi, J. (1998).Acta Cryst.C54, 1479–1481.

Mizuguchi, J. & Hino, K. (2005a).Acta Cryst.E61, o672–o674 Mizuguchi, J. & Hino, K. (2005b).Dyes Pigments. Submitted.

Mizuguchi, J. & Tojo, K. (2002).Z. Kristallogr. New Cryst. Struct.217, 247–248. Molecular Structure Corporation (2001).TEXSAN. Version 1.11. MSC, 9009

New Trails Drive, The Woodlands, TX 77381-5209, USA.

Rigaku (1998).PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

organic papers

o674

Hino and Mizuguchi C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o672–o674

supporting information

Acta Cryst. (2005). E61, o672–o674 [https://doi.org/10.1107/S1600536805004447]

N

,

N

′-Bis[2-(4-pyridyl)ethyl]perylene-3,4:9,10-bis(dicarboximide)

m

-cresol

disolvate

Kazuyuki Hino and Jin Mizuguchi

(I)

Crystal data

C38H24N4O4·2C7H8O

Mr = 816.88 Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 4.903 (6) Å

b = 29.26 (4) Å

c = 13.96 (2) Å

β = 97.65 (6)°

V = 1985 (4) Å3

Z = 2

F(000) = 856.0

Dx = 1.367 Mg m−3

Cu radiation, λ = 1.5419 Å Cell parameters from 4038 reflections

θ = 3.0–65.6°

µ = 0.73 mm−1

T = 93 K Needle, red

0.40 × 0.10 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID imaging plate diffractometer

Detector resolution: 10.00 pixels mm-1

24 frames, δω = 30° scans Absorption correction: multi-scan

(ABSCOR; Higashi, 1995)

Tmin = 0.618, Tmax = 0.930

3443 measured reflections

3363 independent reflections 1335 reflections with F2 > 2σ(F2)

Rint = 0.147

θmax = 68.2°

h = 0→5

k = 0→35

l = −16→16

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.100

wR(F2) = 0.118

S = 1.00 3363 reflections 280 parameters

H-atom parameters constrained

w = 1/[σ2(F

o2) + {0.025[Max(Fo2,0) + 2Fc2]/3}2]

(Δ/σ)max = 0.0002

Δρmax = 1.08 e Å−3

Δρmin = −0.90 e Å−3

Special details

Refinement. Refinement using reflections with F2 > -3.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are

based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor

(gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o672–o674

O2 −0.5191 (7) 0.4996 (1) 0.6876 (3) 0.036 (1)

O3 −1.5941 (7) 0.6440 (1) 0.1952 (2) 0.037 (1)

N1 −1.1697 (9) 0.6368 (2) 0.3457 (3) 0.033 (2)

N2 −0.3847 (9) 0.5714 (1) 0.7349 (3) 0.024 (2)

C1 −0.992 (1) 0.6661 (2) 0.3919 (4) 0.037 (2)

C2 −0.777 (1) 0.6536 (2) 0.4621 (4) 0.033 (2)

C3 −0.730 (1) 0.6081 (2) 0.4846 (4) 0.027 (2)

C4 −0.501 (1) 0.5930 (2) 0.5611 (4) 0.038 (2)

C5 −0.607 (1) 0.5898 (2) 0.6613 (4) 0.032 (2)

C6 −0.205 (1) 0.6024 (2) 0.7880 (4) 0.032 (2)

C7 0.019 (1) 0.5836 (2) 0.8572 (4) 0.023 (2)

C8 0.199 (1) 0.6124 (2) 0.9109 (4) 0.024 (2)

C9 0.4173 (10) 0.5956 (2) 0.9777 (4) 0.021 (2)

C10 0.459 (1) 0.5491 (2) 0.9903 (4) 0.023 (2)

C11 0.275 (1) 0.5185 (2) 0.9328 (4) 0.020 (2)

C12 0.312 (1) 0.4701 (2) 0.9415 (4) 0.022 (2)

C13 0.128 (1) 0.4422 (2) 0.8824 (4) 0.022 (2)

C14 −0.090 (1) 0.4598 (2) 0.8189 (4) 0.027 (2)

C15 −0.127 (1) 0.5067 (2) 0.8100 (4) 0.025 (2)

C16 −0.355 (1) 0.5235 (2) 0.7405 (4) 0.032 (2)

C17 −0.914 (1) 0.5772 (2) 0.4345 (4) 0.028 (2)

C18 −1.128 (1) 0.5928 (2) 0.3672 (4) 0.032 (2)

C19 0.054 (1) 0.5360 (2) 0.8662 (4) 0.023 (2)

C20 −1.721 (1) 0.6858 (2) 0.1791 (4) 0.025 (2)

C21 −1.944 (1) 0.6882 (2) 0.1046 (4) 0.025 (2)

C22 −2.082 (1) 0.7288 (2) 0.0829 (4) 0.026 (2)

C23 −2.002 (1) 0.7670 (2) 0.1378 (4) 0.035 (2)

C24 −1.778 (1) 0.7645 (2) 0.2119 (4) 0.038 (2)

C25 −1.637 (1) 0.7241 (2) 0.2320 (4) 0.041 (2)

C26 −2.321 (1) 0.7306 (2) 0.0014 (4) 0.041 (2)

H1 −1.4375 0.6487 0.2475 0.0395*

H2 −1.0141 0.6975 0.3762 0.0449*

H3 −0.6623 0.6765 0.4949 0.0396*

H4 −0.4366 0.5640 0.5440 0.0453*

H5 −0.3560 0.6147 0.5645 0.0453*

H6 −0.7616 0.5700 0.6564 0.0384*

H7 −0.6585 0.6194 0.6804 0.0384*

H8 0.1754 0.6444 0.9035 0.0281*

H9 0.5384 0.6165 1.0141 0.0260*

H10 0.1522 0.4100 0.8858 0.0267*

H11 −0.2142 0.4396 0.7818 0.0314*

H12 −0.8942 0.5454 0.4472 0.0335*

H13 −1.2494 0.5708 0.3345 0.0379*

H14 −2.0019 0.6614 0.0692 0.0301*

H15 −2.0974 0.7950 0.1251 0.0419*

H16 −1.7229 0.7911 0.2486 0.0449*

H17 −1.4842 0.7228 0.2815 0.0498*

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o672–o674

H19 −2.2751 0.7131 −0.0517 0.0485*

H20 −2.4799 0.7184 0.0232 0.0485*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.042 (3) 0.030 (3) 0.034 (3) 0.006 (2) −0.004 (2) 0.003 (2)

O2 0.030 (3) 0.035 (3) 0.038 (3) −0.000 (2) −0.006 (2) 0.003 (2)

O3 0.045 (3) 0.034 (3) 0.028 (3) 0.007 (2) −0.013 (2) 0.003 (2)

N1 0.033 (4) 0.039 (3) 0.025 (3) 0.010 (3) −0.002 (3) 0.002 (3)

N2 0.020 (3) 0.026 (3) 0.025 (3) 0.007 (3) −0.001 (2) 0.002 (3)

C1 0.049 (5) 0.020 (4) 0.043 (4) 0.004 (3) 0.010 (4) 0.003 (3)

C2 0.036 (4) 0.026 (4) 0.036 (4) −0.003 (3) −0.000 (3) 0.005 (3)

C3 0.019 (4) 0.042 (4) 0.020 (4) 0.004 (3) 0.005 (3) 0.007 (3)

C4 0.034 (4) 0.051 (4) 0.028 (4) 0.001 (3) 0.006 (3) 0.008 (3)

C5 0.029 (4) 0.037 (4) 0.031 (4) 0.004 (3) 0.007 (3) 0.007 (3)

C6 0.036 (5) 0.023 (4) 0.037 (5) 0.008 (3) 0.009 (4) 0.009 (3)

C7 0.028 (4) 0.017 (4) 0.025 (4) −0.005 (3) 0.004 (3) 0.006 (3)

C8 0.022 (4) 0.020 (4) 0.029 (4) 0.007 (3) 0.006 (3) 0.003 (3)

C9 0.016 (4) 0.023 (4) 0.025 (4) −0.006 (3) 0.004 (3) −0.002 (3)

C10 0.022 (4) 0.026 (4) 0.022 (4) −0.003 (3) 0.007 (3) 0.007 (3)

C11 0.016 (4) 0.026 (4) 0.019 (4) 0.003 (3) 0.010 (3) −0.000 (3)

C12 0.020 (4) 0.024 (4) 0.023 (4) 0.003 (3) 0.004 (3) 0.003 (3)

C13 0.028 (4) 0.017 (3) 0.023 (4) −0.001 (3) 0.005 (3) 0.000 (3)

C14 0.023 (4) 0.034 (4) 0.022 (4) −0.005 (3) 0.004 (3) −0.003 (3)

C15 0.030 (4) 0.032 (4) 0.013 (3) 0.004 (3) 0.001 (3) 0.004 (3)

C16 0.034 (5) 0.037 (4) 0.028 (4) −0.006 (4) 0.017 (3) −0.002 (4)

C17 0.028 (4) 0.028 (4) 0.028 (4) 0.004 (3) 0.005 (3) −0.003 (3)

C18 0.038 (5) 0.033 (4) 0.028 (4) 0.004 (3) 0.010 (3) −0.003 (3)

C19 0.022 (4) 0.027 (4) 0.019 (4) −0.001 (3) −0.000 (3) −0.002 (3)

C20 0.019 (4) 0.031 (4) 0.023 (4) 0.003 (3) −0.003 (3) 0.005 (3)

C21 0.028 (4) 0.022 (3) 0.024 (4) −0.004 (3) 0.004 (3) −0.007 (3)

C22 0.029 (4) 0.024 (4) 0.025 (4) 0.005 (3) 0.002 (3) 0.003 (3)

C23 0.042 (4) 0.027 (4) 0.036 (4) 0.020 (4) 0.002 (3) 0.006 (3)

C24 0.048 (5) 0.029 (4) 0.035 (4) −0.003 (4) −0.001 (3) −0.009 (3)

C25 0.057 (5) 0.044 (4) 0.020 (4) −0.003 (4) −0.006 (3) −0.006 (3)

C26 0.040 (4) 0.039 (4) 0.044 (4) −0.001 (3) 0.005 (3) 0.009 (4)

Geometric parameters (Å, º)

O1—C6 1.223 (7) C10—C12i 1.485 (7)

O2—C16 1.233 (7) C11—C12 1.429 (8)

O3—C20 1.378 (6) C11—C19 1.425 (7)

O3—H1 0.996 C12—C13 1.402 (7)

N1—C1 1.327 (7) C13—C14 1.393 (7)

N1—C18 1.333 (7) C13—H10 0.951

N2—C5 1.493 (7) C14—C15 1.387 (8)

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o672–o674

N2—C16 1.412 (7) C15—C16 1.465 (8)

C1—C2 1.390 (8) C15—C19 1.399 (8)

C1—H2 0.949 C17—C18 1.387 (7)

C2—C3 1.382 (8) C17—H12 0.950

C2—H3 0.951 C18—H13 0.950

C3—C4 1.507 (7) C20—C21 1.404 (7)

C3—C17 1.399 (7) C20—C25 1.377 (8)

C4—C5 1.558 (8) C21—C22 1.380 (8)

C4—H4 0.948 C21—H14 0.950

C4—H5 0.950 C22—C23 1.382 (8)

C5—H6 0.950 C22—C26 1.523 (7)

C5—H7 0.951 C23—C24 1.407 (7)

C6—C7 1.469 (8) C23—H15 0.950

C7—C8 1.370 (7) C24—C25 1.379 (8)

C7—C19 1.406 (8) C24—H16 0.950

C8—C9 1.410 (7) C25—H17 0.950

C8—H8 0.949 C26—H18 0.949

C9—C10 1.384 (7) C26—H19 0.952

C9—H9 0.950 C26—H20 0.944

C10—C11 1.437 (7)

O1···C23ii 3.543 (7) C5···C7v 3.496 (8)

O2···C18iii 3.246 (7) C6···C9v 3.434 (8)

O3···N1 2.761 (5) C6···C8v 3.592 (9)

O3···C9iv 3.356 (6) C10···C14vii 3.420 (8)

O3···C14iii 3.401 (6) C10···C13vii 3.585 (9)

O3···C18 3.431 (6) C11···C16vi 3.438 (9)

N2···C7v 3.595 (8) C11···C12vii 3.581 (9)

C1···C25vi 3.454 (9) C12···C19vii 3.428 (8)

C1···C20vi 3.460 (8) C12···C14vi 3.597 (9)

C3···C18vi 3.589 (9) C14···C18viii 3.318 (8)

C4···C18vi 3.463 (8)

C20—O3—H1 106.6 C11—C12—C13 117.5 (4)

C1—N1—C18 116.4 (4) C12—C13—C14 122.7 (5)

C5—N2—C6 118.6 (4) C12—C13—H10 118.7

C5—N2—C16 117.1 (4) C14—C13—H10 118.6

C6—N2—C16 124.0 (4) C13—C14—C15 120.0 (5)

N1—C1—C2 124.2 (5) C13—C14—H11 120.0

N1—C1—H2 117.8 C15—C14—H11 120.0

C2—C1—H2 118.0 C14—C15—C16 118.0 (5)

C1—C2—C3 120.1 (5) C14—C15—C19 119.5 (5)

C1—C2—H3 120.0 C16—C15—C19 122.5 (5)

C3—C2—H3 119.9 O2—C16—N2 118.3 (5)

C2—C3—C4 121.9 (5) O2—C16—C15 125.9 (5)

C2—C3—C17 115.6 (5) N2—C16—C15 115.8 (5)

C4—C3—C17 122.5 (5) C3—C17—C18 120.5 (5)

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, o672–o674

C3—C4—H4 109.0 C18—C17—H12 119.9

C3—C4—H5 108.8 N1—C18—C17 123.3 (5)

C5—C4—H4 109.5 N1—C18—H13 118.5

C5—C4—H5 109.4 C17—C18—H13 118.2

H4—C4—H5 109.7 C7—C19—C11 119.3 (5)

N2—C5—C4 110.0 (4) C7—C19—C15 119.7 (5)

N2—C5—H6 109.5 C11—C19—C15 121.0 (5)

N2—C5—H7 109.4 O3—C20—C21 117.1 (5)

C4—C5—H6 109.3 O3—C20—C25 122.6 (4)

C4—C5—H7 109.3 C21—C20—C25 120.3 (5)

H6—C5—H7 109.4 C20—C21—C22 121.0 (5)

O1—C6—N2 118.9 (5) C20—C21—H14 119.6

O1—C6—C7 123.4 (5) C22—C21—H14 119.4

N2—C6—C7 117.7 (5) C21—C22—C23 118.7 (5)

C6—C7—C8 120.0 (5) C21—C22—C26 120.0 (5)

C6—C7—C19 120.2 (5) C23—C22—C26 121.3 (5)

C8—C7—C19 119.7 (5) C22—C23—C24 120.1 (5)

C7—C8—C9 121.8 (5) C22—C23—H15 119.9

C7—C8—H8 119.1 C24—C23—H15 120.0

C9—C8—H8 119.1 C23—C24—C25 120.9 (5)

C8—C9—C10 120.7 (4) C23—C24—H16 119.4

C8—C9—H9 119.7 C25—C24—H16 119.6

C10—C9—H9 119.6 C20—C25—C24 118.9 (5)

C9—C10—C11 118.2 (5) C20—C25—H17 120.6

C9—C10—C12i 122.6 (5) C24—C25—H17 120.5

C11—C10—C12i 119.1 (5) C22—C26—H18 109.2

C10—C11—C12 120.4 (5) C22—C26—H19 109.0

C10—C11—C19 120.3 (5) C22—C26—H20 109.4

C12—C11—C19 119.3 (5) H18—C26—H19 109.4

C10i—C12—C11 120.4 (4) H18—C26—H20 110.1

C10i—C12—C13 122.1 (5) H19—C26—H20 109.8

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+2, −y+3/2, z+1/2; (iii) −x−2, −y+1, −z+1; (iv) x−2, y, z−1; (v) x−1, y, z; (vi) x+1, y, z; (vii) −x, −y+1, −z+2; (viii) −x−1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

Figure

Fig. 1 shows the structure of (I), in which one molecule of
Figure 1Monoclinic, P21a = 4.903 (6) A˚A view of the molecular conformation of (I), showing 50% probability˚

References

Related documents

This model allowed the probe of a network, those are relationships between levels of diabetes knowledge, attitude, self-management, HbA1c and other variables such

Furthermore, mention pair scores can produce powerful features for training the agent because the scores indicate which mention pairs between the clusters in ques- tion are

2 For small farms, tethering is allowed in organic milk production, provided that summer pasture is.. used and the cows have access to open air at least twice a week in winter

Neamt county, most of the rural municipalities have a coverage rate over 70 % to waste collection services in 2012.. according to

Instead of only using 1- best parse trees in previous work, our core idea is to utilize parse forest (ambiguous labelings) to combine multiple 1-best parse trees generated from

The pipeline of most Phrase-Based Statistical Machine Translation (PB-SMT) systems starts from automatically word aligned parallel corpus generated from word-based models (Brown

In our context and in relation with implementation theory, we show that there is a close connexion with strategy-proofness and the implementability of the sub- solution of the

Based on Masud and Yontcheva (2005) and Binder and Georgiadis (2010), we include a set of control variables that influence the country‘s level of development: a) rural