Tris­(quinolin 8 olato)­gallium(III)

Download (0)

Full text

(1)

Acta Cryst.(2004). E60, m217±m218 DOI: 10.1107/S1600536804001242 Rajeswaran and Jarikov [Ga(C9H6NO)3]

m217

metal-organic papers

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

Tris(quinolin-8-olato)gallium(III)

Manju Rajeswaran* and Viktor V. Jarikov

Eastman Kodak Company, Research and Development Laboratories, Rochester, NY 14650-2106, USA

Correspondence e-mail: manju.rajeswaran@kodak.com

Key indicators Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.006 AÊ Rfactor = 0.050 wRfactor = 0.117

Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound (GaQ3), [Ga(C9H6NO)3], is the Ga analog

of the most widely used organic light-emitting diode (OLED) material, AlQ3. Its molecular structure is a six-coordinated

gallium compound, with the angles around the Ga3+ ion

indicating approximate octahedral geometry. There is inter-molecular±stacking of the ligands (8-hydroxyquinolines) in a multidirectional fashion.

Comment

Quinolinolates of the elements of Group IIIB(denotedMQ3),

Al, Ga, and In, have been of continuous interest to organo-metallic and physical chemists, in particular, for the last 50 years. Organic light-emitting diodes (OLEDs) utilizing MQ3

were ®rst explored in the early 1980s (Tang & Van Slyke, 1985) and continue to be the subject of current research. In 1987, ef®cient electroluminescence from an OLED device using low molecular-weight organic materials was ®rst reported (Tang & Van Slyke, 1987). The OLED device was constructed of two active layers and used a metal quinolinolate, tris(quinolin-8-olato)aluminum. This discovery generated renewed interest in metal quinolinolates. GaQ3 and InQ3 are the Ga and In

analogs, respectively, of the most widely used OLED material, AlQ3. In our continuing effort to understand how molecular

con®guration, packing, and polymorphism affect charge transport, electroluminescence evolution, operational stabi-lity, and device performance parameters for this series of metal quinolinolates, we report here the single-crystal struc-ture of gallium tris(quinolin-8-olate), GaQ3, (I).

Tris-chelate quinolin-8-olate metal complexes can occur in two different geometrical forms, facial or meridional. The crystal structure of (I) is a meridional form of GaQ3. The

molecular structure of GaQ3 (Fig. 1) is a six-coordinated

gallium compound. The angles around the Ga3+ion indicate

approximate octahedral geometry. The average GaÐO and GaÐN distances are 1.931 (3) and 2.091 (3) AÊ, respectively. These are comparable with those obtained for the solvated GaQ3structure (Wanget al., 1999).

There is intermolecular ± stacking of the ligands (8-hydroxyquinolines) in a multidirectional fashion. Such

(2)

intermolecular stacking was also observed in the ethyl ether solvated GaQ3structure (Wanget al., 1999; Brinkmannet al.,

2000). The ligands in GaQ3 are stackedwith an interplanar

distance of 3.385±3.460 AÊ, which is comparable with the values of 3.35±3.41 AÊ for ether-solvated GaQ3and 3.406±3.428 AÊ for

the InQ3structure (Rajeswaran & Jarikov, 2003).

Experimental

GaQ3, (I), was prepared according to established methods (Lytleet

al., 1973). The compound was chemically puri®ed by repeated washings and recrystallizations and subjected to vacuum tempera-ture-gradient sublimation, three consecutive times, until a purity of 99.9% was achieved. The purity of GaQ3was determined by NMR in

d7-dimethylformamide solutions because using CD2Cl2 and d6

-di-methylsulfoxide resulted in poor peak resolution, while the use of CDCl3produced decomposition (two types of new quinolinol

struc-tures were formed). GaQ3 was sublimed at 0.6 Torr (1 Torr =

133.322 Pa) and the temperature was gradually increased from 533 to 573 K over a period of 1±3 d. HPLC, ESI LC±MS, and MS show results consistent with the structure. We note that, although the remaining 0.1% impurities could not be positively characterized, they may be different forms,e.g., isomers, of the target compound. Crystal data

[Ga(C9H6NO)3] Mr= 502.16

Triclinic,P1

a= 8.4250 (3) AÊ

b= 10.2900 (3) AÊ

c= 13.1390 (5) AÊ

= 71.4320 (12)

= 82.6670 (12)

= 89.7690 (14) V= 1070.13 (6) AÊ3

Z= 2

Dx= 1.558 Mg mÿ3

MoKradiation Cell parameters from 6837

re¯ections

= 1.0±26.7

= 1.32 mmÿ1 T= 293 (2) K Block, yellow 0.320.250.20 mm

Data collection

Nonius KappaCCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995)

Tmin= 0.557,Tmax= 0.768

16 177 measured re¯ections

4527 independent re¯ections 2412 re¯ections withI> 2(I)

Rint= 0.144

max= 26.8 h=ÿ10!10

k=ÿ13!13

l=ÿ16!16

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.050 wR(F2) = 0.117 S= 0.89 4527 re¯ections 307 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1357P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.41 e AÊÿ3 min=ÿ0.61 e AÊÿ3

The positional parameters of the H atoms were calculated geometrically (CÐH distances ®xed at 0.96 AÊ) and re®ned using a riding model (Uiso= 1.2Ueqof the parent atom). In the ®nal difference

Fourier map, the deepest hole is 0.97 AÊ from the Ga atom. The quality of the GaQ3crystals was not excellent, as indicated by a rather

highRintvalue of 0.144. There was a minor twin component in the

crystals, which was left untreated.

Data collection:COLLECT(Nonius, 2000); cell re®nement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication:SHELXTL.

References

Blessing, R. H. (1995).Acta Cryst.A51, 33±58.

Brinkmann, M., Gadret, G., Muccini, M., Taliani, C., Masciocchi, N. & Sironi, A. (2000).J. Am. Chem. Soc.122, 5147±5157.

Bruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Lytle, F. E., Storey, D. R. & Juricich, M. E. (1973).Spectrochim. Acta A,29, 1357±1369.

Nonius (2000).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307±326. New York: Academic Press.

Rajeswaran, M. & Jarikov, V. V. (2003).Acta Cryst.E59, m306±m307. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Tang, C. W. & Van Slyke, S. A. (1985). Unpublished results. Tang, C. W. & Van Slyke, S. A. (1987).Appl. Phys. Lett.51, 913±915. Wang, Y., Zhang, W., Li, Y., Ye, L. & Yang, G. (1999).Chem. Mater.11, 530±

532.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, m217–m218

supporting information

Acta Cryst. (2004). E60, m217–m218 [https://doi.org/10.1107/S1600536804001242]

Tris(quinolin-8-olato)gallium(III)

Manju Rajeswaran and Viktor V. Jarikov

Tris(quinolin-8-olato)gallium(III)

Crystal data [Ga(C9H6NO)3]

Mr = 502.16 Triclinic, P1 Hall symbol: -P 1 a = 8.4250 (3) Å b = 10.2900 (3) Å c = 13.1390 (5) Å α = 71.4320 (12)° β = 82.6670 (12)° γ = 89.7690 (14)° V = 1070.13 (6) Å3

Z = 2 F(000) = 512 Dx = 1.558 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 6837 reflections θ = 1.0–26.7°

µ = 1.32 mm−1

T = 293 K Cube, yellow

0.32 × 0.25 × 0.2 mm

Data collection

Nonius KappaCCD area-detector diffractometer

Radiation source: fine-focus sealed tube Horizonally mounted graphite crystal

monochromator

Detector resolution: 9 pixels mm-1

φ and ω scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995)

Tmin = 0.557, Tmax = 0.768

16177 measured reflections 4527 independent reflections 2412 reflections with I > 2σ(I) Rint = 0.144

θmax = 26.8°, θmin = 4.3°

h = −10→10 k = −13→13 l = −16→16

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.050

wR(F2) = 0.117

S = 0.89 4527 reflections 307 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.1357P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.41 e Å−3

Δρmin = −0.61 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, m217–m218

H21 0.7912 −0.0178 0.5989 0.062* C22 0.9787 (6) −0.1060 (4) 0.6744 (4) 0.0663 (14) H22 0.9907 −0.1732 0.6408 0.080* C23 1.0806 (6) −0.1021 (4) 0.7471 (4) 0.0674 (14) H23 1.1594 −0.1663 0.7631 0.081* C24 1.0641 (5) −0.0001 (4) 0.7966 (3) 0.0498 (11) C25 1.1655 (5) 0.0190 (5) 0.8686 (4) 0.0602 (13) H25 1.2485 −0.0402 0.8876 0.072* C26 1.1421 (5) 0.1232 (5) 0.9101 (4) 0.0602 (13) H26 1.2097 0.1365 0.9569 0.072* C27 1.0172 (5) 0.2101 (4) 0.8826 (3) 0.0470 (11) H27 1.0021 0.2808 0.9123 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C26 0.039 (3) 0.075 (3) 0.057 (3) 0.005 (2) −0.022 (2) −0.003 (3) C27 0.037 (2) 0.056 (3) 0.044 (3) −0.003 (2) −0.011 (2) −0.009 (2)

Geometric parameters (Å, º)

Ga1—O3 1.922 (3) C10—C15 1.397 (5) Ga1—O1 1.935 (2) C10—C11 1.436 (5) Ga1—O2 1.935 (2) C11—C12 1.374 (5) Ga1—N1 2.056 (3) C12—C13 1.400 (5) Ga1—N3 2.096 (3) C12—H12 0.9300 Ga1—N2 2.122 (3) C13—C14 1.356 (5) O1—C2 1.312 (4) C13—H13 0.9300 O2—C11 1.331 (4) C14—C15 1.399 (5) O3—C20 1.310 (4) C14—H14 0.9300 N1—C9 1.323 (4) C15—C16 1.418 (5) N1—C1 1.367 (4) C16—C17 1.352 (5) N2—C18 1.324 (4) C16—H16 0.9300 N2—C10 1.362 (4) C17—C18 1.392 (5) N3—C27 1.319 (4) C17—H17 0.9300 N3—C19 1.359 (4) C18—H18 0.9300 C1—C6 1.406 (5) C19—C24 1.401 (5) C1—C2 1.425 (5) C19—C20 1.429 (5) C2—C3 1.379 (5) C20—C21 1.380 (5) C3—C4 1.394 (5) C21—C22 1.401 (6) C3—H3 0.9300 C21—H21 0.9300 C4—C5 1.367 (5) C22—C23 1.373 (6) C4—H4 0.9300 C22—H22 0.9300 C5—C6 1.410 (5) C23—C24 1.398 (6) C5—H5 0.9300 C23—H23 0.9300 C6—C7 1.417 (5) C24—C25 1.410 (6) C7—C8 1.365 (5) C25—C26 1.352 (6) C7—H7 0.9300 C25—H25 0.9300 C8—C9 1.386 (5) C26—C27 1.386 (5) C8—H8 0.9300 C26—H26 0.9300 C9—H9 0.9300 C27—H27 0.9300

(7)

supporting information

sup-5 Acta Cryst. (2004). E60, m217–m218

O2—Ga1—N2 80.39 (10) C13—C14—C15 119.2 (4) N1—Ga1—N2 93.46 (11) C13—C14—H14 120.4 N3—Ga1—N2 89.47 (12) C15—C14—H14 120.4 C2—O1—Ga1 113.4 (2) C14—C15—C10 118.5 (3) C11—O2—Ga1 116.3 (2) C14—C15—C16 125.3 (4) C20—O3—Ga1 114.7 (2) C10—C15—C16 116.2 (4) C9—N1—C1 118.7 (3) C17—C16—C15 120.3 (4) C9—N1—Ga1 131.5 (2) C17—C16—H16 119.8 C1—N1—Ga1 109.7 (2) C15—C16—H16 119.8 C18—N2—C10 118.4 (3) C16—C17—C18 119.5 (4) C18—N2—Ga1 131.0 (3) C16—C17—H17 120.2 C10—N2—Ga1 110.4 (2) C18—C17—H17 120.2 C27—N3—C19 118.5 (3) N2—C18—C17 122.5 (4) C27—N3—Ga1 132.3 (3) N2—C18—H18 118.8 C19—N3—Ga1 109.2 (2) C17—C18—H18 118.8 N1—C1—C6 122.3 (3) N3—C19—C24 122.8 (4) N1—C1—C2 114.7 (3) N3—C19—C20 115.1 (3) C6—C1—C2 123.0 (3) C24—C19—C20 122.1 (4) O1—C2—C3 125.2 (3) O3—C20—C21 124.1 (4) O1—C2—C1 118.9 (3) O3—C20—C19 118.9 (3) C3—C2—C1 115.8 (4) C21—C20—C19 117.0 (4) C2—C3—C4 121.3 (4) C20—C21—C22 120.6 (4) C2—C3—H3 119.3 C20—C21—H21 119.7 C4—C3—H3 119.3 C22—C21—H21 119.7 C5—C4—C3 123.1 (4) C23—C22—C21 122.3 (4) C5—C4—H4 118.4 C23—C22—H22 118.9 C3—C4—H4 118.4 C21—C22—H22 118.9 C4—C5—C6 118.1 (4) C22—C23—C24 119.0 (4) C4—C5—H5 120.9 C22—C23—H23 120.5 C6—C5—H5 120.9 C24—C23—H23 120.5 C5—C6—C1 118.5 (3) C23—C24—C19 119.0 (4) C5—C6—C7 124.8 (4) C23—C24—C25 124.5 (4) C1—C6—C7 116.7 (3) C19—C24—C25 116.4 (4) C8—C7—C6 120.0 (4) C26—C25—C24 120.0 (4) C8—C7—H7 120.0 C26—C25—H25 120.0 C6—C7—H7 120.0 C24—C25—H25 120.0 C7—C8—C9 119.4 (3) C25—C26—C27 119.8 (4) C7—C8—H8 120.3 C25—C26—H26 120.1 C9—C8—H8 120.3 C27—C26—H26 120.1 N1—C9—C8 122.8 (3) N3—C27—C26 122.4 (4) N1—C9—H9 118.6 N3—C27—H27 118.8 C8—C9—H9 118.6 C26—C27—H27 118.8

(8)
(9)

supporting information

sup-7 Acta Cryst. (2004). E60, m217–m218

Figure

Updating...

References

Related subjects :