• No results found

Bis­(glycolato κ2O,O′)(1,10 phenanthroline κ2N,N′)­zinc(II) dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "Bis­(glycolato κ2O,O′)(1,10 phenanthroline κ2N,N′)­zinc(II) dihydrate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1278

Shan Gaoet al. [Zn(C2H3O3)2(C12H8N2)]2H2O DOI: 10.1107/S1600536804019774 Acta Cryst.(2004). E60, m1278±m1280 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(glycolato-

j

2

O,O

000

)(1,10-phenanthroline-

j

2

N,N

000

)-zinc(II) dihydrate

Shan Gao,* Li-Hua Huo, Zhu-Yan Zhang, Hui Zhao and Jing-Gui Zhao

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.039

wRfactor = 0.087

Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The Zn atom in the title mononuclear complex, [Zn(C2H3O3)2(C12H8N2)]2H2O, exists in an octahedral coord-ination environment de®ned by two hydroxy O atoms, two carboxylate O atoms from different glycolate (hydroxy-acetate) ligands and two N atoms from one phenanthroline (phen) ligand. The Zn atom occupies a special position with twofold symmetry. A layer structure is formedviaOÐH O hydrogen bonds involving the water molecules.

Comment

Glycolic acid (hydroxyacetic acid) is a biologically active compound and has versatile binding modes. A number of structures of metal complexes containing the glycolate ligand have been reported (Venema et al., 1990; Prout et al., 1993; Svancareket al., 2000; Melikyanet al., 2000). In the structures of these complexes, the glycolate ligand coordinates to the metal ions through the hydroxy and carboxy groups with a ®ve-membered chelating mode, and the minority of hydroxyl groups of the glycolate are deprotonated (Dengelet al., 1987; Lanfranchi et al., 1993). However, ZnII complexes with glycolic acid are less well documented (Fischinger & Webb, 1969). In order to explore further the coordination behavior and solid-state structure of ZnIIwith the glycolate ligand, we have synthesized the title complex, (I), by the reaction of zinc acetate dihydrate, glycolic acid and 1,10-phenanthroline (phen), and its crystal structure is reported here.

As shown in Fig. 1, (I) has a mononuclear structure with ZnIIcoordinated to one phen and two glycolate ligands. The Zn atom lies on a twofold axis and its octahedral coordination is made up of two hydroxy O atoms, two carboxy O atoms and two phen N atoms. The ZnÐO3(hydroxy) distance [2.157 (2) AÊ] is longer that of ZnÐO1(carboxy) [2.042 (2) AÊ], and the ZnÐN distance is 2.132 (2) AÊ. The ®ve-membered ring consisting of atoms ZnII, O1, C7, C8 and O3 is essentially planar, with an r.m.s. deviation of 0.006 (3) AÊ. The dihedral angle between the ®ve-membered ring and the phen ligand is

(2)

81.5 (4). The C7ÐO1 and C7ÐO2 bond lengths [1.257 (3)

and 1.242 (3) AÊ, respectively] are nearly equivalent, indicating the extent of delocalization in the carboxylate group. Hydro-gen bonds are formed between water molecules, glycolate hydroxy O atoms and glycolate carboxy O atoms, giving rise to an OÐH O hydrogen-bonded chain along the crystal-lographic c axis (see Table 2 for hydrogen-bonding geome-tries). Furthermore, there are ± stacking interactions between adjacent phen ligands [centroid±centroid distance = 3.553 (3) AÊ], resulting in an extended layer structure parallel to thebcplane.

Experimental

1,10-Phenanthroline (1.35 g, 7.5 mmol) was dissolved in water± ethanol (1:1, 50 ml) and glycolic acid (1.14 g, 15 mmol) and zinc acetate dihydrate (3.00 g, 15 mmol) were added. The pH was adjusted to 6 with 0.2 M NaOH solution. The reaction mixture was then stirred at room temperature for 3 h and ®ltered. Colorless single crystals were obtained from the ®ltered solution over several days. Analysis calculated for C16H18N2O8Zn: C 44.51, H 4.20, N 6.50%; found: C 44.38, H 4.12, N 6.32%.

Crystal data

[Zn(C2H3O3)2(C12H8N2)]2H2O

Mr= 431.71 Monoclinic, C2=c a= 8.2827 (9) AÊ

b= 24.480 (4) AÊ

c= 9.1094 (8) AÊ

= 109.588 (4) V= 1740.1 (4) AÊ3

Z= 4

Dx= 1.648 Mg mÿ3 MoKradiation Cell parameters from 6065

re¯ections

= 3.6±27.4

= 1.46 mmÿ1

T= 293 (2) K Prism, colorless 0.390.250.18 mm Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.593,Tmax= 0.771

8212 measured re¯ections

1999 independent re¯ections 1625 re¯ections withI> 2(I)

Rint= 0.043

max= 27.5

h=ÿ10!10

k=ÿ31!31

l=ÿ11!11 Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.039

wR(F2) = 0.087

S= 1.07 1999 re¯ections 126 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0474P)2 + 0.5291P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.41 e AÊÿ3

min=ÿ0.31 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Zn1ÐN1 2.132 (2)

Zn1ÐO1 2.042 (2)

Zn1ÐO3 2.157 (2)

O1ÐC7 1.257 (3)

O2ÐC7 1.242 (3)

N1ÐZn1ÐN1i 78.1 (1)

N1ÐZn1ÐO3i 167.08 (7)

N1ÐZn1ÐO3 92.02 (8)

O1iÐZn1ÐN1 96.10 (7)

O1ÐZn1ÐO1i 160.6 (1)

O1ÐZn1ÐO3 77.06 (7)

O1ÐZn1ÐO3i 90.27 (7)

O1iÐZn1ÐN1i 98.95 (7)

O3iÐZn1ÐO3 98.9 (1)

N1iÐZn1ÐO3 167.08 (7)

Symmetry code: (i) 1ÿx;y;3 2ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1WÐH1W O1 0.85 2.01 2.857 (3) 171

O1WÐH2W O2ii 0.85 2.14 2.989 (4) 179

O3ÐH10 O2iii 0.84 (3) 1.81 (3) 2.639 (3) 169 (3)

Symmetry codes: (ii)ÿx;y;1

2ÿz; (iii)12‡x;12ÿy;12‡z.

H atoms bonded to carbon were placed in calculated positions, with CÐH = 0.93 or 0.97 AÊ and Uiso(H) = 1.2Ueq(C), and were

metal-organic papers

Acta Cryst.(2004). E60, m1278±m1280 Shan Gaoet al. [Zn(C2H3O3)2(C12H8N2)]2H2O

m1279

Figure 2

Packing diagram of the complex, viewed perpendicular to thebcplane. All CÐH H atoms have been omitted for clarity.

Figure 1

View of the title compound, with 30% probability ellipsoids for the non-H atoms [symmetry code: (i) 1ÿx, y,3

(3)

included in the re®nement in the riding-model approximation. Water H atoms were located in difference Fourier maps and then included in ®xed positions, with OÐH = 0.85 AÊ andUiso(H) = 1.5Ueq(O). The H atom of the carboxy group was located from a difference Fourier and re®ned, with OÐH = 0.84 (3) AÊ andUiso(H) = 1.5Ueq(O).

Data collection: RAPID-AUTO(Rigaku, 1998); cell re®nement:

RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), the Outstanding Teacher Foundation of Heilongjiang Province and Heilongjiang University.

References

Dengel, A. C., Grif®th, W. P., Powell, R. D. & Skapski, A. C. (1987).J. Chem. Soc. Dalton Trans.pp. 991±995.

Fischinger, A. J. & Webb, L. E. (1969).J. Chem. Soc. D, pp. 407±408. Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Lanfranchi, M., Prati, L., Rossi, M. & Tiripicchio, A. (1993).J. Chem. Soc. Chem. Commun.pp. 1698±1699.

Melikyan, G. G., Amiryan, F., Visi, M., Hardcastle, K. I., Bales, B. L., Aslanyan, G. & Badanyan, S. H. (2000).Inorg. Chim. Acta,308, 45±50.

Prout, K., Mtetwa, V. S. B. & Rossotti, F. J. C. (1993).Acta Cryst.B49, 73±79. Rigaku (1998).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002).CrystalStructure.Rigaku/MSC, 9009 New Trails Drive,

The Woodlands, TX 77381, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Svancarek, P., Schwendt, P., Tatiersky, J., Smatanova, I. & Marek, J. (2000).

Monatsh. Chem.131, 145±147.

Venema, F. R., van Konigsveld, H., Peters, J. A. & van Bekkum, H. (1990).

Chem. Commun.pp. 699±700.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m1278–m1280

supporting information

Acta Cryst. (2004). E60, m1278–m1280 [https://doi.org/10.1107/S1600536804019774]

Bis(glycolato-

κ

2

O,O

)(1,10-phenanthroline-

κ

2

N,N

)zinc(II) dihydrate

Shan Gao, Li-Hua Huo, Zhu-Yan Zhang, Hui Zhao and Jing-Gui Zhao

Bis(glycolato-κ2O,O)(1,10-phenanthroline-κ2N,N)zinc(II) dihydrate

Crystal data

[Zn(C2H3O3)2(C12H8N2)]·2H2O Mr = 431.71

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 8.2827 (9) Å

b = 24.480 (4) Å

c = 9.1094 (8) Å

β = 109.588 (4)°

V = 1740.1 (4) Å3 Z = 4

F(000) = 888

Dx = 1.648 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 6065 reflections

θ = 3.6–27.4°

µ = 1.46 mm−1 T = 293 K Prism, colorless 0.39 × 0.25 × 0.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10 pixels mm-1 ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.593, Tmax = 0.771

8212 measured reflections 1999 independent reflections 1625 reflections with I > 2σ(I)

Rint = 0.043

θmax = 27.5°, θmin = 3.3° h = −10→10

k = −31→31

l = −11→11

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.087 S = 1.07 1999 reflections 126 parameters 4 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0474P)2 + 0.5291P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.41 e Å−3

Δρmin = −0.31 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Zn1 0.5000 0.350674 (15) 0.7500 0.03140 (14)

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m1278–m1280

O1 0.3222 (2) 0.33661 (7) 0.5358 (2) 0.0402 (4)

O2 0.2569 (3) 0.29526 (8) 0.3085 (2) 0.0539 (5)

O3 0.6282 (2) 0.29339 (7) 0.6466 (2) 0.0423 (4)

O1W −0.0277 (4) 0.37097 (12) 0.4280 (4) 0.0930 (9) C1 0.7541 (4) 0.41763 (12) 0.6316 (3) 0.0462 (6) C2 0.8253 (4) 0.46560 (14) 0.5964 (3) 0.0573 (8) C3 0.7688 (4) 0.51427 (13) 0.6263 (3) 0.0583 (8) C4 0.6356 (4) 0.51724 (11) 0.6886 (3) 0.0484 (7)

C5 0.5688 (3) 0.46728 (9) 0.7192 (3) 0.0379 (6)

C6 0.5642 (4) 0.56665 (11) 0.7212 (3) 0.0614 (9)

C7 0.3557 (3) 0.30433 (9) 0.4426 (3) 0.0363 (5)

C8 0.5273 (4) 0.27643 (11) 0.4950 (3) 0.0482 (7)

H1 0.7958 0.3841 0.6119 0.055*

H2 0.9116 0.4637 0.5525 0.069*

H3 0.8181 0.5462 0.6055 0.070*

H6 0.6080 0.5998 0.7018 0.074*

H8A 0.5109 0.2372 0.4944 0.058*

H8B 0.5872 0.2848 0.4226 0.058*

H10 0.681 (4) 0.2675 (9) 0.703 (3) 0.063*

H1W 0.0723 0.3572 0.4616 0.139*

H2W −0.0927 0.3496 0.3600 0.139*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Zn1 0.0344 (2) 0.0296 (2) 0.0273 (2) 0.000 0.00650 (15) 0.000 N1 0.0395 (11) 0.0384 (11) 0.0290 (10) −0.0045 (9) 0.0078 (9) 0.0002 (8) O1 0.0355 (9) 0.0442 (10) 0.0352 (9) 0.0037 (7) 0.0043 (8) −0.0052 (7) O2 0.0663 (13) 0.0431 (10) 0.0356 (10) −0.0009 (9) −0.0048 (9) −0.0073 (8) O3 0.0479 (11) 0.0386 (10) 0.0350 (9) 0.0110 (8) 0.0067 (8) 0.0021 (7) O1W 0.0634 (16) 0.0872 (18) 0.121 (2) 0.0158 (14) 0.0220 (16) −0.0201 (18) C1 0.0447 (15) 0.0532 (16) 0.0386 (13) −0.0087 (12) 0.0109 (12) −0.0022 (12) C2 0.0478 (17) 0.080 (2) 0.0429 (16) −0.0217 (16) 0.0137 (14) 0.0049 (15) C3 0.064 (2) 0.0555 (19) 0.0454 (16) −0.0252 (16) 0.0053 (15) 0.0076 (14) C4 0.0612 (18) 0.0370 (14) 0.0322 (13) −0.0122 (12) −0.0040 (13) 0.0049 (11) C5 0.0471 (14) 0.0325 (12) 0.0238 (11) −0.0043 (10) −0.0020 (10) 0.0017 (9) C6 0.082 (2) 0.0307 (13) 0.0497 (18) −0.0105 (13) −0.0071 (16) 0.0054 (12) C7 0.0460 (14) 0.0261 (11) 0.0338 (12) −0.0077 (10) 0.0093 (11) −0.0003 (9) C8 0.0621 (18) 0.0451 (15) 0.0332 (12) 0.0157 (13) 0.0103 (12) −0.0006 (11)

Geometric parameters (Å, º)

Zn1—N1 2.132 (2) C1—C2 1.399 (4)

Zn1—O1 2.042 (2) C1—H1 0.9300

Zn1—O3 2.157 (2) C2—C3 1.341 (5)

O1—C7 1.257 (3) C2—H2 0.9300

O2—C7 1.242 (3) C3—C4 1.401 (4)

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m1278–m1280

Zn1—O1i 2.042 (2) C4—C5 1.408 (3)

Zn1—O3i 2.157 (2) C4—C6 1.421 (4)

N1—C1 1.324 (3) C5—C5i 1.430 (5)

N1—C5 1.353 (3) C6—C6i 1.335 (7)

O3—C8 1.416 (3) C6—H6 0.9300

O3—H10 0.84 (3) C7—C8 1.504 (4)

O1W—H1W 0.8500 C8—H8A 0.9700

O1W—H2W 0.8500 C8—H8B 0.9700

N1—Zn1—N1i 78.1 (1) C1—N1—C5 118.4 (2)

N1—Zn1—O3i 167.08 (7) C1—N1—Zn1 128.3 (2)

N1—Zn1—O3 92.02 (8) C1—C2—H2 120.1

O1i—Zn1—N1 96.10 (7) C2—C1—H1 118.9

O1—Zn1—N1i 96.10 (7) C2—C3—C4 120.3 (3)

O1—Zn1—O1i 160.6 (1) C2—C3—H3 119.9

O1—Zn1—O3 77.06 (7) C3—C2—C1 119.8 (3)

O1—Zn1—O3i 90.27 (7) C3—C2—H2 120.1

O1i—Zn1—N1i 98.95 (7) C3—C4—C5 116.7 (3)

O1i—Zn1—O3i 77.06 (7) C3—C4—C6 124.6 (3)

O1i—Zn1—O3 90.27 (7) C4—C3—H3 119.9

O3i—Zn1—O3 98.9 (1) C4—C5—C5i 119.7 (2)

Zn1—O3—H10 117 (2) C4—C6—H6 119.2

N1i—Zn1—O3i 92.02 (8) C5—N1—Zn1 113.3 (2)

N1i—Zn1—O3 167.08 (7) C5—C4—C6 118.6 (3)

N1—C1—C2 122.2 (3) C6i—C6—C4 121.6 (2)

N1—C1—H1 118.9 C6i—C6—H6 119.2

N1—C5—C4 122.6 (3) C7—O1—Zn1 120.0 (2)

N1—C5—C5i 117.7 (1) C7—C8—H8A 109.4

O1—C7—C8 118.1 (2) C7—C8—H8B 109.4

O2—C7—O1 123.7 (3) C8—O3—Zn1 113.6 (2)

O2—C7—C8 118.2 (2) C8—O3—H10 113 (2)

O3—C8—C7 111.2 (2) H1W—O1W—H2W 108.8

O3—C8—H8A 109.4 H8A—C8—H8B 108.0

O3—C8—H8B 109.4

Zn1—N1—C1—C2 178.69 (19) O2—C7—C8—O3 176.6 (2)

Zn1—N1—C5—C4 −179.80 (19) O3i—Zn1—N1—C1 141.0 (3)

Zn1—N1—C5—C5i 0.0 (3) O3—Zn1—N1—C1 −6.7 (2)

Zn1—O1—C7—O2 −177.24 (18) O3i—Zn1—N1—C5 −40.7 (4)

Zn1—O1—C7—C8 0.9 (3) O3—Zn1—N1—C5 171.61 (16)

Zn1—O3—C8—C7 1.5 (3) O3i—Zn1—O1—C7 −99.06 (18)

N1i—Zn1—N1—C1 −178.3 (3) O3—Zn1—O1—C7 0.00 (17)

N1i—Zn1—N1—C5 0.00 (12) O3i—Zn1—O3—C8 87.31 (18)

N1—Zn1—O1—C7 90.03 (18) C1—N1—C5—C4 −1.3 (4)

N1i—Zn1—O1—C7 168.88 (18) C1—N1—C5—C5i 178.5 (2)

N1—Zn1—O3—C8 −99.63 (18) C1—C2—C3—C4 −1.7 (5)

N1i—Zn1—O3—C8 −60.0 (4) C2—C3—C4—C5 0.9 (4)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m1278–m1280

O1—Zn1—N1—C1 −83.9 (2) C3—C4—C5—N1 0.6 (4)

O1i—Zn1—N1—C1 83.8 (2) C3—C4—C5—C5i −179.2 (3)

O1—Zn1—N1—C5 94.40 (16) C3—C4—C6—C6i 179.2 (3)

O1i—Zn1—N1—C5 −97.90 (16) C5—N1—C1—C2 0.5 (4)

O1i—Zn1—O1—C7 −50.39 (17) C5—C4—C6—C6i −0.3 (5)

O1—Zn1—O3—C8 −0.91 (17) C6—C4—C5—N1 −179.8 (2)

O1i—Zn1—O3—C8 164.25 (18) C6—C4—C5—C5i 0.4 (4)

O1—C7—C8—O3 −1.6 (3)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1W—H1W···O1 0.85 2.01 2.857 (3) 171

O1W—H2W···O2ii 0.85 2.14 2.989 (4) 179

O3—H10···O2iii 0.84 (3) 1.81 (3) 2.639 (3) 169 (3)

References

Related documents

In the crystal packing, the complex molecules and solvate water molecules are associated via intermolecular hydrogen bonds (Table 1 and Fig. 2) that involve O—H interactions of

The molecular structure (one of two independent molecules within the asymmetric unit) of the title complex with the non-hydrogen atoms depicted as thermal ellipsoids at the

In the crystal, the complex molecules are interlinked through the water mol- ecule by O—H Ocarboxylate hydrogen bonds, together with weak C—H O and bipyridine ring –

In the crystal, the complexes are linked into a three-dimensional supramolecular network by both O—H O hydrogen-bonding interactions between water molecules and the

In the crystal structure, there are intermolecular O—H···O hydrogen bonds involving the carboxyl oxygen atoms and coordinated water molecules (Fig.. In addition to weak

In the crystal structure, the water molecules act as both donors and acceptors to form O—H···O hydrogen bonds

A two-dimensional hydrogen-bonding network is formed by O atoms of benzene- tetracarboxylate and the coordinated water

In the crystal packing, the complex molecules are linked through OÐH O hydrogen-bonding interactions between the uncoordinated carboxyl O atoms and the coordinated methanol O