• No results found

2 (2 Furyl­methyl) 1 methyl 3 oxo­cyclo­hexane­carboxyl­ic acid

N/A
N/A
Protected

Academic year: 2020

Share "2 (2 Furyl­methyl) 1 methyl 3 oxo­cyclo­hexane­carboxyl­ic acid"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1050

Jayanta Kumar Rayet al. C13H16O4 DOI: 10.1107/S1600536803012492 Acta Cryst.(2003). E59, o1050±o1052 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2-(2-Furylmethyl)-1-methyl-3-oxocyclo-hexanecarboxylic acid

Jayanta Kumar Ray,aSajal Kanti

Mal,aL. M. Canle,bJ. A.

Santaballab* and Jose MahõÂac

aDepartment of Chemistry, Indian Institute of

Technology, Kharagpur 721 302, India,

bDepartamento de QuõÂmica FõÂsica e EnxenÄerõÂa

QuõÂmica I, Facultade de Ciencias, Universidade da CorunÄa, RuÂa Alejandro de la Sota 1, E-15008 A CorunÄa, Spain, andcServicios Xerais de Apoio

a InvestigacioÂn, Universidade da CorunÄa, RuÂa Alejandro de la Sota 1, E-15008 A CorunÄa, Spain

Correspondence e-mail: arturo@udc.es

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C±C) = 0.002 AÊ Rfactor = 0.039 wRfactor = 0.113

Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C13H16O4, appears as an intermediate in the synthetic pathway of furosesquiterpenes. The crystal structure is dictated by the presence of intermolecular hydrogen bonding. It is noticeable that there are rather similar CÐO distances in the carboxyl group [(1.2454(14) and 1.2835 (14) AÊ]. In the solid state, the molecules interact in pairs, forming discrete dimers as part of a three-dimensional network.

Comment

Marine sponges and different plants are rich sources of several furosesquiterpenes (Fraga, 1988, 1990). Linearly fused furo[2,3-b]- and furo[3,2-b]decalin systems withcis±transring junctions are present in compounds such as atractylon (Honan, 1985), furodysin (Vaillancourt et al., 1991), iso-alantolactone (Tadaet al., 1993), and euryopsonal (Rivett & Wooland, 1967). As part of a program on the synthesis of furosesquiterpenes, racemic crystals of the intermediate product 2-(2-furylmethyl)-1-methyl-3-oxocyclohexanecarbox-ylic acid, (I), were obtained. The molecule of (I) is composed of a six- and a ®ve-membered ring linked by the methylene group. The six-membered ring (C1±C6) (Fig. 1) adopts a chair conformation and the ®ve-membered ring (C8±C11/O1) (Fig. 1) is planar (mean deviation = 0.0004 AÊ).

Geometric parameters are mostly as expected (Table 1). The angles C7ÐC8ÐC9 [134.09 (13)] and C1ÐC7ÐC8 [114.50 (10)] are in¯uenced by the intramolecular environ-ment, in particular by the intramolecular contacts C1 C8 = 2.542 (2) AÊ, C7 O4 = 2.779 (2) AÊ, and C7 O1 = 2.428 (2) AÊ. An important feature found in this monoclinic crystal is the existence of intermolecular hydrogen bonding. The carboxyl group serves simultaneously as a hydrogen-bond donor and acceptor. Although in compounds with a similar carboxyl-group environment to (I), single [1.320 (3) AÊ] CÐO and double [1.217 (3) AÊ] C O bonds are clearly distin-guished (Shiet al., 2002), it is noticeable that here both CÐO bonds of the carboxyl group are rather similar [C12ÐO3 = 1.2835 (14) AÊ and C12ÐO2 = 1.2454 (14) AÊ]. Such in¯uence of the hydrogen bonding on the CÐOH and C O distances of (I) has previously been described (Jeffrey & Saenger, 1994). The hydrogen bonding is shown in Fig. 2 and relevant

(2)

parameters are given in Table 2. As two hydrogen bonds exist between symmetry-equivalent molecules, discrete dimers are formed as part of a three-dimensional network (Fig. 3).

Experimental

The title compound, (I), was synthesized in four steps starting from Hagemann's ester. Alkylation of Hagemann's ester with 2-furyl-methyl chloride in the presence oftBuOK as base afforded a

C-3-alkylated product which, on alkaline hydrolytic decarboxylation, produced the furylmethylcyclohexenone derivative. This compound on treatment with KCN followed by hydrolysis, afforded the title compound, (I), as a white solid (Chakraborty et al., 1997). Single crystals were grown by slow evaporation of an ethyl acetate solution of this compound.

Crystal data C13H16O4

Mr= 236.26

Monoclinic,P21=n

a= 6.043 (1) AÊ

b= 20.996 (1) AÊ

c= 9.372 (1) AÊ

= 91.912 (1)

V= 1188.5 (1) AÊ3

Z= 4

Dx= 1.320 Mg mÿ3

MoKradiation Cell parameters from 4362

re¯ections

= 2.0±28.0

= 0.10 mmÿ1

T= 298 (2) K Block, colourless 0.550.520.48 mm Data collection

Bruker CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.948,Tmax= 0.955

7581 measured re¯ections

2821 independent re¯ections 2338 re¯ections withI> 2(I)

Rint= 0.016

max= 28.3

h=ÿ6!8

k=ÿ27!27

l=ÿ11!12

Re®nement Re®nement onF2

R[F2> 2(F2)] = 0.039

wR(F2) = 0.113

S= 1.04 2821 re¯ections 155 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0561P)2

+ 0.229P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.25 e AÊÿ3 min=ÿ0.22 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

O1ÐC8 1.3657 (16)

O2ÐC12 1.2454 (14)

O3ÐC12 1.2835 (14)

O4ÐC6 1.2090 (15)

C1ÐC7 1.5344 (16)

C7ÐC8 1.4877 (17)

C8ÐC9 1.3405 (18)

C9ÐC10 1.424 (2)

C10ÐC11 1.326 (2)

C8ÐO1ÐC11 106.63 (11)

C5ÐC6ÐC1 115.55 (10)

C8ÐC7ÐC1 114.50 (10)

C9ÐC8ÐC7 134.09 (13)

O2ÐC12ÐO3 123.55 (10) O2ÐC12ÐC2 120.62 (10) O3ÐC12ÐC2 115.70 (10)

C6ÐC1ÐC2ÐC12 167.91 (9) C7ÐC1ÐC2ÐC12 ÿ66.89 (12) C6ÐC1ÐC2ÐC13 ÿ69.36 (12) C1ÐC7ÐC8ÐC9 116.68 (16) C1ÐC7ÐC8ÐO1 ÿ66.77 (14) O1ÐC8ÐC9ÐC10 ÿ0.03 (16)

C8ÐC9ÐC10ÐC11 ÿ0.04 (17) C9ÐC10ÐC11ÐO1 0.09 (18) C13ÐC2ÐC12ÐO3 34.89 (14) C3ÐC2ÐC12ÐO3 ÿ84.48 (12) C1ÐC2ÐC12ÐO3 158.34 (10)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O3ÐH3A O2i 0.82 1.82 2.6327 (13) 171

Symmetry code: (i) 2ÿx;ÿy;2ÿz.

Data collection:SMART(Siemens, 1995); cell re®nement:SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL(Sheldrick, 1997); software used to prepare material for publication:SHELXTL.

Acta Cryst.(2003). E59, o1050±o1052 Jayanta Kumar Rayet al. C13H16O4

o1051

organic papers

Figure 2

The intermolecular hydrogen bonding in (I). H atoms are shown as small spheres of arbitrary radii and hydrogen bonds are shown as dashed lines.

Figure 3

Packing diagram of the title compound, showing the existence of discrete dimers. Dashed lines denote the intermolecular hydrogen bonds. Figure 1

(3)

organic papers

o1052

Jayanta Kumar Rayet al. C13H16O4 Acta Cryst.(2003). E59, o1050±o1052

JKR thanks Universidade da CorunÄa and Xunta de Galicia for partial funding of visits to the Universidade da CorunÄa.

References

Chakraborty, A., Kar, G. K. & Ray, J. K. (1997).Tetrahedron,53, 2989±2996. Fraga, B. M. (1988).J. Nat. Prod.Rep.5, 497±521.

Fraga, B. M. (1990).J. Nat. Prod.Rep.7, 515±537. Honan, M. (1985).Tetrahedron Lett.26, 6393±6396.

Jeffrey, G. A. & Saenger, W. (1994). Hydrogen Bonding in Biological Structures, p. 96. New York: Springer-Verlag.

Rivett, D. A. & Wooland, G. R. (1967).Tetrahedron,23, 2431±2436. Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997).SHELXS97,SHELXL97 andSHELXTL.. University

of GoÈttingen, Germany.

Sheldrick, G. M. (1997b). University of GoÈttingen, Germany.

Shi, H., Pan, Y. J., Wu, S. H. & Zhang, X. X. (2002).Acta Cryst.C58, o55±o56. Siemens (1995).SMARTandSAINT. Siemens Analytical X-ray Instruments

Inc., Madison, Wisconsin, USA.

Tada, M., Yamada, H., Kanamori, A. & Chiba, K. (1993).J. Chem. Soc. Perkin Trans1, pp. 239±247.

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, o1050–o1052

supporting information

Acta Cryst. (2003). E59, o1050–o1052 [doi:10.1107/S1600536803012492]

2-(2-Furylmethyl)-1-methyl-3-oxocyclohexanecarboxylic acid

Jayanta Kumar Ray, Sajal Kanti Mal, L. M. Canle, J. A. Santaballa and Jose Mah

í

a

S1. Comment

Marine sponges and different plants are rich sources of several furosesquiterpenes (Fraga, 1988, 1990). Linearly fused

furo[2,3-b]- and furo[3,2-b]decalin systems with cis–trans ring junctions are present in compounds such as atractylon

(Honan, 1985), furodysin (Vaillancourt et al., 1991), isoalantolactone (Tada et al., 1993), euryopsonal (Rivett & Wooland,

1967). As part of a program on the synthesis of furosesquiterpenes, racemic crystals of the intermediate product

2-(2-furylmethyl)-1-methyl-3-oxocyclohexanecarboxylic acid, (I), were obtained. The molecule of (I) is composed by a six-

and a five-membered ring joined by a methylene group. The six-membered ring (C1–C6) (Fig. 1) adopts a chair

conformation and the five-membered ring (C8–C11/O1) (Fig. 1) is planar (mean deviation = 0.0004 Å); the dihedral

angle between the rings is 76.34 (5)°. The carboxyl group and the six-membered ring form an angle of 62,78 (6)°,

whereas the angle is 39.76 (15)° between the carboxyl group and the five-membered ring.

Geometric parameters are mostly as expected (Table 1). The C7—C8—C9 [134.09 (13)°] and C1—C7—C8

[114.50 (10)°] angles are conditioned by the intramolecular environment, in particular by the intramolecular contacts

C1···C8 = 2.542 (2) Å, C7···O4 = 2.779 (2) Å, and C7···O1 = 2.428 (2) Å. The relevant feature found in this monoclinic

crystal is the existence of intermolecular hydrogen bonding. The carboxyl group serves as a simultaneous hydrogen-bond

donor and acceptor. Although in compounds with a similar carboxyl-group environment to (I), single [1.320 (3) Å] and

double [1.217 (3) Å] C═O bonds are clearly distinguished (Shi et al., 2002), it is noticeable that here both C—O bonds of

the carboxyl group are rather similar [C12—O3 = 1.2835 (14) Å and C12—O2 = 1.2454 (14) Å], such influence of the

hydrogen bonding on the C—OH and C═O distances of (I) has been described (Jeffrey & Saenger, 1994). The hydrogen

bonding is shown in Fig. 2 and pertinent parameters are given in Table 2. As two hydrogen bonds take place between the

same two molecules, discrete dimers are formed through a three-dimensional network (Fig. 3).

S2. Experimental

The title compound, (I), was synthesized in four steps starting from Hagemann's ester. Alkylation of Hagemann's ester

with 2-furylmethyl chloride in the presence of t-BuOK as base afforded a C-3-alkylated product which, on alkaline

hydrolytic decarboxylation, produced the furylmethylcyclohexenone derivative. The compound on treatment with KCN

followed by hydrolysis afforded the title compound, (I), as a white solid (Chakraborty et al., 1997). Single crystals were

(5)

supporting information

[image:5.610.129.483.76.282.2]

sup-2

Acta Cryst. (2003). E59, o1050–o1052

Figure 1

View of the title molecule, showing the atomic numbering and 50% probability displacement ellipsoids. H atoms have

been omitted for clarity.

Figure 2

The intermolecular hydrogen bonding in (I). H atoms are shown as small spheres of arbitrary radii and hydrogen bonds

[image:5.610.130.485.341.509.2]
(6)

supporting information

[image:6.610.126.483.73.371.2]

sup-3

Acta Cryst. (2003). E59, o1050–o1052

Figure 3

Packing diagram of the title compound, showing the existence of discrete dimers. The dashed lines denote the

intermolecular hydrogen bonds.

2-(2-furylmethyl)-1-methyl-3-oxocyclohexanecarboxylic acid

Crystal data

C13H16O4 Mr = 236.26

Monoclinic, P21/n Hall symbol: -P 2yn a = 6.043 (1) Å b = 20.996 (1) Å c = 9.372 (1) Å β = 91.912 (1)° V = 1188.5 (1) Å3 Z = 4

F(000) = 504 Dx = 1.320 Mg m−3

Melting point = 454–456 K Mo Kα radiation, λ = 0.71073 Å Cell parameters from 4362 reflections θ = 2.0–28.0°

µ = 0.10 mm−1 T = 298 K Block, colourless 0.55 × 0.52 × 0.48 mm

Data collection

Bruker CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: empirical (using intensity measurements)

(SADABS; Sheldrick, 1996) Tmin = 0.948, Tmax = 0.955

7581 measured reflections 2821 independent reflections 2338 reflections with I > 2σ(I) Rint = 0.016

θmax = 28.3°, θmin = 1.9° h = −6→8

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, o1050–o1052

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.113 S = 1.04 2821 reflections 155 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0561P)2 + 0.229P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.25 e Å−3 Δρmin = −0.22 e Å−3

Special details

Experimental. Data was collected using a Siemens SMART CCD based diffractometer operating at room temperature. Data was measured using omega scans of 0.3 degrees per frame for 60 s. A total of 1271 frames were collected. The first 50 frames were recollected at the end of each set of frames. As usual in organic compounds high theta reflections are too weak to be measured.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.69708 (17) 0.05960 (5) 0.47329 (10) 0.0571 (3)

O2 0.88849 (15) 0.04812 (4) 0.87185 (10) 0.0512 (3)

O3 1.21512 (16) 0.05580 (5) 0.98806 (10) 0.0534 (3)

H3A 1.1694 0.0238 1.0277 0.064*

O4 1.08516 (18) 0.22327 (5) 0.50895 (10) 0.0578 (3)

C1 0.98815 (18) 0.14284 (5) 0.67712 (11) 0.0325 (2)

H1 0.8321 0.1351 0.6966 0.039*

C2 1.12213 (18) 0.13758 (5) 0.82115 (11) 0.0336 (2)

C3 1.0422 (2) 0.18961 (6) 0.92510 (12) 0.0410 (3)

H3B 0.8885 0.1817 0.9460 0.049*

H3C 1.1283 0.1867 1.0141 0.049*

C4 1.0632 (2) 0.25651 (6) 0.86525 (15) 0.0484 (3)

H4A 1.2179 0.2661 0.8510 0.058*

H4B 1.0071 0.2871 0.9327 0.058*

C5 0.9330 (2) 0.26195 (6) 0.72347 (15) 0.0482 (3)

H5A 0.7760 0.2572 0.7393 0.058*

H5B 0.9567 0.3036 0.6819 0.058*

C6 1.00756 (19) 0.21105 (6) 0.62301 (13) 0.0389 (3)

C7 1.0578 (2) 0.09369 (6) 0.56609 (13) 0.0430 (3)

H7A 1.1996 0.1064 0.5297 0.052*

(8)

supporting information

sup-5

Acta Cryst. (2003). E59, o1050–o1052

C8 0.8975 (2) 0.08555 (6) 0.44349 (13) 0.0424 (3)

C9 0.9065 (3) 0.09571 (7) 0.30258 (14) 0.0553 (4)

H9 1.0249 0.1130 0.2549 0.066*

C10 0.7012 (3) 0.07513 (8) 0.23945 (16) 0.0612 (4)

H10 0.6595 0.0764 0.1431 0.073*

C11 0.5813 (3) 0.05386 (8) 0.34545 (17) 0.0629 (4)

H11 0.4389 0.0374 0.3347 0.075*

C12 1.06919 (18) 0.07530 (5) 0.89546 (12) 0.0354 (2)

C13 1.3722 (2) 0.14276 (7) 0.79924 (15) 0.0464 (3)

H13A 1.4484 0.1470 0.8902 0.070*

H13B 1.4015 0.1794 0.7416 0.070*

H13C 1.4228 0.1051 0.7522 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0555 (6) 0.0701 (7) 0.0459 (5) −0.0057 (5) 0.0038 (4) −0.0043 (5)

O2 0.0479 (5) 0.0490 (5) 0.0562 (6) −0.0121 (4) −0.0055 (4) 0.0171 (4)

O3 0.0554 (6) 0.0506 (5) 0.0533 (5) −0.0065 (4) −0.0121 (4) 0.0206 (4)

O4 0.0645 (6) 0.0600 (6) 0.0492 (5) −0.0103 (5) 0.0072 (5) 0.0190 (4)

C1 0.0325 (5) 0.0325 (5) 0.0325 (5) −0.0001 (4) 0.0025 (4) 0.0024 (4)

C2 0.0327 (5) 0.0335 (5) 0.0344 (5) −0.0010 (4) −0.0002 (4) 0.0037 (4)

C3 0.0461 (6) 0.0400 (6) 0.0368 (6) −0.0003 (5) −0.0021 (5) −0.0028 (5)

C4 0.0543 (7) 0.0361 (6) 0.0543 (7) −0.0019 (5) −0.0065 (6) −0.0054 (5)

C5 0.0542 (8) 0.0322 (6) 0.0577 (8) 0.0012 (5) −0.0079 (6) 0.0043 (5)

C6 0.0356 (6) 0.0394 (6) 0.0415 (6) −0.0039 (5) −0.0043 (5) 0.0090 (5)

C7 0.0477 (7) 0.0429 (6) 0.0387 (6) 0.0082 (5) 0.0051 (5) −0.0017 (5)

C8 0.0515 (7) 0.0370 (6) 0.0389 (6) 0.0053 (5) 0.0061 (5) −0.0038 (5)

C9 0.0731 (9) 0.0550 (8) 0.0382 (7) 0.0009 (7) 0.0077 (6) −0.0014 (6)

C10 0.0844 (11) 0.0558 (8) 0.0425 (7) 0.0140 (8) −0.0110 (7) −0.0108 (6)

C11 0.0608 (9) 0.0666 (10) 0.0604 (9) 0.0037 (7) −0.0099 (7) −0.0158 (7)

C12 0.0375 (6) 0.0353 (5) 0.0332 (5) 0.0007 (4) 0.0011 (4) 0.0030 (4)

C13 0.0339 (6) 0.0509 (7) 0.0543 (7) −0.0023 (5) −0.0007 (5) 0.0095 (6)

Geometric parameters (Å, º)

O1—C8 1.3657 (16) C4—H4A 0.9700

O1—C11 1.3723 (17) C4—H4B 0.9700

O2—C12 1.2454 (14) C5—C6 1.5033 (18)

O3—C12 1.2835 (14) C5—H5A 0.9700

O3—H3A 0.8200 C5—H5B 0.9700

O4—C6 1.2090 (15) C7—C8 1.4877 (17)

C1—C6 1.5251 (15) C7—H7A 0.9700

C1—C7 1.5344 (16) C7—H7B 0.9700

C1—C2 1.5547 (15) C8—C9 1.3405 (18)

C1—H1 0.9800 C9—C10 1.424 (2)

C2—C12 1.5206 (15) C9—H9 0.9300

(9)

supporting information

sup-6

Acta Cryst. (2003). E59, o1050–o1052

C2—C3 1.5516 (16) C10—H10 0.9300

C3—C4 1.5195 (18) C11—H11 0.9300

C3—H3B 0.9700 C13—H13A 0.9600

C3—H3C 0.9700 C13—H13B 0.9600

C4—C5 1.5260 (18) C13—H13C 0.9600

C8—O1—C11 106.63 (11) H5A—C5—H5B 108.2

C12—O3—H3A 109.5 O4—C6—C5 122.43 (12)

C6—C1—C7 112.35 (9) O4—C6—C1 121.98 (12)

C6—C1—C2 108.17 (9) C5—C6—C1 115.55 (10)

C7—C1—C2 113.22 (9) C8—C7—C1 114.50 (10)

C6—C1—H1 107.6 C6—C5—H5A 109.8

C7—C1—H1 107.6 C4—C5—H5A 109.8

C2—C1—H1 107.6 C6—C5—H5B 109.8

C12—C2—C13 110.19 (9) C4—C5—H5B 109.8

C12—C2—C3 104.08 (9) H5A—C5—H5B 108.2

C13—C2—C3 111.26 (10) C9—C8—O1 109.29 (12)

C12—C2—C1 110.33 (9) C9—C8—C7 134.09 (13)

C13—C2—C1 111.42 (9) O1—C8—C7 116.55 (11)

C3—C2—C1 109.33 (9) C8—C9—C10 107.32 (14)

C4—C3—C2 112.79 (10) C8—C9—H9 126.3

C4—C3—H3B 109.0 C10—C9—H9 126.3

C2—C3—H3B 109.0 C11—C10—C9 106.33 (13)

C4—C3—H3C 109.0 C11—C10—H10 126.8

C2—C3—H3C 109.0 C9—C10—H10 126.8

H3B—C3—H3C 107.8 C10—C11—O1 110.43 (14)

C3—C4—C5 110.08 (10) C10—C11—H11 124.8

C3—C4—H4A 109.6 O1—C11—H11 124.8

C5—C4—H4A 109.6 O2—C12—O3 123.55 (10)

C3—C4—H4B 109.6 O2—C12—C2 120.62 (10)

C5—C4—H4B 109.6 O3—C12—C2 115.70 (10)

H4A—C4—H4B 108.2 C2—C13—H13A 109.5

C6—C5—C4 109.59 (10) C2—C13—H13B 109.5

C6—C5—H5A 109.8 H13A—C13—H13B 109.5

C4—C5—H5A 109.8 C2—C13—H13C 109.5

C6—C5—H5B 109.8 H13A—C13—H13C 109.5

C4—C5—H5B 109.8 H13B—C13—H13C 109.5

C6—C1—C2—C12 167.91 (9) C6—C1—C7—C8 −72.62 (13)

C7—C1—C2—C12 −66.89 (12) C2—C1—C7—C8 164.47 (10)

C6—C1—C2—C13 −69.36 (12) C11—O1—C8—C9 0.09 (15)

C7—C1—C2—C13 55.83 (13) C11—O1—C8—C7 −177.29 (11)

C6—C1—C2—C3 54.03 (12) C1—C7—C8—C9 116.68 (16)

C7—C1—C2—C3 179.22 (9) C1—C7—C8—O1 −66.77 (14)

C12—C2—C3—C4 −175.42 (10) O1—C8—C9—C10 −0.03 (16)

C13—C2—C3—C4 65.94 (13) C7—C8—C9—C10 176.70 (14)

C1—C2—C3—C4 −57.55 (13) C8—C9—C10—C11 −0.04 (17)

(10)

supporting information

sup-7

Acta Cryst. (2003). E59, o1050–o1052

C3—C4—C5—C6 −54.76 (15) C8—O1—C11—C10 −0.11 (17)

C4—C5—C6—O4 −120.35 (13) C13—C2—C12—O2 −149.21 (12)

C4—C5—C6—C1 57.14 (14) C3—C2—C12—O2 91.41 (13)

C7—C1—C6—O4 −5.01 (16) C1—C2—C12—O2 −25.77 (15)

C2—C1—C6—O4 120.70 (12) C13—C2—C12—O3 34.89 (14)

C7—C1—C6—C5 177.49 (10) C3—C2—C12—O3 −84.48 (12)

C2—C1—C6—C5 −56.80 (13) C1—C2—C12—O3 158.34 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O3—H3A···O2i 0.82 1.82 2.6327 (13) 171

Figure

Figure 1View of the title molecule, showing the atomic numbering and 50% probability displacement ellipsoids
Figure 3

References

Related documents

The retrospective data on the Russian language mass media prevalence in Estonia, where almost half of the Russian-speaking population cannot follow them due to

Key words: satisfaction with democracy, welfare state, policy deficit, welfare regimes, post-..

(2018), we investigate the time series related to both aggregate and sectoral wage shares and to structural change, that is the change in sectoral output over the total value added,

Be- yond of gravity values estimation, it was used to estimate values for local datum scale factors, in a linear approach (Table 5), which was used as input in an adjustment with

The designated centre has all of the written operational policies as required by Schedule 5 of the Health Act 2007 (Care and Support of Residents in Designated Centres for

We use our grammar to build a de-lexicalized morphological analyzer for all DA dialects target- ing the D3 segmentation scheme ( Habash , 2010 ), which separates all clitics and

Festzustellen bleibt, dass sich die Entwicklung der bundesdeutschen Volkswirtschaft nicht allein durch Wachstumsschübe der beiden hauptsächlichen Faktoren, Arbeit und

уравнений системной динамики для сети материалов производственной линии, в основу которого положены балансовые уравнения.. Показано, что уравнения системной