• No results found

(1R*,2S*,4S*,5S*) Cyclo­hexa­ne 1,2,4,5 tetr­ol

N/A
N/A
Protected

Academic year: 2020

Share "(1R*,2S*,4S*,5S*) Cyclo­hexa­ne 1,2,4,5 tetr­ol"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o920

Mehtaet al. C

6H12O4 doi:10.1107/S1600536805006653 Acta Cryst.(2005). E61, o920–o922

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1

R

*,2

S

*,4

S

*,5

S

*)-Cyclohexane-1,2,4,5-tetrol

Goverdhan Mehta,* Saikat Sen and Siddharth Dey

Department of Organic Chemistry, Indian Insti-tute of Science, Bangalore 560 012, Karnataka, India

Correspondence e-mail: gm@orgchem.iisc.ernet.in

Key indicators

Single-crystal X-ray study

T= 296 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.029

wRfactor = 0.081 Data-to-parameter ratio = 8.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C6H12O4, exists in a chair form, with three

of the four OH groups equatorially disposed. All four hydroxy groups participate in extensive intermolecular O—H O hydrogen bonding.

Comment

The title compound, (1), is one of the five possible geometrical isomers of 1,2,4,5-cyclohexanetetrol. Compound (1) can be conveniently prepared from 1,4-cyclohexadieneviaa selective epoxidation–hydrolysis–osmylation strategy (McCasland et al., 1963) and is the only readily obtainable configurational isomer of 1,2,4,5-cyclohexanetetrol capable of existing in two energetically different conformational isomers, (1a) and (1b). While conformer (1a) has three of the four hydroxy groups equatorial and is capable of solely intermolecular O—H O hydrogen bonding, conformer (1b), with two syn-diaxial hydroxy groups, can be stabilized through an intramolecular O—H O hydrogen bond (Girling et al., 1974; Panagioto-pouloset al., 1974; Jameset al., 1978).

Experimentally, the hydroxy groups in (1) were found to adopt the spatial disposition present in (1a) (Fig. 1). Molecules of (1) pack in a herringbone-type arrangement in the non-centrosymmetric space group P212121 (Fig. 2). Each tetrol

molecule is linked to six nearest neighbors by intermolecular O—H O hydrogen bonds (Table 2). The puckering para-meters (Cremer & Pople, 1975) for the cyclohexane ring [q2=

0.026 (2) A˚ , q3 = 0.582 (2) A˚ , ’2 = 17 (4), QT =

0.585 (2) A˚ and 2 = 177.2 (2)] describe a slightly distorted

chair conformation. The total puckering amplitudeQTis only

[image:1.610.207.459.406.470.2]

Received 28 February 2005 Accepted 3 March 2005 Online 11 March 2005

Figure 1

(2)

slightly smaller than that for an ideal chair (0.63 A˚ ).’2is close

to 0, which corresponds to a boat conformation. Therefore

the cyclohexane ring is distorted from an ideal chair confor-mation and is flattened at C6, allowing the C1—C6—C5 angle to increase to 112.86 (13), while the other internal ring angles

remain close to the tetrahedral values. The flattening of the cyclohexane ring at C6 can be ascribed to the non-bonding (1,3-diaxial) interaction between the atom O1 and H atoms bonded to atoms C3 and C5.

Experimental

Compound (1) was prepared by a modification of the procedure described by McCasland et al. (1963). 1,4-Cyclohexadiene (0.5 ml, 5.3 mmol) in dichloromethane (3 ml) was treated with m -chloro-perbenzoic acid (70% purity, 1.4 g) in dichloromethane (5 ml) at 273 K. The monoepoxide thus obtained was heated with a 0.2 M

aqueous solution of Na2CO3 (5 ml) at 368 K to obtain trans

-4-cyclohexene-1,2-diol (0.36 g) in 70% yield (Michaud & Viala, 1999). The diol (0.20 g, 1.8 mmol), uponcis-dihydroxylation with catalytic osmium tetroxide (0.5 mol%) and N-methylmorpholine-N-oxide (50% solution in water, 0.40 ml) in 4:1 acetone–water (0.5 ml), gave the tetrol (1) (0.21 g) in 80% yield. Suitable crystals of (1) were obtained by slow evaporation of its solution in 1:2 dry ethyl acetate– methanol.

Crystal data

C6H12O4

Mr= 148.16

Orthorhombic,P212121

a= 6.756 (2) A˚

b= 8.783 (3) A˚

c= 11.271 (4) A˚

V= 668.8 (4) A˚3

Z= 4

Dx= 1.471 Mg m

3

MoKradiation Cell parameters from 700

reflections

= 2.9–27.0 = 0.12 mm1

T= 296 (2) K Block, colorless 0.400.350.30 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.922,Tmax= 0.964

5158 measured reflections

814 independent reflections 800 reflections withI> 2(I)

Rint= 0.016 max= 26.4

h=8!8

k=10!10

l=14!13

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.029

wR(F2) = 0.081

S= 1.18 814 reflections 95 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0517P)2

+ 0.064P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002 max= 0.23 e A˚

3

[image:2.610.43.294.70.399.2]

min=0.16 e A˚ 3

Table 1

Selected bond angles ().

C1—C2—C3 111.04 (13) C1—C6—C5 112.86 (13) C4—C3—C2 111.01 (13)

[image:2.610.314.563.480.555.2]

C4—C5—C6 109.96 (13) C5—C4—C3 109.68 (12) C6—C1—C2 109.83 (12)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1O O4i

0.82 1.89 2.705 (2) 172 O2—H2O O3i

0.82 2.01 2.765 (2) 153 O3—H3O O1ii

0.82 1.92 2.742 (2) 176 O4—H4O O2iii

0.82 1.94 2.752 (2) 169

Symmetry codes: (i) x1;y;z; (ii) þxþ1 2;yþ

3

2;zþ1; (iii)

xþ3

2;yþ2;þzþ 1 2.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.97–0.98 A˚ andUiso(H) = 1.2Ueq(C), and O—H distances fixed

at 0.82 A˚ and Uiso(H) = 1.5Ueq(O). Though (1) is obtained in a

racemic form through synthesis, its chiral structure in the solid state appears to have resulted from a spontaneous resolution during crystallization. However, owing to the absence of any heavy atom (Z > Si) in (1), the absolute configuration could not be refined. Friedel pairs (539) were averaged prior to merging of data inP212121;

the reported value of Rint corresponds to subsequent merging of

equivalent reflections in this space group.

Data collection:SMART(Bruker, 1998); cell refinement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure:SIR92(Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 for Windows(Farrugia, 1997) andCAMERON(Watkinet

organic papers

Acta Cryst.(2005). E61, o920–o922 Mehtaet al. C

6H12O4

o921

Figure 2

(3)

al., 1993); software used to prepare material for publication:

PLATON(Spek, 2003).

We thank the DST, Government of India, for the CCD facility at IISc.

References

Altomare, A., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Bruker (1998).SMART(Version 6.028) andSAINT(Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Girling, R. L. & Jeffrey, G. A. (1974).Acta Cryst.B30, 327–333.

James, V. J., Stevens, J. D. & Moore, F. H. (1978).Acta Cryst.B34, 188–193. McCasland, G. E., Furuta, S., Johnson, L. F. & Shoolery, J. N. (1963).J. Org.

Chem.28, 894–900.

Michaud, S. & Viala, J. (1999).Tetrahedron,55, 3019–3024.

Panagiotopoulos, N. C., Jeffrey, G. A., La Placa, S. J. & Hamilton, W. C. (1974).

Acta Cryst.B30, 1421–1430.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Watkin, D. M., Pearce, L. & Prout, C. K. (1993).CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

organic papers

o922

Mehtaet al. C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o920–o922

supporting information

Acta Cryst. (2005). E61, o920–o922 [https://doi.org/10.1107/S1600536805006653]

(1

R

*,2

S

*,4

S

*,5

S

*)-Cyclohexane-1,2,4,5-tetrol

Goverdhan Mehta, Saikat Sen and Siddharth Dey

(1R*,2S*,4S*,5S*)-Cyclohexane-1,2,4,5-tetraol

Crystal data

C6H12O4 Mr = 148.16

Orthorhombic, P212121

Hall symbol: P 2ac 2ab

a = 6.756 (2) Å

b = 8.783 (3) Å

c = 11.271 (4) Å

V = 668.8 (4) Å3 Z = 4

F(000) = 320

Dx = 1.471 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 700 reflections

θ = 2.9–27.0°

µ = 0.12 mm−1 T = 296 K Block, colorless 0.40 × 0.35 × 0.30 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.922, Tmax = 0.964

5158 measured reflections 814 independent reflections 800 reflections with I > 2σ(I)

Rint = 0.016

θmax = 26.4°, θmin = 2.9° h = −8→8

k = −10→10

l = −14→13

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.029 wR(F2) = 0.081 S = 1.18 814 reflections 95 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0517P)2 + 0.064P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.23 e Å−3

Δρmin = −0.16 e Å−3

Absolute structure: see text

Special details

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o920–o922

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.5986 (2) 1.03548 (18) 0.39802 (15) 0.0264 (4) C2 0.6345 (2) 0.9495 (2) 0.28261 (14) 0.0267 (3) C3 0.7890 (2) 0.82414 (19) 0.29957 (15) 0.0277 (4) C4 0.9837 (2) 0.88982 (18) 0.34483 (14) 0.0243 (3) C5 0.9491 (2) 0.97142 (19) 0.46199 (14) 0.0252 (3) C6 0.7938 (2) 1.09584 (18) 0.44614 (15) 0.0280 (4) O1 0.50885 (16) 0.93627 (14) 0.48315 (11) 0.0323 (3) O2 0.45593 (16) 0.89111 (15) 0.23335 (11) 0.0350 (3) O3 1.13323 (17) 0.77544 (13) 0.35428 (11) 0.0297 (3) O4 1.13133 (16) 1.03623 (15) 0.50163 (11) 0.0333 (3)

H1 0.5096 1.1213 0.3826 0.032*

H2 0.6889 1.0224 0.2255 0.032*

H3A 0.7397 0.7497 0.3558 0.033*

H3B 0.8115 0.7728 0.2246 0.033*

H4 1.0291 0.9655 0.2871 0.029*

H5 0.9022 0.8979 0.5211 0.030*

H6A 0.7701 1.1446 0.5221 0.034*

H6B 0.8447 1.1724 0.3922 0.034*

H1O 0.3917 0.9587 0.4908 0.048*

H2O 0.3897 0.8515 0.2859 0.053*

H3O 1.1008 0.7129 0.4047 0.044*

H4O 1.1189 1.0659 0.5702 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o920–o922

Geometric parameters (Å, º)

C1—H1 0.9800 C6—C5 1.526 (2)

C2—C1 1.524 (2) C6—H6A 0.9700

C2—H2 0.9800 C6—H6B 0.9700

C3—C2 1.529 (2) O1—C1 1.431 (2)

C3—C4 1.524 (2) O1—H1O 0.8200

C3—H3A 0.9700 O2—C2 1.4237 (19)

C3—H3B 0.9700 O2—H2O 0.8200

C4—C5 1.521 (2) O3—C4 1.4289 (18)

C4—H4 0.9800 O3—H3O 0.8200

C5—H5 0.9800 O4—C5 1.4279 (18)

C6—C1 1.521 (2) O4—H4O 0.8200

C1—C2—C3 111.04 (13) C5—C6—H6A 109.0 C1—C6—C5 112.86 (13) C5—C6—H6B 109.0

C1—C2—H2 107.3 C5—O4—H4O 109.5

C1—C6—H6A 109.0 C6—C1—C2 109.83 (12)

C1—C6—H6B 109.0 C6—C1—H1 109.1

C1—O1—H1O 109.5 C6—C5—H5 109.2

C2—C1—H1 109.1 O1—C1—C2 109.75 (13)

C2—C3—H3A 109.4 O1—C1—C6 109.91 (13)

C2—C3—H3B 109.4 O1—C1—H1 109.1

C2—O2—H2O 109.5 O2—C2—C1 112.11 (12)

C3—C2—H2 107.3 O2—C2—C3 111.61 (14)

C3—C4—H4 107.8 O2—C2—H2 107.3

C4—C3—C2 111.01 (13) O3—C4—C3 111.66 (12) C4—C5—C6 109.96 (13) O3—C4—C5 112.03 (12)

C4—C3—H3A 109.4 O3—C4—H4 107.8

C4—C3—H3B 109.4 O4—C5—C4 109.11 (12)

C4—C5—H5 109.2 O4—C5—C6 110.14 (13)

C4—O3—H3O 109.5 O4—C5—H5 109.2

C5—C4—C3 109.68 (12) H3A—C3—H3B 108.0

C5—C4—H4 107.8 H6A—C6—H6B 107.8

C1—C6—C5—C4 56.85 (17) C4—C3—C2—C1 −57.77 (17) C1—C6—C5—O4 177.12 (12) C4—C3—C2—O2 176.35 (12) C2—C3—C4—C5 58.74 (17) C5—C6—C1—C2 −55.06 (18) C2—C3—C4—O3 −176.46 (12) C5—C6—C1—O1 65.79 (16) C3—C2—C1—C6 54.71 (17) O2—C2—C1—C6 −179.68 (13) C3—C4—C5—C6 −57.40 (17) O2—C2—C1—O1 59.38 (17) C3—C2—C1—O1 −66.22 (16) O3—C4—C5—C6 178.01 (12) C3—C4—C5—O4 −178.30 (13) O3—C4—C5—O4 57.11 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o920–o922

O2—H2O···O3i 0.82 2.01 2.765 (2) 153

O3—H3O···O1ii 0.82 1.92 2.742 (2) 176

O4—H4O···O2iii 0.82 1.94 2.752 (2) 169

Figure

Figure 1
Table 1Selected bond angles (�).

References

Related documents

We pro- pose unsupervised approaches for morpholog- ical segmentation of low-resource polysyn- thetic languages based on Adaptor Grammars (AG) ( Eskander et al.. We experiment with

This has several downsides: the model is not trained to produce low confidence scores for paragraphs that do not contain an an- swer, and the training objective does not

The present CBME programme was developed and implemented in villages served by the Rural Health Training Centre (RHTC) of the Department of Community Medicine, Sri Manakula

(TIV: Trivalent Inactive Vaccine; ALL: Acute Lymphoblastic Leukaemia; HC: Healthy Control; HCW: Health Care Worker; NA: Non-Assigned; SP: Sarcoidosis Patient; CAD: Coronary

Table 1 provides an overview of the data and the total number of NEs available in each of the sets ( Aguilar et al. , 2011 ) to train and test five different types of classifiers

type by using Freebase; Secondly, we merely use key arguments to label events and figure out trig- ger words; Thirdly, an external linguistic knowl- edge resource, FrameNet, is

We investigate three scenarios where adding a memory may contribute: the first scenari- o involves a well trained neural model where we aim to promote innovation by adding a memory,

These sets contain monolingual tweets in each of the seven languages as well as code-switched tweets from certain lan- guage pairs, based on the availability of real-world data..