• No results found

{6,6′ Di­methyl 2,2′ [propane 1,3 diylbis(nitrilo­methyl­­idyne)]diphenolato}cobalt(II)

N/A
N/A
Protected

Academic year: 2020

Share "{6,6′ Di­methyl 2,2′ [propane 1,3 diylbis(nitrilo­methyl­­idyne)]diphenolato}cobalt(II)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m144

Yue Chen [Co(C

19H20N2O2)] doi:10.1107/S1600536805041838 Acta Cryst.(2006). E62, m144–m145 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

{6,6

000

-Dimethyl-2,2

000

-[propane-1,3-diylbis-(nitrilomethylidyne)]diphenolato}cobalt(II)

Yue Chen

College of Chemical Engineering, Qingdao University, Qingdao 266071, People’s Republic of China

Correspondence e-mail: chenyue_qd@126.com

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.034

wRfactor = 0.083

Data-to-parameter ratio = 17.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2006 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title mononuclear cobalt(II) compound, [Co(C19H20

-N2O2)], the Co atom is coordinated by two N and two O

atoms, giving a square-planar geometry.

Comment

Cobalt compounds have been of great interest in coordination chemistry (Billsonet al., 2000; Koteraet al., 2003; Fritskyet al., 2003). A new cobalt(II) compound, (I), derived from a tetradentate chelating Schiff base ligand, is described here.

[image:1.610.212.455.288.421.2]

In the crystal structure, (I) possesses mirror plane symmetry, as shown in Fig. 1. The coordination sites are occupied by the four donor atoms of the Schiff base ligand, giving a slightly distorted square-planar geometry. All the bond lengths (Table 1) around the metal centre are compar-able with those in similar compounds (Cador et al., 2003; Kennedy et al., 1984). The crystal packing of (I) is shown in Fig. 2.

Experimental

All chemicals were of AR grade. 3-Methyl-2-hydroxybenzaldehyde (135.1 mg, 1.0 mmol), propane-1,3-diamine (36.9 mg, 0.5 mmol) and Co(CH3COO)24H2O (125.1 mg, 0.5 mmol) were refluxed in methanol (50 ml) for 30 min. The mixture was cooled to room temperature and filtered. After keeping the filtrate in air for 5 d, brown block-shaped crystals suitable for X-ray analysis were obtained.

Crystal data

[Co(C19H20N2O2)]

Mr= 367.30

Orthorhombic,A21am

a= 7.529 (1) A˚

b= 10.398 (2) A˚

c= 21.553 (3) A˚

V= 1687.3 (4) A˚3

Z= 4

Dx= 1.446 Mg m3

MoKradiation Cell parameters from 3132

reflections

= 2.7–24.5 = 1.03 mm1

T= 298 (2) K Block, brown 0.370.310.18 mm

(2)

Data collection

Bruker SMART APEX CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.702,Tmax= 0.836

9543 measured reflections

2014 independent reflections 1858 reflections withI> 2(I)

Rint= 0.036 max= 28.3

h=9!9

k=13!13

l=27!27

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.034

wR(F2) = 0.083

S= 1.07 2014 reflections 113 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0344P)2

+ 0.5503P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.27 e A˚3 min=0.28 e A˚3

Absolute structure: Flack (1983) Flack parameter: 0.00 (2), with 859

[image:2.610.315.564.70.294.2]

Friedel pairs

Table 1

Selected geometric parameters (A˚ ,).

Co1—O1 1.846 (2) Co1—N1 1.887 (2) O1i

—Co1—O1 82.16 (12) O1i

—Co1—N1 172.84 (10)

O1—Co1—N1 91.31 (9) N1i

—Co1—N1 95.05 (15)

Symmetry code: (i)x;y;zþ2.

When using theCmc21space group, the structure is difficult

to be sovled. However, it can be easily solved when using the unconventional space groupA21am. H atoms were positioned

geometrically and refined as riding atoms, with C—H distances of 0.93–0.97 A˚ andUiso(H) = 1.2 or 1.5Ueq(C).

Data collection:SMART(Bruker, 2000); cell refinement:SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

Financial support from Qingdao University is gratefully acknowledged.

References

Billson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000).Inorg. Chem. Commun.3, 718–720.

Bruker (2000).SMART(Version 5.625),SAINT(Version 6.01).SHELXTL

(Version 6.10) andSADABS(Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Cador, O., Chabre, F., Dei, A., Sangregorio, C., Van Slageren, J. & Vaz, M. G. F. (2003).Inorg. Chem.42, 6432–6440.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Fritsky, I. O., Ott, R., Pritzkow, H. & Kra¨mer, R. (2003).Inorg. Chim. Acta,

346, 111–118.

Kennedy, B. J., Fallon, G. D., Gatehouse, B. M. K. C. & Murray, K. S. (1984).

Inorg. Chem.23, 580–588.

[image:2.610.44.298.307.351.2]

Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. & Handa, M. (2003).Inorg. Chem. Commun.6, 322–324.

Figure 2

The molecular packing of (I). H atoms have been omitted.

Figure 1

[image:2.610.315.565.344.511.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, m144–m145

supporting information

Acta Cryst. (2006). E62, m144–m145 [doi:10.1107/S1600536805041838]

{6,6

-Dimethyl-2,2

-[propane-1,3-diylbis(nitrilomethyl-idyne)]diphenolato}cobalt(II)

Yue Chen

S1. Comment

Cobalt compounds have been of great interest in coordination chemistry (Billson et al., 2000; Kotera et al., 2003; Fritsky

et al., 2003). A new cobalt(II) compound, (I), derived from the tetradentate chelating Schiff base ligand, is described here.

The crystal structure of (I), possesses mirror plane symmetry, is shown in Fig. 1. The coordination sites are occupied by the four donor atoms of the Schiff base ligand, giving a slightly distorted square-planar geometry. All the bond lengths (Table 1) around the metal center are comparable to those in similar compounds (Cador et al., 2003; Kennedy et al., 1984). The crystal packing of (I) is shown in Fig. 2.

S2. Experimental

All the chemicals were of AR grade. 3-Methyl-2-hydroxybenzaldehyde (135.1 mg, 1.0 mmol), propane-1,3-diamine (36.9 mg, 0.5 mmol) and Co(CH3COO)2·4H2O (125.1 mg, 0.5 mmol) were refluxed in methanol (50 ml) for 30 min. The

mixture was cooled to room temperature and filtered. After keeping the filtrate in air for 5 d, brown block-shaped crystals suitable for X-ray analysis were obtained.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H distances of 0.93–0.97 Å and Uiso(H) =

(4)
[image:4.610.125.484.68.392.2]

Figure 1

The molecular structure of (I), with anisotropic displacement ellipsoids drawn at the 30% probability level.

Figure 2

[image:4.610.99.493.428.674.2]
(5)

supporting information

sup-3

Acta Cryst. (2006). E62, m144–m145

{6,6′-Dimethyl-2,2′-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato}cobalt(II)

Crystal data

[Co(C19H20N2O2)]

Mr = 367.30

Orthorhombic, A21am

a = 7.529 (1) Å

b = 10.398 (2) Å

c = 21.553 (3) Å

V = 1687.3 (4) Å3

Z = 4

F(000) = 764

Dx = 1.446 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3132 reflections

θ = 2.7–24.5°

µ = 1.03 mm−1

T = 298 K Flake, red

0.37 × 0.31 × 0.18 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2000)

Tmin = 0.702, Tmax = 0.836

9543 measured reflections 2014 independent reflections 1858 reflections with I > 2σ(I)

Rint = 0.036

θmax = 28.3°, θmin = 1.9°

h = −9→9

k = −13→13

l = −27→27

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.034

wR(F2) = 0.083

S = 1.07 2014 reflections 113 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0344P)2 + 0.5503P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.27 e Å−3

Δρmin = −0.28 e Å−3

Absolute structure: Flack (1983) Absolute structure parameter: 0.00 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Co1 0.47925 (5) 0.95280 (3) 1.0000 0.04172 (13)

O1 0.5165 (2) 0.82171 (16) 0.94371 (9) 0.0546 (5)

(6)

C1 0.4312 (3) 0.8056 (3) 0.89170 (13) 0.0497 (6)

C2 0.4226 (4) 0.6808 (3) 0.86533 (14) 0.0607 (7)

C3 0.3269 (5) 0.6628 (4) 0.81191 (15) 0.0760 (10)

H3 0.3213 0.5807 0.7949 0.091*

C4 0.2376 (6) 0.7626 (4) 0.78207 (16) 0.0839 (11)

H4 0.1696 0.7468 0.7469 0.101*

C5 0.2519 (5) 0.8838 (4) 0.80549 (15) 0.0743 (10)

H5 0.1985 0.9517 0.7846 0.089*

C6 0.3454 (4) 0.9084 (3) 0.86036 (14) 0.0550 (7)

C7 0.5126 (6) 0.5720 (3) 0.89908 (19) 0.0821 (13)

H7A 0.4781 0.4916 0.8808 0.123*

H7B 0.4779 0.5732 0.9419 0.123*

H7C 0.6391 0.5819 0.8961 0.123*

C8 0.3666 (4) 1.0356 (3) 0.88272 (16) 0.0591 (8)

H8 0.3289 1.1013 0.8565 0.071*

C9 0.4602 (6) 1.2108 (3) 0.94263 (17) 0.0774 (10)

H9A 0.3453 1.2531 0.9426 0.093*

H9B 0.5261 1.2423 0.9071 0.093*

C10 0.5569 (6) 1.2475 (4) 1.0000 0.0773 (15)

H10A 0.6724 1.2061 1.0000 0.093*

H10B 0.5759 1.3397 1.0000 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Co1 0.0329 (2) 0.02682 (18) 0.0654 (3) 0.0022 (2) 0.000 0.000

O1 0.0471 (14) 0.0432 (9) 0.0735 (12) 0.0077 (8) −0.0060 (9) −0.0042 (8)

N1 0.0501 (18) 0.0327 (10) 0.0850 (16) 0.0028 (8) 0.0094 (11) 0.0089 (10)

C1 0.0415 (15) 0.0502 (14) 0.0573 (15) −0.0021 (10) 0.0093 (10) 0.0041 (12) C2 0.0596 (17) 0.0563 (16) 0.0662 (17) −0.0037 (12) 0.0107 (13) −0.0069 (13)

C3 0.085 (3) 0.082 (2) 0.0614 (18) −0.0108 (18) 0.0044 (17) −0.0163 (16)

C4 0.091 (3) 0.106 (3) 0.0544 (18) −0.006 (2) −0.0026 (17) −0.009 (2)

C5 0.073 (2) 0.096 (3) 0.0540 (18) 0.009 (2) 0.0057 (15) 0.0174 (18)

C6 0.0515 (15) 0.0566 (16) 0.0570 (15) −0.0006 (13) 0.0120 (12) 0.0111 (13)

C7 0.088 (4) 0.0446 (15) 0.114 (3) 0.0051 (17) −0.015 (2) −0.0191 (15)

C8 0.0543 (18) 0.0496 (16) 0.0732 (19) 0.0054 (12) 0.0103 (15) 0.0199 (14)

C9 0.073 (2) 0.0362 (13) 0.123 (3) 0.0027 (18) 0.001 (2) 0.0109 (14)

C10 0.046 (2) 0.046 (2) 0.139 (5) 0.0014 (18) 0.000 0.000

Geometric parameters (Å, º)

Co1—O1i 1.846 (2) C4—H4 0.9300

Co1—O1 1.846 (2) C5—C6 1.399 (5)

Co1—N1i 1.887 (2) C5—H5 0.9300

Co1—N1 1.887 (2) C6—C8 1.417 (4)

O1—C1 1.303 (3) C7—H7A 0.9600

N1—C8 1.292 (4) C7—H7B 0.9600

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, m144–m145

C1—C2 1.419 (4) C8—H8 0.9300

C1—C6 1.420 (4) C9—C10 1.485 (5)

C2—C3 1.371 (5) C9—H9A 0.9700

C2—C7 1.506 (5) C9—H9B 0.9700

C3—C4 1.394 (6) C10—C9i 1.485 (5)

C3—H3 0.9300 C10—H10A 0.9700

C4—C5 1.362 (5) C10—H10B 0.9700

O1i—Co1—O1 82.16 (12) C5—C6—C8 121.0 (3)

O1i—Co1—N1i 91.31 (9) C5—C6—C1 119.6 (3)

O1—Co1—N1i 172.84 (10) C8—C6—C1 119.3 (3)

O1i—Co1—N1 172.84 (10) C2—C7—H7A 109.5

O1—Co1—N1 91.31 (9) C2—C7—H7B 109.5

N1i—Co1—N1 95.05 (15) H7A—C7—H7B 109.5

C1—O1—Co1 125.83 (17) C2—C7—H7C 109.5

C8—N1—C9 115.0 (3) H7A—C7—H7C 109.5

C8—N1—Co1 122.50 (19) H7B—C7—H7C 109.5

C9—N1—Co1 122.4 (2) N1—C8—C6 127.3 (3)

O1—C1—C2 119.0 (2) N1—C8—H8 116.4

O1—C1—C6 122.5 (3) C6—C8—H8 116.4

C2—C1—C6 118.5 (3) N1—C9—C10 114.1 (3)

C3—C2—C1 119.0 (3) N1—C9—H9A 108.7

C3—C2—C7 122.7 (3) C10—C9—H9A 108.7

C1—C2—C7 118.2 (3) N1—C9—H9B 108.7

C2—C3—C4 122.6 (3) C10—C9—H9B 108.7

C2—C3—H3 118.7 H9A—C9—H9B 107.6

C4—C3—H3 118.7 C9i—C10—C9 112.8 (4)

C5—C4—C3 118.7 (4) C9i—C10—H10A 109.0

C5—C4—H4 120.7 C9—C10—H10A 109.0

C3—C4—H4 120.7 C9i—C10—H10B 109.0

C4—C5—C6 121.5 (3) C9—C10—H10B 109.0

C4—C5—H5 119.3 H10A—C10—H10B 107.8

C6—C5—H5 119.3

Figure

Fig. 2.Experimental
Figure 1
Figure 1

References

Related documents

The personal protective measure is one of the basic needs of this industry, which is totally ignored in Pakistan. Some of these basic personal protective

The practicality of ARIMA to forecast outcome has become very popular, given its rigor in providing high level of certainty; evidence of this in the area of forecasting

The severity of environmental problems and their socio-economic effects are important research issues as pollution and damages are local or global externalities implying market

The studies analysed show that electricity price increases can have both positive and negative impacts on sectors of the economy in terms of changes in output

The 30-ounce loss constitutes 10% of the bank’s assets, so one might expect it to cause a 10% fall in the value of the bank’s dollar notes, but the loss of value is exaggerated by

SB − AGR is the agricultural material prices, and SB − M ET is the metal, SB − F OO is the food prices, and SB − ST O is the stock market factors estimated by the Dynamic

In this proposal, we propose a corpus based study to examine doctor-patient conversation of antibiotic treatment negotiation in Chinese pedi- atric settings, using a mixed

Berdasarkan grafik di atas terlihat nilai RPM cenderung naik, sehingga dapat dikatakan bahwa tanaman buah-buahan basis mempunyai hubungan dengan komoditas non basis yang