Aqua­chloro­tri­phenyl­tin(IV) pyridine disolvate

11 

(1)metal-organic papers Acta Crystallographica Section E. Structure Reports Online. Aquachlorotriphenyltin(IV) pyridine disolvate. ISSN 1600-5368. Shun-Li Li, Jian-Fang Ma* and Ying-Ying Liu Department of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China Correspondence e-mail: jianfangma@yahoo.com.cn. Key indicators Single-crystal X-ray study T = 293 K ˚ Mean (C–C) = 0.004 A R factor = 0.019 wR factor = 0.049 Data-to-parameter ratio = 18.5 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. # 2006 International Union of Crystallography Printed in Great Britain – all rights reserved. m172. Li et al.. . In the structure of the title mononuclear Sn complex, [Sn(C6H5)3Cl(H2O)]2C5H5N, the SnIV atom is coordinated in a slightly distorted trigonal–bipyramidal geometry by three phenyl C atoms, one water molecule and one Cl anion. Two pyridine molecules are O—H  N hydrogen bonded to the coordinated water molecule.. Received 23 November 2005 Accepted 19 December 2005 Online 23 December 2005. Comment In recent years, there have been many reports on the syntheses and structure determinations of various organotin(IV) compounds (e.g. Lockhart et al., 1987; Teoh et al., 1997; Basu et al., 2005). These compounds have special applications, such as as PVC stabilizers, agricultural biocides, additives for antifouling paints, and catalysts for the production of polyurethanes and silicones, and are potential antitumor agents (Thoonen et al., 2004). Furthermore, several structures of Ph3SnCl(H2O) cocrystallized with other molecules have been determined, for example 3-[2-(1,10-phenanthrolyl)]-5,6diphenyl-1,2,4-triazine (Ladd et al., 1984), 3,4,7,8-tetramethyl1,10-phenanthroline (Ng & Kumar Das, 1996), [N,N0 -bis(3methoxysalicylidene)propane-1,3-diamine]nickel(II) (Clarke et al., 1994), di-2-pyridylketone 2-aminobenzoylhydrazone (Lanelli et al., 1995), o-phenanthroline (Ng & Kumar Das, 1996), 2,20 :60 ,200 -terpyridyl (Prasad et al., 1982), 18-crown-6 (Amini et al., 2003), 8-methoxyquinoline (Khoo et al., 2000) and di-2-pyridyl-2-thenoylhydrazone (Carcelli et al., 1995). In these structures, there is hydrogen bonding between the coordinated water molecule of Ph3SnCl(H2O) and the cocrystallized molecule in the structure. In this paper, we report a structure in which two pyridine molecules are hydrogen bonded to Ph3SnCl(H2O).. In the molecular structure of the title compound, (I), the Sn atom is five-coordinated in a slightly distorted trigonal–. [Sn(C6H5)3Cl(H2O)]2C5H5N. doi:10.1107/S1600536805042315. Acta Cryst. (2006). E62, m172–m174.

(2) metal-organic papers bipyramidal geometry by three C atoms of three phenyl groups in the equatorial plane, and by one Cl anion and one water molecule in the axial positions (Fig. 1). The slight distortion from the ideal trigonal–bipyramidal geometry is reflected in the O1—Sn1—Cl1 angle of 175.34 (8) , and the three C—Sn—C angles of 116.54 (9), 119.84 (7) and 122.39 (7) . The two pyridine molecules are connected to the coordinated water molecule through O—H  O hydrogen bonds (Fig. 1 and Table 2).. Experimental A mixture of Ph3SnCl (0.385 g, 0.1 mmol) and pyridine (0.198 g, 0.2 mmol) in 95% ethanol (13 ml) was stirred for 0.5 h. The mixture was then transferred and sealed into an 18 ml Teflon-lined autoclave, which was heated at 393 K for 89 h. After the mixture was cooled to room temperature, colorless blocks of the title complex were filtered off, washed with diethylether and dried at ambient temperature in air (yield 56% based on Sn). Analysis calculated for the title compound: C 59.88, H 4.85, N 4.99%; found: C 59.65, H 4.93, N 5.02%. Crystal data [Sn(C6H5)3Cl(H2O)]2C5H5N Mr = 561.66 Orthorhombic, Pna21 ˚ a = 15.492 (5) A ˚ b = 15.925 (5) A ˚ c = 10.885 (5) A ˚3 V = 2685.4 (17) A Z=4 Dx = 1.389 Mg m3. Mo K radiation Cell parameters from 8982 reflections  = 2.2–28.2  = 1.07 mm1 T = 293 (2) K Needle, colorless 0.43  0.13  0.11 mm. Figure 1 View of the structure of (I), showing displacement ellipsoids at the 30% probability level. Dashed lines indicate hydrogen bonds.. Data collection Bruker APEX CCD area-detector diffractometer ! scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.623, Tmax = 0.882 15753 measured reflections. 5668 independent reflections 5086 reflections with I > 2(I) Rint = 0.020 max = 28.4 h = 14 ! 20 k = 20 ! 20 l = 10 ! 14. Table 2 ˚ ,  ). Hydrogen-bond geometry (A. Refinement Refinement on F 2 R[F 2 > 2(F 2)] = 0.019 wR(F 2) = 0.049 S = 1.04 5668 reflections 307 parameters H atoms treated by a mixture of independent and constrained refinement. w = 1/[ 2(Fo2) + (0.0281P)2] where P = (Fo2 + 2Fc2)/3 (/)max = 0.002 ˚ 3 max = 0.30 e A ˚ 3 min = 0.22 e A Extinction correction: SHELXL97 Extinction coefficient: 0.0062 (2) Absolute structure: Flack (1983), 2299 Friedel pairs Flack parameter: 0.005 (16). D—H  A. D—H. H  A. D  A. D—H  A. O1—H1A  N1 O1—H1B  N2. 0.78 (3) 0.76 (3). 1.96 (3) 2.01 (3). 2.740 (2) 2.745 (2). 170 (3) 164 (6). All H atoms bonded to C atoms were positioned geometrically and ˚ and Uiso(H) = 1.2Ueq(C). refined as riding atoms with C—H = 0.93 A The H atoms of the coordinated water molecule were located in a difference Fourier map and then refined isotropically. Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.. Table 1 ˚ ,  ). Selected geometric parameters (A C16—Sn1 C22—Sn1 C23—Sn1 C16—Sn1—C22 C16—Sn1—C23 C22—Sn1—C23 C16—Sn1—O1 C22—Sn1—O1. 2.124 (2) 2.127 (2) 2.145 (3) 116.54 122.39 119.84 85.41 83.32. (9) (7) (7) (7) (7). Acta Cryst. (2006). E62, m172–m174. O1—Sn1 Sn1—Cl1 C23—Sn1—O1 C16—Sn1—Cl1 C22—Sn1—Cl1 C23—Sn1—Cl1 O1—Sn1—Cl1. 2.3469 (14) 2.5068 (9) 90.01 92.74 93.72 94.59 175.34. (9) (6) (5) (7) (8). We thank the National Natural Science Foundation of China (No. 20471014), the Fok Ying Tung Education Foundation and the Natural Science Foundation of Jilin Province (China) for support.. References Amini, M. M., Foladi, S., Aghabozorg, H., Rare, A. D. & Ng, S. W. (2003). Chin. J. Struct. Chem. 22, 77–83. Basu, B. T. S., Rynfah, W., Rivarola, E., Pettinari, C. & Linden, A. (2005). J. Organomet. Chem. 690, 1413–1421. Li et al.. . [Sn(C6H5)3Cl(H2O)]2C5H5N. m173.

(3) metal-organic papers Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA. Carcelli, M., Pelizzi, C., Pelizzi, G., Mazza, P. & Zani, F. (1995). J. Organomet. Chem. 488, 55–61. Clarke, N., Cunningham, D., Higgins, T., McArdle, P., McGinley, J. & O0 Gara, M. (1994). J. Organomet. Chem. 469, 33–40. Flack, H. D. (1983). Acta Cryst. A39, 876–881. Khoo, L. E., Ouyang, J., Xu, Y. & Ng, S. W. (2000). Main Group Metal Chem. 23, 723–724. Ladd, M. F. C., Povey, D. C. & Smith, F. E. (1984). J. Crystallogr. Spectrosc. Res. 14, 249–259. Lanelli, S., Mazza, P., Orcesi, M., Pelizzi, C. & Zani, F. (1995). J. Inorg. Biochem. 60, 89–108.. m174. Li et al.. . [Sn(C6H5)3Cl(H2O)]2C5H5N. Lockhart, T. P., Calabrese, J. C. & Davidson, F. (1987). Organometallics, 6, 2479–2483. Ng, S. W. & Kumar Das, V. G. (1996). J. Organomet. Chem. 513, 105– 108. Prasad, L., Lee, F. L., Le Page, Y. & Smith, F. E. (1982). Acta Cryst. B38, 259– 262. Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1996). SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany. Teoh, S. G., Ang, S. H., Looi, E. S., Leok, C. A., Teo, S. B. & Fun, H. K. (1997). J. Organomet. Chem. 527, 15–19. Thoonen, S. H. L., Deelman, B.-J. & van Koten, G. (2004). J. Organomet. Chem. 689, 2145–2157.. Acta Cryst. (2006). E62, m172–m174.

(4) supporting information. supporting information Acta Cryst. (2006). E62, m172–m174. [doi:10.1107/S1600536805042315]. Aquachlorotriphenyltin(IV) pyridine disolvate Shun-Li Li, Jian-Fang Ma and Ying-Ying Liu S1. Comment In recent years, there have been many reports on the syntheses and structure determinations of various organotin(IV) compounds (e.g. Lockhart et al., 1987; Teoh et al., 1997; Basu et al., 2005). These compounds have special applications, such as as PVC stabilizers, agricultural biocides, additives for antifouling paints, and catalysts for the production of polyurethanes and silicones, and are potential antitumor agents (Thoonen et al., 2004). Furthermore, several structures of Ph3SnCl(H2O) cocrystallized with other molecules have been determined, for example 3-[2-(1,10-phenanthrolyl)]-5,6-diphenyl-1,2,4-triazine (Ladd et al., 1984), 3,4,7,8-tetramethyl-1,10-phenanthroline (Ng & Kumar Das, 1996), [N,N′-bis(3methoxysalicylidene)propane-1,3-diamine]nickel(II) (Clarke et al., 1994), di-2-pyridylketone 2-aminobenzoylhydrazone (Lanelli et al., 1995), o-phenanthroline (Ng & Kumar Das, 1996), 2,2′:6′,2′′-terpyridyl (Prasad et al., 1982), 18-crown-6 (Amini et al., 2003), 8-methoxyquinoline (Khoo et al., 2000) and di-2-pyridyl-2-thenoylhydrazone (Carcelli et al., 1995). In these structures, there is hydrogen bonding between the coordinated water molecule of Ph3SnCl(H2O) and the cocrystallized molecule in the structure. In this paper, we report a structure in which two pyridine molecules are hydrogen bonded to Ph3SnCl(H2O). In the molecular structure of the title compound, (I), the Sn atom is five-coordinated in a slightly distorted trigonalbipyramidal geometry by three C atoms of three phenyl groups in the equatorial plane, and by one Cl− anion and one water molecule in the axial positions (Fig. 1). The slight distortion from the ideal trigonal-bipyramidal geometry is reflected in the O1—Sn1—Cl1 angle of 175.34 (8)°, and the three C—Sn—C angles of 116.54 (9), 119.84 (7) and 122.39 (7)°. The two pyridine molecules are connected to the coordinated water molecule through O—H···O hydrogen bonds (Fig. 1 and Table 2). S2. Experimental A mixture of Ph3SnCl (0.385 g, 0.1 mmol) and pyridine (0.198 g, 0.2 mmol) in 95% ethanol (13 ml) was stirred for 0.5 h. The mixture was then transferred and sealed into an 18 ml Teflon-lined autoclave, which was heated at 393 K for 89 h. After the mixture was cooled to room temperature, colorless blocks of the title complex were filtered off, washed with ether and dried at ambient temperature in air (yield 56% based on Sn). Analysis calculated for the title compound: C 59.88, H 4.85, N 4.99%; found: C 59.65, H 4.93, N 5.02%. S3. Refinement All H atoms bonded to C atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the coordinated water molecule were located in a difference Fourier map and then refined isotropically.. Acta Cryst. (2006). E62, m172–m174. sup-1.

(5) supporting information. Figure 1 View of the structure of (I), showing displacement ellipsoids at the 30% probability level. Dashed lines indicate hydrogen bonds. Aquachlorotriphenyltin(IV) pyridine disolvate Crystal data [Sn(C6H5)3Cl(H2O)]·2C5H5N Mr = 561.66 Orthorhombic, Pna21 Hall symbol: P 2c -2n a = 15.492 (5) Å b = 15.925 (5) Å c = 10.885 (5) Å V = 2685.4 (17) Å3 Z=4 F(000) = 1136. Acta Cryst. (2006). E62, m172–m174. Dx = 1.389 Mg m−3 Melting point: not measured K Mo Kα radiation, λ = 0.71069 Å Cell parameters from 8982 reflections θ = 2.2–28.2° µ = 1.07 mm−1 T = 293 K Needle, colorless 0.43 × 0.13 × 0.11 mm. sup-2.

(6) supporting information Data collection Bruker APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.623, Tmax = 0.882. 15753 measured reflections 5668 independent reflections 5086 reflections with I > 2σ(I) Rint = 0.020 θmax = 28.4°, θmin = 1.8° h = −14→20 k = −20→20 l = −10→14. Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.019 wR(F2) = 0.049 S = 1.04 5668 reflections 307 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map. Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0281P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.002 Δρmax = 0.30 e Å−3 Δρmin = −0.22 e Å−3 Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0062 (2) Absolute structure: Flack (1983), 2299 Friedels Absolute structure parameter: −0.005 (16). Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). C1 H1 C2 H2 C3 H3 C4 H4 C5 H5 C6 H6 C7. x. y. z. Uiso*/Ueq. 0.51354 (18) 0.4845 0.5405 (2) 0.5304 0.5825 (2) 0.6017 0.59618 (16) 0.6246 0.52989 (14) 0.5107 0.46244 (16) 0.4664 0.40878 (17). 0.82066 (19) 0.8540 0.85287 (16) 0.9089 0.80206 (19) 0.8227 0.72082 (16) 0.6865 0.73769 (15) 0.7155 0.43538 (16) 0.4874 0.3772 (2). 0.6124 (3) 0.6690 0.5045 (3) 0.4853 0.4246 (3) 0.3495 0.4556 (2) 0.3995 0.6370 (3) 0.7112 0.4866 (2) 0.4482 0.4368 (2). 0.0883 (9) 0.106* 0.0850 (8) 0.102* 0.0785 (8) 0.094* 0.0691 (6) 0.083* 0.0776 (6) 0.093* 0.0700 (6) 0.084* 0.0813 (8). Acta Cryst. (2006). E62, m172–m174. sup-3.

(7) supporting information H7 C8 H8 C9 H9 C10 H10 C11 H11 C12 H12 C13 H13 C14 H14 C15 H15 C16 C17 H17 C18 H18 C19 H19 C20 H20 C21 H21 C22 C23 C24 H24 C25 H25 C26 H26 C27 H27 C28 H28 N1 N2 O1 Sn1 Cl1 H1B H1A. 0.3759 0.40433 (19) 0.3694 0.45174 (18) 0.4491 0.50346 (12) 0.5359 0.77724 (13) 0.7440 0.79864 (17) 0.7799 0.8473 (2) 0.8617 0.8745 (2) 0.9071 0.85403 (17) 0.8731 0.80552 (13) 0.69499 (16) 0.6919 0.66487 (18) 0.6409 0.6699 (2) 0.6503 0.70402 (17) 0.7068 0.73442 (14) 0.7583 0.72966 (11) 0.76955 (15) 0.8438 (2) 0.8977 0.8386 (3) 0.8890 0.7610 (3) 0.7582 0.6874 (3) 0.6341 0.6912 (2) 0.6401 0.57166 (13) 0.50952 (11) 0.63289 (8) 0.776999 (6) 0.93047 (3) 0.5994 (19) 0.6200 (15). Acta Cryst. (2006). E62, m172–m174. 0.3896 0.3001 (2) 0.2584 0.28495 (17) 0.2331 0.34791 (12) 0.3373 0.68223 (14) 0.6884 0.75269 (15) 0.8057 0.7435 (2) 0.7905 0.6664 (2) 0.6608 0.59632 (15) 0.5438 0.60262 (12) 0.39679 (14) 0.4498 0.32782 (19) 0.3351 0.2496 (2) 0.2035 0.23894 (15) 0.1855 0.30760 (14) 0.2997 0.38797 (12) 0.49598 (10) 0.49805 (15) 0.4978 0.50045 (16) 0.5026 0.49965 (14) 0.5012 0.49658 (15) 0.4951 0.49569 (13) 0.4949 0.68770 (12) 0.42256 (11) 0.53842 (9) 0.493730 (5) 0.44400 (3) 0.5037 (13) 0.5809 (15). 0.3677 0.4905 (3) 0.4574 0.5935 (2) 0.6327 0.6381 (3) 0.7083 0.7079 (2) 0.6373 0.7782 (3) 0.7542 0.8825 (3) 0.9289 0.9188 (2) 0.9901 0.8499 (2) 0.8757 0.74313 (17) 0.85288 (19) 0.8885 0.9169 (2) 0.9945 0.8680 (3) 0.9123 0.7529 (3) 0.7185 0.6877 (2) 0.6102 0.73637 (18) 0.4412 (3) 0.3697 (3) 0.4075 0.2425 (3) 0.1961 0.1849 (4) 0.0996 0.2522 (3) 0.2128 0.3795 (3) 0.4244 0.56033 (19) 0.58661 (17) 0.6501 (2) 0.63796 (5) 0.64344 (8) 0.646 (5) 0.619 (3). 0.098* 0.0876 (9) 0.105* 0.0793 (8) 0.095* 0.0643 (5) 0.077* 0.0551 (5) 0.066* 0.0721 (7) 0.087* 0.0827 (11) 0.099* 0.0852 (9) 0.102* 0.0642 (6) 0.077* 0.0445 (4) 0.0580 (5) 0.070* 0.0774 (8) 0.093* 0.0825 (11) 0.099* 0.0772 (8) 0.093* 0.0573 (6) 0.069* 0.0425 (4) 0.0456 (5) 0.0692 (8) 0.083* 0.0848 (11) 0.102* 0.0792 (10) 0.095* 0.0794 (10) 0.095* 0.0621 (7) 0.075* 0.0644 (5) 0.0599 (5) 0.0478 (3) 0.03979 (5) 0.06432 (13) 0.070 (8)* 0.071 (8)*. sup-4.

(8) supporting information Atomic displacement parameters (Å2). C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 N1 N2 O1 Sn1 Cl1. U11. U22. U33. U12. U13. U23. 0.0821 (17) 0.0815 (18) 0.0849 (19) 0.0689 (16) 0.0716 (13) 0.0600 (14) 0.0631 (16) 0.0811 (19) 0.0820 (17) 0.0534 (10) 0.0560 (13) 0.0772 (17) 0.101 (2) 0.114 (2) 0.0842 (17) 0.0449 (10) 0.0689 (14) 0.0793 (18) 0.0777 (19) 0.0747 (17) 0.0597 (13) 0.0402 (11) 0.0565 (14) 0.0648 (17) 0.096 (3) 0.117 (3) 0.092 (3) 0.0617 (16) 0.0623 (11) 0.0497 (10) 0.0475 (7) 0.04407 (7) 0.0463 (2). 0.0832 (17) 0.0560 (14) 0.0792 (18) 0.0708 (15) 0.0954 (16) 0.0763 (15) 0.126 (2) 0.107 (2) 0.0642 (14) 0.0744 (13) 0.0454 (11) 0.0462 (12) 0.080 (2) 0.090 (2) 0.0615 (13) 0.0453 (10) 0.0574 (13) 0.096 (2) 0.067 (2) 0.0393 (12) 0.0438 (11) 0.0404 (10) 0.0373 (11) 0.087 (2) 0.100 (3) 0.080 (2) 0.094 (2) 0.0771 (18) 0.0561 (10) 0.0562 (10) 0.0400 (6) 0.03517 (6) 0.0562 (2). 0.100 (3) 0.117 (2) 0.0715 (17) 0.0674 (16) 0.0657 (14) 0.0737 (16) 0.0551 (15) 0.0747 (18) 0.092 (2) 0.0652 (12) 0.0638 (14) 0.093 (2) 0.068 (2) 0.0513 (15) 0.0469 (12) 0.0433 (11) 0.0476 (13) 0.0571 (15) 0.102 (3) 0.117 (2) 0.0685 (14) 0.0469 (11) 0.0431 (14) 0.0559 (17) 0.058 (2) 0.0407 (14) 0.0523 (18) 0.0475 (15) 0.0750 (13) 0.0737 (13) 0.0559 (10) 0.04012 (7) 0.0904 (4). 0.0289 (13) 0.0082 (13) −0.0070 (15) 0.0067 (12) 0.0131 (12) 0.0057 (12) −0.0085 (16) −0.0416 (17) −0.0183 (13) −0.0008 (9) −0.0054 (9) −0.0100 (11) −0.0286 (19) −0.0262 (17) −0.0112 (12) −0.0086 (8) −0.0010 (11) −0.0071 (14) −0.0175 (15) −0.0087 (11) −0.0029 (9) −0.0004 (7) −0.0018 (7) −0.0105 (11) −0.0137 (14) −0.0020 (14) 0.0076 (14) 0.0072 (11) 0.0096 (9) −0.0021 (8) 0.0022 (6) −0.00214 (4) 0.00624 (17). 0.0149 (17) −0.0076 (17) 0.0072 (14) 0.0105 (12) 0.0106 (19) 0.0032 (12) −0.0078 (12) 0.0023 (15) 0.0126 (14) −0.0013 (16) 0.0009 (10) 0.0196 (15) 0.0122 (16) −0.0139 (14) −0.0106 (11) 0.0050 (8) 0.0028 (10) 0.0074 (13) −0.0097 (18) −0.0142 (17) −0.0012 (10) −0.0049 (8) 0.0031 (9) 0.0123 (13) 0.0288 (19) 0.0075 (17) −0.0194 (17) −0.0006 (12) 0.0040 (10) −0.0049 (8) −0.0022 (8) 0.00003 (10) 0.0004 (4). −0.0179 (18) 0.0160 (15) 0.0237 (15) −0.0028 (12) 0.019 (2) 0.0255 (13) 0.0116 (16) −0.0173 (17) 0.0155 (12) 0.020 (2) −0.0016 (10) −0.0111 (12) −0.0331 (17) −0.0147 (14) 0.0039 (10) 0.0002 (8) 0.0040 (9) 0.0312 (15) 0.0453 (18) 0.0076 (13) −0.0043 (9) 0.0035 (8) −0.0023 (7) −0.0073 (11) −0.0092 (12) −0.0036 (9) −0.0043 (11) −0.0027 (9) 0.0142 (9) 0.0047 (8) 0.0001 (9) 0.00169 (12) 0.0133 (5). Geometric parameters (Å, º) C1—C2 C1—C5 C1—H1 C2—C3 C2—H2 C3—C4 C3—H3 C4—N1 C4—H4. Acta Cryst. (2006). E62, m172–m174. 1.347 (4) 1.372 (3) 0.9300 1.355 (4) 0.9300 1.354 (4) 0.9300 1.312 (3) 0.9300. C15—C16 C15—H15 C16—Sn1 C17—C18 C17—C22 C17—H17 C18—C19 C18—H18 C19—C20. 1.388 (3) 0.9300 2.124 (2) 1.382 (3) 1.384 (3) 0.9300 1.357 (4) 0.9300 1.370 (4). sup-5.

(9) supporting information C5—N1 C5—H5 C6—N2 C6—C7 C6—H6 C7—C8 C7—H7 C8—C9 C8—H8 C9—C10 C9—H9 C10—N2 C10—H10 C11—C16 C11—C12 C11—H11 C12—C13 C12—H12 C13—C14 C13—H13 C14—C15 C14—H14. 1.323 (3) 0.9300 1.326 (3) 1.358 (4) 0.9300 1.361 (4) 0.9300 1.362 (4) 0.9300 1.372 (3) 0.9300 1.318 (3) 0.9300 1.395 (3) 1.398 (3) 0.9300 1.371 (4) 0.9300 1.356 (4) 0.9300 1.382 (3) 0.9300. C19—H19 C20—C21 C20—H20 C21—C22 C21—H21 C22—Sn1 C23—C28 C23—C24 C23—Sn1 C24—C25 C24—H24 C25—C26 C25—H25 C26—C27 C26—H26 C27—C28 C27—H27 C28—H28 O1—Sn1 O1—H1B O1—H1A Sn1—Cl1. 0.9300 1.386 (3) 0.9300 1.387 (3) 0.9300 2.127 (2) 1.387 (4) 1.390 (4) 2.145 (3) 1.387 (5) 0.9300 1.356 (6) 0.9300 1.357 (6) 0.9300 1.387 (5) 0.9300 0.9300 2.3469 (14) 0.76 (3) 0.78 (3) 2.5068 (9). C2—C1—C5 C2—C1—H1 C5—C1—H1 C1—C2—C3 C1—C2—H2 C3—C2—H2 C4—C3—C2 C4—C3—H3 C2—C3—H3 N1—C4—C3 N1—C4—H4 C3—C4—H4 N1—C5—C1 N1—C5—H5 C1—C5—H5 N2—C6—C7 N2—C6—H6 C7—C6—H6 C6—C7—C8 C6—C7—H7 C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C8—C9—C10. 118.7 (3) 120.7 120.7 118.7 (2) 120.6 120.6 119.1 (2) 120.5 120.5 123.7 (3) 118.1 118.1 123.1 (3) 118.4 118.4 124.0 (2) 118.0 118.0 118.3 (2) 120.8 120.8 119.1 (3) 120.4 120.4 118.4 (3). C22—C17—H17 C19—C18—C17 C19—C18—H18 C17—C18—H18 C18—C19—C20 C18—C19—H19 C20—C19—H19 C19—C20—C21 C19—C20—H20 C21—C20—H20 C20—C21—C22 C20—C21—H21 C22—C21—H21 C17—C22—C21 C17—C22—Sn1 C21—C22—Sn1 C28—C23—C24 C28—C23—Sn1 C24—C23—Sn1 C25—C24—C23 C25—C24—H24 C23—C24—H24 C26—C25—C24 C26—C25—H25 C24—C25—H25. 119.6 120.8 (3) 119.6 119.6 119.7 (3) 120.2 120.2 120.1 (3) 119.9 119.9 120.9 (2) 119.5 119.5 117.67 (19) 120.99 (15) 121.32 (16) 117.0 (3) 122.0 (2) 121.0 (2) 120.7 (3) 119.6 119.6 120.8 (3) 119.6 119.6. Acta Cryst. (2006). E62, m172–m174. sup-6.

(10) supporting information C8—C9—H9 C10—C9—H9 N2—C10—C9 N2—C10—H10 C9—C10—H10 C16—C11—C12 C16—C11—H11 C12—C11—H11 C13—C12—C11 C13—C12—H12 C11—C12—H12 C14—C13—C12 C14—C13—H13 C12—C13—H13 C13—C14—C15 C13—C14—H14 C15—C14—H14 C14—C15—C16 C14—C15—H15 C16—C15—H15 C15—C16—C11 C15—C16—Sn1 C11—C16—Sn1 C18—C17—C22 C18—C17—H17. 120.8 120.8 123.4 (3) 118.3 118.3 120.3 (2) 119.9 119.9 119.9 (3) 120.1 120.1 120.6 (3) 119.7 119.7 120.1 (3) 119.9 119.9 121.3 (2) 119.3 119.3 117.8 (2) 120.33 (16) 121.88 (16) 120.8 (2) 119.6. C25—C26—C27 C25—C26—H26 C27—C26—H26 C26—C27—C28 C26—C27—H27 C28—C27—H27 C27—C28—C23 C27—C28—H28 C23—C28—H28 C4—N1—C5 C10—N2—C6 Sn1—O1—H1B Sn1—O1—H1A H1B—O1—H1A C16—Sn1—C22 C16—Sn1—C23 C22—Sn1—C23 C16—Sn1—O1 C22—Sn1—O1 C23—Sn1—O1 C16—Sn1—Cl1 C22—Sn1—Cl1 C23—Sn1—Cl1 O1—Sn1—Cl1. 119.8 (4) 120.1 120.1 120.2 (4) 119.9 119.9 121.4 (3) 119.3 119.3 116.6 (2) 116.7 (2) 115.2 (18) 118.7 (18) 116 (3) 116.54 (9) 122.39 (7) 119.84 (7) 85.41 (7) 83.32 (7) 90.01 (9) 92.74 (6) 93.72 (5) 94.59 (7) 175.34 (8). C5—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—N1 C2—C1—C5—N1 N2—C6—C7—C8 C6—C7—C8—C9 C7—C8—C9—C10 C8—C9—C10—N2 C16—C11—C12—C13 C11—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C14—C15—C16—C11 C14—C15—C16—Sn1 C12—C11—C16—C15 C12—C11—C16—Sn1 C22—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C21 C19—C20—C21—C22 C18—C17—C22—C21 C18—C17—C22—Sn1. 0.1 (5) −0.1 (5) −0.7 (5) 0.7 (5) −1.7 (4) 1.7 (4) −1.0 (4) 0.2 (4) −0.3 (4) −0.4 (5) 0.5 (5) −0.1 (5) −0.6 (4) 179.0 (2) 0.8 (3) −178.80 (17) 1.1 (4) −1.0 (5) 1.0 (4) −1.0 (4) −1.2 (3) −179.52 (19). C24—C23—C28—C27 Sn1—C23—C28—C27 C3—C4—N1—C5 C1—C5—N1—C4 C9—C10—N2—C6 C7—C6—N2—C10 C15—C16—Sn1—C22 C11—C16—Sn1—C22 C15—C16—Sn1—C23 C11—C16—Sn1—C23 C15—C16—Sn1—O1 C11—C16—Sn1—O1 C15—C16—Sn1—Cl1 C11—C16—Sn1—Cl1 C17—C22—Sn1—C16 C21—C22—Sn1—C16 C17—C22—Sn1—C23 C21—C22—Sn1—C23 C17—C22—Sn1—O1 C21—C22—Sn1—O1 C17—C22—Sn1—Cl1 C21—C22—Sn1—Cl1. 0.6 (3) −179.56 (16) 1.3 (4) −1.3 (4) −0.1 (4) 0.9 (4) 47.86 (19) −132.59 (16) −144.87 (17) 34.7 (2) 128.05 (18) −52.40 (17) −47.67 (17) 131.88 (16) 18.84 (18) −159.47 (16) −148.77 (16) 32.92 (18) −62.62 (17) 119.08 (17) 113.77 (16) −64.53 (16). Acta Cryst. (2006). E62, m172–m174. sup-7.

(11) supporting information C20—C21—C22—C17 C20—C21—C22—Sn1 C28—C23—C24—C25 Sn1—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C27 C25—C26—C27—C28 C26—C27—C28—C23. 1.1 (3) 179.48 (17) 0.5 (3) −179.27 (17) −0.9 (4) 0.1 (4) 1.1 (4) −1.5 (3). C28—C23—Sn1—C16 C24—C23—Sn1—C16 C28—C23—Sn1—C22 C24—C23—Sn1—C22 C28—C23—Sn1—O1 C24—C23—Sn1—O1 C28—C23—Sn1—Cl1 C24—C23—Sn1—Cl1. −103.04 (16) 76.77 (17) 63.82 (17) −116.37 (16) −18.48 (15) 161.33 (16) 160.78 (14) −19.42 (15). Hydrogen-bond geometry (Å, º) D—H···A. D—H. H···A. D···A. D—H···A. O1—H1A···N1 O1—H1B···N2. 0.78 (3) 0.76 (3). 1.96 (3) 2.01 (3). 2.740 (2) 2.745 (2). 170 (3) 164 (6). Acta Cryst. (2006). E62, m172–m174. sup-8.

(12)

New documents

Human Right Ending We used the human- written “right ending” in SCT as the ground truth.. Two candidates in SCT are written by a person that did not write the original story

The first stage planning maps the input facts encoded as a directed, labeled graph, where nodes represent entities and edges represent relations to text plans, while the second stage

There had been improvements in the overall governance and management of the centre since the previous inspection and a number of systems had been put in place to ensure that the service

In conclusion, we demonstrated in this study for the first time that the newly discovered cyto- kine IL-34 is expressed by the periprosthetic membranes of patients with aseptic

While automatic output quality estimation QE is an established field of research in other areas of NLP, such as machine translation MT Specia et al., 2010, 2018, research on QE in

There had been continued improvements in the overall governance and management of the centre since the previous inspection and a number of systems had been put in place to ensure that

Eligible studies should provide the number of patients with a short and long RFI 24-months as a cutoff usu- ally and their corresponding 5-year PRS.. The pooled relative risk RR with

Human evaluation of natural language generation systems can be done using intrinsic and extrinsic methods Sparck Jones and Galliers, 1996; Belz and Reiter, 2006.. Intrinsic approaches

Outcome 01: Statement of Purpose Outcome 02: Contract for the Provision of Services Outcome 03: Suitable Person in Charge Outcome 04: Records and documentation to be kept at a

Goodman and Kruskal’s Gamma was measured with the GoodmanKruskalGamma function sup- plied by the R software.14 In order to interpret the values obtained in the analysis, we use the