• No results found

4 Methyl­aceto­phenone [(2 methyl 4 nitro 1H imidazol 1 yl)acet­yl]hydrazone

N/A
N/A
Protected

Academic year: 2020

Share "4 Methyl­aceto­phenone [(2 methyl 4 nitro 1H imidazol 1 yl)acet­yl]hydrazone"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1126

Balamuruganet al. C

15H17N5O3 doi:10.1107/S1600536806005794 Acta Cryst.(2006). E62, o1126–o1128

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-Methylacetophenone

[(2-methyl-4-nitro-1H-imidazol-1-yl)acetyl]hydrazone

S. Balamurugan,a

A. Thiruvalluvara* and

Balakrishna Kallurayab

aDepartment of Physics, Rajah Serfoji Govt.

College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, andbDepartment of Studies in Chemistry, Mangalore University,

Mangalagangothri 574 199, Karnataka, India

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.006 A˚ Rfactor = 0.065 wRfactor = 0.256

Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 26 January 2006 Accepted 16 February 2006

#2006 International Union of Crystallography All rights reserved

In the title molecule, C15H17N5O3, the nitro group lies in the

plane of the imidazole group, which makes a dihedral angle of 59.9 (2) with the benzene ring. Intermolecular N—H O

hydrogen bonds link the molecules into centrosymmetric dimers. The crystal packing is further stabilized by weak C—H O and C—H N interactions.

Comment

The imidazole nucleus appears in a number of naturally occurring products, among which the most important are the amino acid histidine and the base purine. Imidazole deriva-tives exhibit a broad spectrum of pharmacological activities, such as anticonvulsant (Vermaet al., 1974), anti-Parkinsonian (Naithani et al., 1989) and monoamine oxidase inhibitory (Harfenist et al., 1978) activities. To study the correlation between the effect of acethydrazone group substitution at position 1 of the imidazole ring and its geometry, the crystal structure of the title compound, (I), has been determined.

In (I) (Fig. 1), all bond lengths and angles (Table 1) are normal. The imidazole group is essentially planar and forms a dihedral angle of 59.9 (2) with the benzene ring. The nitro

group lies in the plane of the imidazole group. In the crystal structure (Fig. 2), intermolecular N—H O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers. The packing is further stabilized by weak C—H O and C— H N interactions (Table 2).

Experimental

(2)

room temperature and poured into ice-cold water. The solid mass which separated was filtered off, dried and recrystallized from a mixture of ethanol and dimethylformamide (1:1). The yield of the isolated product was 58%.

Crystal data

C15H17N5O3

Mr= 315.34 Monoclinic,P21=c a= 8.423 (2) A˚

b= 10.577 (4) A˚

c= 17.97 (3) A˚

= 89.46 (8)

V= 1601 (3) A˚3

Z= 4

Dx= 1.308 Mg m

3

CuKradiation Cell parameters from 25

reflections

= 15–25

= 0.78 mm1

T= 298 (2) K Needle, colourless 0.30.10.1 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

!–2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.799,Tmax= 0.926

3111 measured reflections 2902 independent reflections 2512 reflections withI> 2(I)

Rint= 0.066

max= 68.0

h= 0!10

k= 0!12

l=21!21 2 standard reflections

frequency: 60 min intensity decay: none

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.065

wR(F2) = 0.256

S= 1.14 2902 reflections 208 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1295P)2

+ 1.2895P] whereP= (Fo

2

+ 2Fc 2

)/3 (/)max< 0.001

max= 0.34 e A˚

3

min=0.20 e A˚

[image:2.610.62.271.71.336.2]

3

Table 1

Selected geometric parameters (A˚ ,).

O12—C12 1.245 (4) O41—N4 1.222 (5) O42—N4 1.220 (5) N1—C2 1.369 (5) N1—C5 1.344 (5) N1—C11 1.453 (5)

N3—C2 1.319 (5) N3—C4 1.345 (5) N4—C4 1.434 (5) N13—N14 1.387 (5) N13—C12 1.342 (5) N14—C15 1.284 (5)

C2—N1—C5 108.4 (3) C2—N1—C11 126.8 (3) C5—N1—C11 124.0 (3) C2—N3—C4 104.9 (3) O41—N4—O42 123.4 (4) O41—N4—C4 117.7 (3) O42—N4—C4 118.9 (3) N14—N13—C12 119.2 (3) N13—N14—C15 116.7 (3) N1—C2—C24 123.3 (3) N1—C2—N3 110.2 (3)

[image:2.610.46.295.380.554.2]

N3—C2—C24 126.6 (3) N3—C4—C5 112.3 (3) N4—C4—C5 124.9 (3) N3—C4—N4 122.8 (3) N1—C5—C4 104.3 (3) N1—C11—C12 108.7 (3) O12—C12—N13 120.7 (3) N13—C12—C11 118.3 (3) O12—C12—C11 121.0 (3) N14—C15—C17 114.3 (3) N14—C15—C16 125.9 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N13—H13 O12i

0.86 2.03 2.858 (6) 162 C5—H5 O42ii

0.93 2.54 3.411 (7) 156 C11—H11A N3iii 0.97 2.45 3.397 (7) 165 C11—H11B O41ii

0.97 2.41 3.249 (7) 145 C24—H24A O42iii

0.96 2.58 3.318 (8) 134

Symmetry codes: (i) xþ1;yþ2;z; (ii) x;y1 2;zþ

1 2; (iii)

xþ1;y1 2;zþ

1 2.

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86 A˚ , C—H = 0.93–0.97 A˚ andUiso = 1.2–1.5Ueq(parent atom).

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Farrugia, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2004); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:ORTEP-3(Farrugia, 1997); software used to prepare material for publication:PLATON(Spek, 2003).

organic papers

Acta Cryst.(2006). E62, o1126–o1128 Balamuruganet al. C

15H17N5O3

o1127

Figure 1

View of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

(3)

The authors are grateful to Dr A. Babu Vargheese, Sophisticated Analytical Instrument Facility (SAIF), IIT– Madras, Chennai, for the X-ray data collection.

References

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2004). SIR2004. University of Bari, Italy.

Enraf–Nonius (1989).CAD-4 Software. Version 5. Enraf–Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Harfenist, M., Soroko, E. F. & Mekenzie, G. M. (1978).J. Med. Chem.21, 405– 409.

Naithani, P. K., Srivastava, V. K., Barthwal, J. P., Saxena, S. K., Gupta, T. K. & Shanker, K. (1989).Indian J. Chem. Sect B,28, 299–302.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351– 359.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Verma, M., Chaturvedi, A. K., Chowdhari, A. & Parmar, S. S. (1974).J. Pharm. Sci.63, 1740–1747.

organic papers

o1128

Balamuruganet al. C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o1126–o1128

supporting information

Acta Cryst. (2006). E62, o1126–o1128 [https://doi.org/10.1107/S1600536806005794]

4-Methylacetophenone [(2-methyl-4-nitro-1

H

-imidazol-1-yl)acetyl]hydrazone

S. Balamurugan, A. Thiruvalluvar and Balakrishna Kalluraya

4-Methylacetophenone [(2-methyl-4-nitro-1H-imidazol-1-yl)acetyl]hydrazone

Crystal data

C15H17N5O3

Mr = 315.34

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 8.423 (2) Å

b = 10.577 (4) Å

c = 17.97 (3) Å

β = 89.46 (8)°

V = 1601 (3) Å3

Z = 4

F(000) = 664

Dx = 1.308 Mg m−3

Melting point = 524–525 K Cu radiation, λ = 1.54180 Å Cell parameters from 25 reflections

θ = 15–25°

µ = 0.78 mm−1

T = 298 K Plate, colourless 0.3 × 0.1 × 0.1 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω–2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.799, Tmax = 0.926

3111 measured reflections

2902 independent reflections 2512 reflections with I > 2σ(I)

Rint = 0.066

θmax = 68.0°, θmin = 4.9°

h = 0→10

k = 0→12

l = −21→21

2 standard reflections every 60 min intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.065

wR(F2) = 0.256

S = 1.14 2902 reflections 208 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1295P)2 + 1.2895P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.34 e Å−3

Δρmin = −0.20 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o1126–o1128

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O12 0.4591 (4) 1.0360 (2) 0.08760 (15) 0.0761 (10) O41 −0.0500 (4) 1.2251 (3) 0.2636 (3) 0.1033 (16) O42 0.1268 (4) 1.3437 (3) 0.31357 (19) 0.0825 (11) N1 0.3216 (3) 0.9911 (2) 0.21945 (14) 0.0478 (8) N3 0.3600 (3) 1.1705 (3) 0.27901 (17) 0.0575 (10) N4 0.0868 (4) 1.2472 (3) 0.28163 (18) 0.0611 (10) N13 0.4002 (4) 0.8454 (3) 0.03981 (16) 0.0593 (10) N14 0.3374 (3) 0.7258 (2) 0.05162 (16) 0.0536 (9) C2 0.4307 (4) 1.0689 (3) 0.25197 (17) 0.0498 (10) C4 0.2055 (4) 1.1548 (3) 0.26327 (19) 0.0525 (11) C5 0.1775 (4) 1.0444 (3) 0.22681 (19) 0.0502 (10) C11 0.3546 (4) 0.8815 (3) 0.17312 (18) 0.0520 (10) C12 0.4085 (4) 0.9265 (3) 0.09706 (18) 0.0539 (10) C15 0.3305 (4) 0.6525 (3) −0.0052 (2) 0.0592 (11) C16 0.3859 (6) 0.6823 (4) −0.0796 (2) 0.0804 (18) C17 0.2593 (4) 0.5240 (3) 0.01097 (19) 0.0585 (11) C18 0.2877 (5) 0.4236 (4) −0.0378 (2) 0.0720 (14) C19 0.2214 (6) 0.3092 (4) −0.0232 (3) 0.0865 (18) C20 0.1185 (5) 0.2868 (3) 0.0385 (3) 0.0725 (15) C21 0.0926 (5) 0.3889 (4) 0.0839 (3) 0.0716 (14) C22 0.1591 (5) 0.5055 (3) 0.0710 (2) 0.0636 (11) C23 0.0406 (7) 0.1624 (4) 0.0473 (4) 0.102 (2) C24 0.6011 (5) 1.0395 (4) 0.2551 (3) 0.0750 (16) H5 0.08064 1.01301 0.21064 0.0602* H11A 0.43694 0.83032 0.19555 0.0623* H11B 0.25981 0.83010 0.16862 0.0623* H13 0.43347 0.86733 −0.00371 0.0713* H16A 0.49766 0.69985 −0.07857 0.1201* H16B 0.36662 0.61165 −0.11181 0.1201* H16C 0.33021 0.75506 −0.09768 0.1201* H18 0.35144 0.43504 −0.07978 0.0864* H19 0.24430 0.24228 −0.05519 0.1041* H21 0.02693 0.37881 0.12538 0.0861* H22 0.13630 0.57231 0.10303 0.0765* H23A 0.07799 0.10611 0.00903 0.1524* H23B 0.06537 0.12792 0.09519 0.1524* H23C −0.07231 0.17239 0.04325 0.1524* H24A 0.62064 0.95939 0.23157 0.1120* H24B 0.66027 1.10418 0.22965 0.1120* H24C 0.63366 1.03557 0.30611 0.1120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o1126–o1128

O41 0.0594 (18) 0.088 (2) 0.162 (4) 0.0102 (15) 0.0142 (19) −0.026 (2) O42 0.098 (2) 0.0545 (17) 0.095 (2) 0.0159 (14) 0.0031 (16) −0.0164 (15) N1 0.0620 (16) 0.0339 (13) 0.0473 (14) −0.0063 (11) 0.0037 (11) −0.0038 (10) N3 0.0639 (17) 0.0463 (16) 0.0621 (18) 0.0013 (12) 0.0037 (13) −0.0082 (13) N4 0.0696 (19) 0.0400 (16) 0.0734 (19) 0.0039 (13) 0.0100 (14) −0.0011 (14) N13 0.090 (2) 0.0371 (14) 0.0507 (16) −0.0131 (13) 0.0103 (14) −0.0089 (12) N14 0.0768 (18) 0.0319 (13) 0.0521 (15) −0.0008 (12) −0.0010 (13) 0.0007 (11) C2 0.0651 (18) 0.0395 (16) 0.0449 (16) −0.0009 (13) −0.0052 (13) 0.0038 (13) C4 0.0602 (19) 0.0397 (17) 0.0574 (19) 0.0003 (13) 0.0073 (14) −0.0028 (14) C5 0.0524 (17) 0.0400 (16) 0.0579 (18) −0.0064 (13) 0.0062 (13) 0.0024 (14) C11 0.070 (2) 0.0378 (16) 0.0482 (17) −0.0047 (14) 0.0043 (14) 0.0008 (13) C12 0.078 (2) 0.0329 (16) 0.0507 (18) −0.0032 (14) 0.0087 (15) −0.0033 (13) C15 0.076 (2) 0.0469 (19) 0.0546 (19) 0.0000 (15) −0.0034 (16) −0.0097 (15) C16 0.123 (4) 0.072 (3) 0.046 (2) −0.012 (2) 0.001 (2) −0.0156 (18) C17 0.077 (2) 0.0494 (19) 0.0493 (18) 0.0018 (16) −0.0131 (16) −0.0085 (15) C18 0.097 (3) 0.049 (2) 0.070 (2) 0.0100 (19) −0.010 (2) −0.0082 (18) C19 0.106 (3) 0.051 (2) 0.103 (4) 0.004 (2) −0.029 (3) −0.020 (2) C20 0.099 (3) 0.0332 (18) 0.086 (3) −0.0009 (17) −0.036 (2) −0.0040 (17) C21 0.092 (3) 0.049 (2) 0.074 (2) −0.0074 (19) −0.016 (2) −0.0005 (19) C22 0.080 (2) 0.0417 (18) 0.069 (2) 0.0021 (16) −0.0048 (18) −0.0064 (16) C23 0.141 (5) 0.037 (2) 0.128 (4) −0.011 (2) −0.040 (4) 0.003 (2) C24 0.067 (2) 0.068 (3) 0.090 (3) 0.0099 (18) −0.006 (2) −0.023 (2)

Geometric parameters (Å, º)

O12—C12 1.245 (4) C19—C20 1.421 (8) O41—N4 1.222 (5) C20—C23 1.478 (6) O42—N4 1.220 (5) C20—C21 1.370 (7) N1—C2 1.369 (5) C21—C22 1.373 (6) N1—C5 1.344 (5) C5—H5 0.9300 N1—C11 1.453 (5) C11—H11A 0.9700 N3—C2 1.319 (5) C11—H11B 0.9700 N3—C4 1.345 (5) C16—H16A 0.9600 N4—C4 1.434 (5) C16—H16B 0.9600 N13—N14 1.387 (5) C16—H16C 0.9600 N13—C12 1.342 (5) C18—H18 0.9300 N14—C15 1.284 (5) C19—H19 0.9300 N13—H13 0.8600 C21—H21 0.9300 C2—C24 1.470 (6) C22—H22 0.9300 C4—C5 1.361 (5) C23—H23A 0.9600 C11—C12 1.513 (5) C23—H23B 0.9600 C15—C16 1.447 (6) C23—H23C 0.9600 C15—C17 1.513 (5) C24—H24A 0.9600 C17—C22 1.377 (6) C24—H24B 0.9600 C17—C18 1.396 (6) C24—H24C 0.9600 C18—C19 1.357 (7)

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o1126–o1128

O12···C2 2.982 (6) C19···H16Aviii 3.0100

O12···C24 3.250 (8) C22···H24Cvii 2.8500

O12···N13i 2.858 (6) C24···H11A 2.8200

O12···C16i 3.256 (7) H5···O41 2.6700

O41···C11ii 3.249 (7) H5···H11B 2.5600

O42···N3 2.753 (6) H5···H23Bx 2.4100

O42···C5ii 3.411 (7) H5···O42vi 2.5400

O42···C24iii 3.318 (8) H11A···N14 2.9400

O12···H16Ci 2.8400 H11A···C24 2.8200

O12···H13i 2.0300 H11A···H24A 2.1700

O12···H16Ai 2.8200 H11A···N3vii 2.4500

O41···H5 2.6700 H11B···N14 2.4600 O41···H24Biv 2.8300 H11B···H5 2.5600

O41···H11Bii 2.4100 H11B···O41vi 2.4100

O42···H5ii 2.5400 H13···C16 2.4200

O42···H24Aiii 2.5800 H13···H16A 2.2900

O42···H19v 2.7200 H13···H16C 2.2500

N1···O12 2.670 (6) H13···O12i 2.0300

N3···O42 2.753 (6) H13···C12i 3.0500

N3···C11iii 3.397 (7) H16A···N13 2.7500

N13···O12i 2.858 (6) H16A···H13 2.2900

N3···H11Aiii 2.4500 H16A···O12i 2.8200

N3···H18v 2.7700 H16A···C18viii 3.0700

N13···H16A 2.7500 H16A···C19viii 3.0100

N13···H16C 2.7200 H16B···C18 2.4800 N14···H11A 2.9400 H16B···H18 1.9600 N14···H11B 2.4600 H16C···N13 2.7200 N14···H22 2.5200 H16C···H13 2.2500 C2···O12 2.982 (6) H16C···O12i 2.8400

C5···O42vi 3.411 (7) H16C···H23Cix 2.4900

C11···O41vi 3.249 (7) H18···C16 2.6300

C11···N3vii 3.397 (7) H18···H16B 1.9600

C12···C24 3.495 (8) H18···N3xi 2.7700

C15···C18viii 3.411 (8) H18···C2xi 3.0900

C16···O12i 3.256 (7) H19···H23A 2.3100

C17···C21ix 3.555 (8) H19···O42xi 2.7200

C18···C15viii 3.411 (8) H22···N14 2.5200

C21···C17ix 3.555 (8) H22···H24Cvii 2.5800

C24···O12 3.250 (8) H23A···H19 2.3100 C24···C12 3.495 (8) H23B···C5xii 2.7000

C24···O42vii 3.318 (8) H23B···H5xii 2.4100

C2···H18v 3.0900 H23C···C15ix 2.9400

C5···H23Bx 2.7000 H23C···H16Cix 2.4900

C11···H24A 2.6200 H24A···C11 2.6200 C12···H13i 3.0500 H24A···C12 3.0400

C12···H24A 3.0400 H24A···H11A 2.1700 C15···H23Cix 2.9400 H24A···O42vii 2.5800

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, o1126–o1128

C16···H18 2.6300 H24C···C22iii 2.8500

C18···H16Aviii 3.0700 H24C···H22iii 2.5800

C2—N1—C5 108.4 (3) C17—C22—C21 120.4 (4) C2—N1—C11 126.8 (3) N1—C5—H5 128.00 C5—N1—C11 124.0 (3) C4—C5—H5 128.00 C2—N3—C4 104.9 (3) N1—C11—H11A 110.00 O41—N4—O42 123.4 (4) N1—C11—H11B 110.00 O41—N4—C4 117.7 (3) C12—C11—H11A 110.00 O42—N4—C4 118.9 (3) C12—C11—H11B 110.00 N14—N13—C12 119.2 (3) H11A—C11—H11B 108.00 N13—N14—C15 116.7 (3) C15—C16—H16A 109.00 C12—N13—H13 120.00 C15—C16—H16B 109.00 N14—N13—H13 120.00 C15—C16—H16C 109.00 N1—C2—C24 123.3 (3) H16A—C16—H16B 109.00 N1—C2—N3 110.2 (3) H16A—C16—H16C 110.00 N3—C2—C24 126.6 (3) H16B—C16—H16C 110.00 N3—C4—C5 112.3 (3) C17—C18—H18 120.00 N4—C4—C5 124.9 (3) C19—C18—H18 120.00 N3—C4—N4 122.8 (3) C18—C19—H19 118.00 N1—C5—C4 104.3 (3) C20—C19—H19 118.00 N1—C11—C12 108.7 (3) C20—C21—H21 118.00 O12—C12—N13 120.7 (3) C22—C21—H21 118.00 N13—C12—C11 118.3 (3) C17—C22—H22 120.00 O12—C12—C11 121.0 (3) C21—C22—H22 120.00 N14—C15—C17 114.3 (3) C20—C23—H23A 109.00 C16—C15—C17 119.8 (3) C20—C23—H23B 110.00 N14—C15—C16 125.9 (3) C20—C23—H23C 109.00 C18—C17—C22 118.9 (3) H23A—C23—H23B 110.00 C15—C17—C18 119.8 (3) H23A—C23—H23C 109.00 C15—C17—C22 121.1 (3) H23B—C23—H23C 109.00 C17—C18—C19 119.3 (4) C2—C24—H24A 109.00 C18—C19—C20 123.1 (4) C2—C24—H24B 109.00 C19—C20—C23 119.9 (4) C2—C24—H24C 109.00 C19—C20—C21 115.2 (4) H24A—C24—H24B 109.00 C21—C20—C23 124.8 (5) H24A—C24—H24C 109.00 C20—C21—C22 123.0 (4) H24B—C24—H24C 110.00

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, o1126–o1128

C2—N3—C4—N4 −178.2 (3) C22—C17—C18—C19 −2.7 (6) C2—N3—C4—C5 0.2 (4) C18—C17—C22—C21 2.2 (6) O41—N4—C4—N3 178.6 (4) C15—C17—C22—C21 178.5 (4) O41—N4—C4—C5 0.4 (6) C17—C18—C19—C20 2.4 (7) O42—N4—C4—N3 −0.8 (5) C18—C19—C20—C23 175.0 (5) O42—N4—C4—C5 −178.9 (4) C18—C19—C20—C21 −1.3 (7) C12—N13—N14—C15 179.2 (3) C19—C20—C21—C22 0.7 (7) N14—N13—C12—O12 −177.5 (3) C23—C20—C21—C22 −175.5 (5) N14—N13—C12—C11 2.4 (5) C20—C21—C22—C17 −1.2 (7) N13—N14—C15—C16 1.7 (5)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x−1, y, z; (v) x, −y+3/2, z+1/2; (vi) −x, y−1/2, −z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) −x+1, −y+1, −z; (ix) −x, −y+1, −z; (x) x, y+1, z; (xi) x, −y+3/2, z−1/2; (xii) x, y−1, z; (xiii) x+1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N13—H13···O12i 0.86 2.03 2.858 (6) 162

C5—H5···O42vi 0.93 2.54 3.411 (7) 156

C11—H11A···N3vii 0.97 2.45 3.397 (7) 165

C11—H11B···O41vi 0.97 2.41 3.249 (7) 145

C24—H24A···O42vii 0.96 2.58 3.318 (8) 134

Figure

Table 1Selected geometric parameters (A˚ , �).

References

Related documents

The resulting oxygen saturation curves are shown in Figure 8.9 and it is evident that if the drop in cardiac output is too high, then the application of PEEP and

Results confirm that relative AMH concentration was positively correlated with number of small antral fol- licles in the ovaries of cows; both AMH measure and antral follicle counts

A WireSketcher command object is created when the user starts to draw the wire, and the methods of this object control the drawing of the wire.. There are two

Gorganroud is one of the most important rivers in northeastern Iran; therefore the aim of this study was to study survey of Gorgnroud River water quality in Golestan Province

Table 8 shows the results from OLS regressions (for Afriat’s CCEI, HMI, MCI) and an interval regression model (for the MPI which comes in interval form). The specifications control

Usaha untuk meningkatkan produksi tanaman jagung adalah peningkatan taraf hidup petani dan memenuhi kebutuhan pasar maka perlu peningkatan produksi jagung yang memenuhi

With a few exceptions, discriminative train- ing in statistical machine translation (SMT) has been content with tuning weights for large feature sets on small development data..

This anisotropy continues to be observed in KS Ti-9 annealed at a temperature below ¢ transus followed by air cooling, but the anisotropy drastically decreases in KS Ti-9 when