• No results found

2 (2 Pyridyl­amino)­pyridinium perchlorate displaying a one dimensional hydrogen bonding supramolecular chain

N/A
N/A
Protected

Academic year: 2020

Share "2 (2 Pyridyl­amino)­pyridinium perchlorate displaying a one dimensional hydrogen bonding supramolecular chain"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2004). E60, o645±o646 DOI: 10.1107/S1600536804006300 Guo, Geng and Feng C10H10N3+ClO4ÿ

o645

organic papers

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

2-(2-Pyridylamino)pyridinium perchlorate

displaying a one-dimensional hydrogen-bonding

supramolecular chain

Ya-Mei Guo,* Zhi-Gang Geng and Xia Feng

School of Science, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: ymguo@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.008 AÊ Disorder in main residue

Rfactor = 0.069

wRfactor = 0.199

Data-to-parameter ratio = 10.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the crystal structure of the title compound, C10H10N3+ClO4ÿ, the cation adopts the normal trans±trans

con®guration and an approximately planar geometry. Hydro-gen-bonding interactions between the cations and perchlorate anions extend this structure into a one-dimensional chain architecture.

Comment

Chelating ligands containing aromatic nitrogen heterocycles, such as the well known compounds 2,20-bipyridine and 1,10-phenanthroline, have given a great impetus to coordination chemistry. Among them, bis(2-pyridyl)amine has attracted much interest in the formation of directly bonded linear chains of metal centers (Cotton et al., 1997, 1998) or photo-luminescent materials (Du & Zhao, 2004a). On the other hand, aromatic compounds of this type usually exhibit inter-esting proton-sponge properties (Du & Zhao, 2004b), i.e.

represent a species that can act as proton acceptors through the formation of NÐH Y hydrogen bonds. Very recently, the crystal structure of the nitrate salt of protonated bis(2-pyridyl)amine was determined (Du & Zhao, 2004c). In the present contribution, we report the molecular and supramol-ecular structure of the perchlorate salt of protonated bis(2-pyridyl)amine, (I).

The crystal structure of (I) consists of a monoprotonated cation, [C10H10N3]+, and a perchlorate anion. The cation

adopts the normaltrans±transcon®guration; all non-H atoms within the cation are almost coplanar and the mean deviation of any atom from the least-squares plane is 0.014 (6) AÊ. The dihedral angle between the pyridine and pyridyl rings is only 1.5 (5). Selected bond lengths and angles are listed in Table 1. Analysis of the crystal packing of the title compound shows the existence of NÐH N and NÐH O hydrogen-bonding interactions, which connect the cation and perchlorate anions into a one-dimensional chain motif. As depicted in Fig. 1, within the monoprotonated cation, an intramolecular N1Ð H1A N3 hydrogen bond is observed. The protonated NH group also forms an intermolecular N1ÐH1A O2i(Table 2)

hydrogen bond with the adjacent perchlorate anion. Addi-tionally, the amide group is involved in an N2ÐH2A O4

(2)

hydrogen bond with the perchlorate anion. Thus the perchlorate anions bridge the cations to form a one-dimen-sional supramolecular chainviahydrogen bonds (Fig. 1). The relevant hydrogen-bonding geometric details are listed in Table 2; these values are in the normal range for such hydrogen-bonding interactions (Desiraju & Steiner, 1999). Examination of this structure with PLATON (Spek, 2003) shows that there are no solvent-accessible voids or signi®cant

±stacking interactions.

Experimental

Several drops of a dilute aqueous solution of HClO4were added to a

solution of bis(2-pyridyl)amine in CH3CN/CH3OH. Afterca10 min

of mixing, the resulting clear solution was ®ltered and set aside, affording colorless lamellar single crystals of (I) suitable for X-ray diffraction within one week. Analysis calculated for the title compound: C 44.21, H 3.71, N 15.46%; found: C 44.07, H 3.99, N 15.39%. FT±IR (KBr pellet, cmÿ1): 3074 (w), 2945 (w), 1665 (s), 1602

(s), 1561 (s), 1508 (m), 1483 (w), 1454 (s), 1427 (w), 1304 (w), 1244 (s), 1202 (w), 1146 (s), 1114 (s), 1087 (s), 1037 (s), 1030 (m), 1004 (w), 931 (w), 900 (w), 882 (w), 840 (w), 809 (w), 776 (s), 737 (w), 624 (m).

Crystal data C10H10N3+ClO4ÿ

Mr= 271.66 Monoclinic,P21=c

a= 8.527 (3) AÊ b= 16.174 (5) AÊ c= 8.753 (3) AÊ

= 100.878 (6)

V= 1185.5 (7) AÊ3

Z= 4

Dx= 1.522 Mg mÿ3 MoKradiation Cell parameters from 925

re¯ections

= 2.7±21.4

= 0.33 mmÿ1

T= 293 (2) K Plate, colorless 0.240.200.08 mm Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2000) Tmin= 0.866,Tmax= 0.970

4794 measured re¯ections

2033 independent re¯ections 1165 re¯ections withI> 2(I) Rint= 0.050

max= 25.0

h=ÿ10!7 k=ÿ14!19 l=ÿ10!10 Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.070

wR(F2) = 0.200

S= 1.02 2033 re¯ections

H-atom parameters constrained w= 1/[2(F

o2) + (0.1137P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.39 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

N1ÐC5 1.347 (6)

N1ÐC1 1.349 (6)

N2ÐC5 1.338 (6)

N2ÐC6 1.388 (6)

N3ÐC6 1.316 (6)

N3ÐC10 1.341 (6)

C5ÐN1ÐC1 121.9 (4)

C5ÐN2ÐC6 131.8 (4) C6ÐN3ÐC10 118.1 (4)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH1A N3 0.86 1.96 2.623 (6) 133

N1ÐH1A O2i 0.86 2.47 3.149 (5) 137

N2ÐH2A O4 0.86 1.94 2.785 (6) 166

Symmetry code: (i) 1ÿx;1 2‡y;12ÿz.

Although all H atoms were visible in difference maps, they were ®nally placed at calculated positions (0.93 AÊ for aromatic CÐH and 0.86 AÊ for NÐH distances) and re®ned in the riding-model approx-imation, withUiso(H) = 1.2Ueq(C,N). Although we have tried many

times, the lamellar single crystals obtained were too thin for structure determination of better than modest precision. In the re®nement, a disorder model of the perchlorate anion was used (two constraint components for four O atoms of the perchlorate anion have occu-pancy factors of 0.564 and 0.436, respectively); however, the O atoms still exhibit slightly larger displacement ellipsoids than usual.

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication:SHELXL97.

The authors gratefully acknowledge ®nancial support from Tianjin University.

References

Brandenburg, K. & Berndt, M. (1999).DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.

Bruker (1998).SMART,SAINTandSHELXTL(Version 5.1). Bruker AXS, Madison, Wisconsin, USA.

Cotton, F. A., Daniels, L. M., Jordan, G. T. IV & Murillo, C. A. (1997).J. Am. Chem. Soc.119, 10377±10381.

Cotton, F. A., Daniels, L. M., Murillo, C. A. & Wang, X. P. (1998).Chem. Commun.pp. 39±40.

Desiraju, G. R. & Steiner, T. (1999).The Weak Hydrogen Bond in Structural Chemistry and Biology.Oxford University Press.

Du, M. & Zhao, X. J. (2004a).Appl. Organomet. Chem.18, 93±94. Du, M. & Zhao, X. J. (2004b).Acta Cryst.C60, o54±o56. Du, M. & Zhao, X. J. (2004c).Acta Cryst.E60, o439±o441.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Sheldrick, G. M. (2000).SADABS.University of GoÈttingen, Germany. Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, o645–o646

supporting information

Acta Cryst. (2004). E60, o645–o646 [https://doi.org/10.1107/S1600536804006300]

2-(2-Pyridylamino)pyridinium perchlorate displaying a one-dimensional

hydrogen-bonding supramolecular chain

Ya-Mei Guo, Zhi-Gang Geng and Xia Feng

(I)

Crystal data

C10H10N3+·ClO4− Mr = 271.66

Monoclinic, P21/c Hall symbol: -P_2ybc a = 8.527 (3) Å b = 16.174 (5) Å c = 8.753 (3) Å β = 100.878 (6)° V = 1185.5 (7) Å3 Z = 4

F(000) = 560 Dx = 1.522 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 925 reflections θ = 2.7–21.4°

µ = 0.33 mm−1 T = 293 K

Lamellar, colorless 0.24 × 0.20 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2000) Tmin = 0.866, Tmax = 0.970

4794 measured reflections 2033 independent reflections 1165 reflections with I > 2σ(I) Rint = 0.050

θmax = 25.0°, θmin = 2.4° h = −10→7

k = −14→19 l = −10→10

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.070 wR(F2) = 0.200 S = 1.02 2033 reflections 200 parameters 110 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.1137P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

N1 0.5632 (5) 0.4081 (2) 0.3345 (5) 0.0524 (11)

H1A 0.4741 0.4103 0.3668 0.063*

N2 0.5632 (5) 0.2676 (3) 0.3746 (5) 0.0619 (13)

H2A 0.6122 0.2219 0.3658 0.074*

N3 0.3454 (5) 0.3272 (3) 0.4496 (5) 0.0557 (12)

C1 0.6275 (7) 0.4786 (3) 0.2920 (6) 0.0597 (15)

H1 0.5759 0.5288 0.2987 0.072*

C2 0.7664 (7) 0.4766 (4) 0.2398 (6) 0.0657 (16)

H2 0.8109 0.5251 0.2098 0.079*

C3 0.8425 (7) 0.4010 (4) 0.2315 (7) 0.0660 (16)

H3 0.9389 0.3989 0.1964 0.079*

C4 0.7768 (7) 0.3307 (3) 0.2742 (6) 0.0590 (15)

H4 0.8271 0.2801 0.2675 0.071*

C5 0.6345 (6) 0.3342 (3) 0.3278 (6) 0.0448 (12)

C6 0.4247 (6) 0.2588 (3) 0.4348 (5) 0.0454 (12)

C7 0.3729 (6) 0.1816 (3) 0.4733 (6) 0.0535 (13)

H7 0.4309 0.1343 0.4601 0.064*

C8 0.2356 (7) 0.1765 (4) 0.5306 (7) 0.0672 (16)

H8 0.1985 0.1255 0.5577 0.081*

C9 0.1528 (7) 0.2472 (4) 0.5480 (7) 0.0693 (16)

H9 0.0590 0.2450 0.5876 0.083*

C10 0.2103 (7) 0.3213 (3) 0.5062 (7) 0.0615 (15)

H10 0.1534 0.3693 0.5176 0.074*

Cl1 0.79976 (15) 0.07711 (8) 0.25313 (15) 0.0535 (5)

O1 0.8893 (15) 0.1341 (6) 0.1885 (15) 0.118 (4) 0.564 (14)

O2 0.7529 (13) 0.0069 (6) 0.1559 (12) 0.089 (3) 0.564 (14)

O3 0.9093 (11) 0.0423 (7) 0.3879 (9) 0.124 (5) 0.564 (14)

O4 0.6739 (10) 0.1110 (6) 0.3156 (16) 0.102 (4) 0.564 (14)

O1′ 0.9058 (18) 0.1027 (11) 0.1479 (18) 0.133 (7) 0.436 (14)

O2′ 0.7787 (19) −0.0073 (5) 0.244 (2) 0.116 (6) 0.436 (14)

O3′ 0.877 (2) 0.1081 (14) 0.4022 (15) 0.234 (11) 0.436 (14)

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, o645–o646

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

N1 0.048 (2) 0.052 (3) 0.060 (3) −0.001 (2) 0.018 (2) 0.001 (2)

N2 0.059 (3) 0.046 (3) 0.084 (3) 0.008 (2) 0.024 (3) −0.002 (2)

N3 0.052 (3) 0.049 (3) 0.069 (3) 0.002 (2) 0.017 (2) 0.002 (2)

C1 0.064 (4) 0.043 (3) 0.074 (4) 0.000 (3) 0.018 (3) 0.005 (3)

C2 0.064 (4) 0.056 (4) 0.080 (4) −0.009 (3) 0.023 (3) 0.011 (3)

C3 0.059 (3) 0.069 (4) 0.078 (4) −0.001 (3) 0.033 (3) −0.001 (3)

C4 0.063 (4) 0.046 (3) 0.074 (4) 0.008 (3) 0.027 (3) 0.003 (3)

C5 0.047 (3) 0.038 (3) 0.050 (3) −0.002 (2) 0.011 (2) 0.003 (2)

C6 0.042 (3) 0.047 (3) 0.047 (3) −0.005 (2) 0.009 (2) −0.004 (2)

C7 0.054 (3) 0.045 (3) 0.063 (3) −0.001 (3) 0.015 (3) −0.004 (2)

C8 0.074 (4) 0.054 (4) 0.075 (4) −0.019 (3) 0.020 (3) 0.004 (3)

C9 0.052 (3) 0.082 (5) 0.078 (4) −0.008 (3) 0.022 (3) −0.001 (3)

C10 0.056 (3) 0.056 (4) 0.075 (4) −0.001 (3) 0.019 (3) −0.008 (3)

Cl1 0.0494 (8) 0.0499 (8) 0.0611 (8) −0.0010 (7) 0.0102 (6) −0.0037 (7)

O1 0.140 (8) 0.080 (6) 0.155 (9) −0.028 (6) 0.084 (7) −0.009 (6)

O2 0.110 (7) 0.067 (6) 0.089 (6) 0.002 (5) 0.020 (5) −0.023 (5)

O3 0.116 (7) 0.162 (9) 0.092 (6) 0.045 (6) 0.017 (6) 0.006 (6)

O4 0.081 (5) 0.090 (6) 0.144 (9) 0.023 (5) 0.046 (6) −0.023 (6)

O1′ 0.133 (10) 0.135 (11) 0.145 (10) −0.005 (8) 0.066 (8) 0.019 (8)

O2′ 0.124 (9) 0.070 (7) 0.152 (11) −0.006 (6) 0.018 (9) 0.014 (7)

O3′ 0.244 (14) 0.219 (14) 0.223 (14) 0.003 (10) 0.005 (10) −0.005 (10)

O4′ 0.072 (6) 0.058 (6) 0.093 (8) 0.016 (4) 0.009 (5) −0.007 (5)

Geometric parameters (Å, º)

N1—C5 1.347 (6) C6—C7 1.387 (7)

N1—C1 1.349 (6) C7—C8 1.361 (7)

N1—H1A 0.8600 C7—H7 0.9300

N2—C5 1.338 (6) C8—C9 1.367 (8)

N2—C6 1.388 (6) C8—H8 0.9300

N2—H2A 0.8600 C9—C10 1.371 (7)

N3—C6 1.316 (6) C9—H9 0.9300

N3—C10 1.341 (6) C10—H10 0.9300

C1—C2 1.348 (8) Cl1—O2′ 1.377 (9)

C1—H1 0.9300 Cl1—O1 1.384 (7)

C2—C3 1.393 (8) Cl1—O4 1.405 (6)

C2—H2 0.9300 Cl1—O2 1.430 (7)

C3—C4 1.352 (7) Cl1—O3′ 1.436 (10)

C3—H3 0.9300 Cl1—O4′ 1.444 (8)

C4—C5 1.383 (6) Cl1—O1′ 1.467 (9)

C4—H4 0.9300 Cl1—O3 1.471 (7)

C5—N1—C1 121.9 (4) C8—C9—C10 118.9 (5)

C5—N1—H1A 119.1 C8—C9—H9 120.5

(6)

C5—N2—C6 131.8 (4) N3—C10—C9 122.4 (5)

C5—N2—H2A 114.1 N3—C10—H10 118.8

C6—N2—H2A 114.1 C9—C10—H10 118.8

C6—N3—C10 118.1 (4) O2′—Cl1—O1 135.4 (8)

C2—C1—N1 120.1 (5) O2′—Cl1—O4 108.0 (8)

C2—C1—H1 119.9 O1—Cl1—O4 114.8 (6)

N1—C1—H1 119.9 O1—Cl1—O2 113.5 (6)

C1—C2—C3 119.2 (5) O4—Cl1—O2 113.2 (5)

C1—C2—H2 120.4 O2′—Cl1—O3′ 115.5 (8)

C3—C2—H2 120.4 O1—Cl1—O3′ 86.9 (10)

C4—C3—C2 120.2 (5) O4—Cl1—O3′ 76.2 (9)

C4—C3—H3 119.9 O2—Cl1—O3′ 147.9 (9)

C2—C3—H3 119.9 O2′—Cl1—O4′ 114.4 (7)

C3—C4—C5 119.7 (5) O1—Cl1—O4′ 90.7 (7)

C3—C4—H4 120.2 O2—Cl1—O4′ 95.8 (6)

C5—C4—H4 120.2 O3′—Cl1—O4′ 109.1 (8)

N2—C5—N1 117.7 (4) O2′—Cl1—O1′ 109.4 (8)

N2—C5—C4 123.3 (4) O4—Cl1—O1′ 137.8 (8)

N1—C5—C4 118.9 (4) O2—Cl1—O1′ 89.2 (8)

N3—C6—C7 122.7 (5) O3′—Cl1—O1′ 104.0 (9)

N3—C6—N2 116.2 (4) O4′—Cl1—O1′ 103.3 (7)

C7—C6—N2 121.1 (5) O2′—Cl1—O3 73.9 (7)

C8—C7—C6 118.7 (5) O1—Cl1—O3 105.5 (7)

C8—C7—H7 120.7 O4—Cl1—O3 104.7 (6)

C6—C7—H7 120.7 O2—Cl1—O3 103.7 (5)

C7—C8—C9 119.2 (5) O3′—Cl1—O3 45.0 (8)

C7—C8—H8 120.4 O4′—Cl1—O3 146.6 (6)

C9—C8—H8 120.4 O1′—Cl1—O3 103.8 (8)

C5—N1—C1—C2 0.5 (8) C10—N3—C6—C7 0.9 (7)

N1—C1—C2—C3 −0.4 (8) C10—N3—C6—N2 179.5 (4)

C1—C2—C3—C4 0.5 (9) C5—N2—C6—N3 0.3 (8)

C2—C3—C4—C5 −0.7 (8) C5—N2—C6—C7 179.0 (5)

C6—N2—C5—N1 −1.5 (8) N3—C6—C7—C8 −0.9 (8)

C6—N2—C5—C4 178.2 (5) N2—C6—C7—C8 −179.5 (5)

C1—N1—C5—N2 179.0 (4) C6—C7—C8—C9 0.2 (8)

C1—N1—C5—C4 −0.7 (7) C7—C8—C9—C10 0.4 (9)

C3—C4—C5—N2 −178.9 (5) C6—N3—C10—C9 −0.2 (8)

C3—C4—C5—N1 0.8 (7) C8—C9—C10—N3 −0.4 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1A···N3 0.86 1.96 2.623 (6) 133

N1—H1A···O2i 0.86 2.47 3.149 (5) 137

N2—H2A···O4 0.86 1.94 2.785 (6) 166

References

Related documents

The peak intensities for YBCO structure are affected by Co doping, where the intensities of the planes are larger for the pure sample as compared with the doped samples, but as

This article will review our current understanding of the pathophysiology of low-grade brain edema and will outline the role of structural MR imaging, MTR, DWI, DTI, and MR

Test for Exogeneity of Instruments’ Subsets. OIR: Over -identifying Restrictions Test. The significance of bold values is twofold. 1) The significance of estimated

In line ( column ) order : Students sit in lines, facing the teacher and the board. This order is for more crowded classes. It is used in old-fashioned classical teaching.

(2) There are negative net impacts from ‘aid to social infrastructure’, ‘aid to the productive sector’ and human assistance, albeit with positive. marginal

Specifically, the popular dis- tortion or lexicalized reordering models in phrase- based SMT focus only on making good local pre- diction (i.e. predicting the orientation of imme-

Recent research tries to address these issues, by re-structuring training data parse trees to bet- ter suit syntax-based SMT training (Wang et al., 2010), or by moving

As patentability standards rise, an innovation in the risky direction is less likely to receive a patent, which decreases the static incentive for new entrants to conduct risky