• No results found

N [5 (1 Naphth­yl)pyrimidin 4 yl]acetamide oxime

N/A
N/A
Protected

Academic year: 2020

Share "N [5 (1 Naphth­yl)pyrimidin 4 yl]acetamide oxime"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2007). E63, o195–o196 doi:10.1107/S1600536806052226 Okudaet al. C

16H14N4O

o195

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N

-[5-(1-Naphthyl)pyrimidin-4-yl]acetamide oxime

Kensuke Okuda,aHiromi Watanabe,aTakashi Hirotaaand Hiroyuki Ishidab*

aFaculty of Pharmaceutical Sciences, Okayama

University, Okayama 700-8530, Japan, and

bDepartment of Chemistry, Faculty of Science,

Okayama University, Okayama 700-8530, Japan

Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study T= 250 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.059 wRfactor = 0.182

Data-to-parameter ratio = 20.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 1 December 2006 Accepted 3 December 2006

#2007 International Union of Crystallography All rights reserved

In the asymmetric unit of the title compound, C16H14N4O,

there are two crystallographically independent molecules, which are connected to each other by O—H N hydrogen bonds, forming a molecular chain. The neighboring chains are linked into a layer through–stacking interactions.

Comment

As part of our investigation to prepare anti-advanced glyca-tion end-product (AGEs) agents, we have developed a pyri-midine ring-opening reaction accompanied by the formation of a 1,2,4-oxadiazole ring by the reaction of various 4-pyri-midinylamidines or amide oximes with hydroxylamine hydrochloride (Sasaki et al., 2001). The title compound, (I), was prepared as a reaction substrate of this reaction. A methanol solution of the compound on silica gel thin-layer chromatography (TLC) gave a single spot but it changed to two spots gradually, suggesting that the compound changed to an equilibrium mixture of two compounds. In order to obtain fundamental information about this phenomenon, an X-ray crystal structure analysis of (I) was undertaken.

In the asymmetric unit of (I), there are two crystal-lographically independent molecules, A and B (Fig. 1). Each molecule has an intramolecular N—H O hydrogen bond (Table 1), which makes non-H atoms in the acetamide oxime unit coplanar; the r.m.s. deviations are 0.007 and 0.006 A˚ for molecule A and B, respectively. The geometries of both mol-ecules are essentially the same; the dihedral angles between the naphthalene and pyrimidine rings are 67.40 (7) and 69.35 (7) for molecules A and B, respectively, and those

between the pyrimidine ring and the acetamide oxime plane are 19.98 (8) and 14.57 (9), respectively.

(2)

naphtha-lene rings of A, giving a molecular layer extending parallel to the (110) plane. The centroid–centroid and interplanar distances are 3.9212 (11) and 3.404 (5) A˚ , respectively, for the prymidine rings, and 4.2445 (11) and 4.086 (2) A˚ for the naphthalene rings.

The TLC phenomenon mentioned above might be explained in terms of the molecular structure. In the molecule, three distinct planes, viz. naphthalene, pyrimidine and acet-amide oxime, are connected by single bonds, around which the rotation of these planes is hindered by intramolecular inter-actions. In a methanol solution, one single bond may cause a set of atropisomers by these interactions, so that the two single bonds cause two diastereomers. We suggest the new spot on silica gel TLC is derived from another diastereomer.

Experimental

Hydroxylamine hydrochloride (83.4 mg, 1.2 mmol) was dissolved in a solution of N1,N1-dimethyl-N2 -[5-(1-naphthyl)pyrimidin-4-yl]aceta-midine (290 mg, 1.0 mmol) in methanol (4 ml) at ca 283 K, then stirred at the same temperature for 1.5 h. The mixture was cloudy

221 mg, 79.5%; m.p. 412–416 K). Single crystals suitable for X-ray diffraction were obtained from a methanol solution.

Crystal data

C16H14N4O Mr= 278.31

Triclinic,P1 a= 10.8011 (6) A˚ b= 11.6051 (6) A˚ c= 12.8489 (8) A˚

= 63.3951 (16) = 76.8282 (16) = 89.5278 (19)

V= 1394.00 (14) A˚3 Z= 4

Dx= 1.326 Mg m

3

MoKradiation

= 0.09 mm1 T= 250 (2) K Plate, colorless 0.380.300.10 mm

Data collection

Rigaku R-AXIS RAPID-II diffractometer

!scans

Absorption correction: none 24844 measured reflections

8057 independent reflections 4461 reflections withI> 2(I) Rint= 0.065

max= 30.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.059 wR(F2) = 0.182 S= 0.98 8057 reflections 396 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0969P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.19 e A˚

3

min=0.29 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1O N5i

0.86 (2) 1.89 (2) 2.744 (2) 175.4 (19) O2—H2O N1 0.88 (2) 1.89 (2) 2.762 (2) 172.7 (18) N3—H3N O1 0.90 (2) 2.064 (19) 2.4878 (17) 107.5 (15) N7—H7N O2 0.870 (19) 2.097 (18) 2.5068 (18) 108.0 (14) Symmetry code: (i)x1;yþ1;z1.

O-bound and N-bound H atoms were found in a difference Fourier map and refined isotropically (refined distances given in Table 1). Other H atoms were positioned geometrically (C—H = 0.93–0.96 A˚ ) and refined as riding, withUiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure

(Rigaku/MSC, 2004); program(s) used to solve structure:SHELXS97

(Sheldrick, 1997); program(s) used to refine structure:SHELXL97

(Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:CrystalStructure

andPLATON(Spek, 2003).

This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 16550014) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Rigaku/MSC. (2004).PROCESS-AUTOandCrystalStructure(Version 3.7.0). Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sasaki, K., Zhang, Y.-X., Okuda, K. & Hirota, T. (2001).J. Heterocycl. Chem. 38, 425–429.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Figure 1

[image:2.610.45.294.277.429.2]

The asymmetric unit of (I), showing two independent molecules designated by A and B. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level. Dashed lines indicate hydrogen bonds.

Figure 2

Packing diagram of (I), showing the hydrogen bonds (dashed lines) and the-stacking interactions (dotted lines). [Symmetry codes: (i) 1x,

(3)

supporting information

sup-1

Acta Cryst. (2007). E63, o195–o196

supporting information

Acta Cryst. (2007). E63, o195–o196 [https://doi.org/10.1107/S1600536806052226]

N

-[5-(1-Naphthyl)pyrimidin-4-yl]acetamide oxime

Kensuke Okuda, Hiromi Watanabe, Takashi Hirota and Hiroyuki Ishida

N-[5-(1-Naphthyl)pyrimidin-4-yl]acetamide oxime

Crystal data

C16H14N4O

Mr = 278.31 Triclinic, P1 Hall symbol: -P 1

a = 10.8011 (6) Å

b = 11.6051 (6) Å

c = 12.8489 (8) Å

α = 63.3951 (16)°

β = 76.8282 (16)°

γ = 89.5278 (19)°

V = 1394.00 (14) Å3

Z = 4

F(000) = 584.00

Dx = 1.326 Mg m−3

Mo radiation, λ = 0.71075 Å Cell parameters from 14565 reflections

θ = 3.0–30.0°

µ = 0.09 mm−1

T = 250 K Plate, colorless 0.38 × 0.30 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID-II diffractometer

Detector resolution: 10.00 pixels mm-1

ω scans

24844 measured reflections 8057 independent reflections

4461 reflections with I > 2σ(I)

Rint = 0.065

θmax = 30.0°

h = −15→15

k = −16→14

l = −18→18

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.059

wR(F2) = 0.182

S = 0.98 8057 reflections 396 parameters 0 restraints

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0969P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.19 e Å−3

Δρmin = −0.29 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 −0.04449 (11) 0.72598 (12) −0.02991 (10) 0.0559 (3) O2 0.47007 (12) 0.21978 (13) 0.44912 (11) 0.0614 (4) N1 0.33828 (15) 0.35923 (14) 0.27913 (13) 0.0567 (4) N2 0.30864 (12) 0.49534 (13) 0.08461 (12) 0.0476 (3) N3 0.11721 (12) 0.58780 (12) 0.06085 (10) 0.0402 (3) N4 0.04303 (12) 0.69267 (13) −0.11028 (10) 0.0463 (3) N5 0.78779 (15) −0.16030 (14) 0.83121 (14) 0.0587 (4) N6 0.78593 (12) −0.03469 (14) 0.62523 (13) 0.0518 (3) N7 0.61025 (13) 0.07402 (13) 0.57141 (11) 0.0427 (3) N8 0.57076 (13) 0.18216 (13) 0.38248 (11) 0.0513 (3) C1 0.01803 (16) 0.48307 (15) 0.31973 (12) 0.0462 (4) C2 −0.07889 (19) 0.38326 (17) 0.38622 (14) 0.0599 (5)

H2 −0.0644 0.3007 0.3950 0.072*

C3 −0.1996 (2) 0.4038 (2) 0.44119 (17) 0.0710 (6)

H3 −0.2637 0.3349 0.4860 0.085*

C4 −0.22295 (18) 0.5247 (2) 0.42895 (15) 0.0645 (5)

H4 −0.3038 0.5378 0.4634 0.077*

C5 −0.14543 (18) 0.75530 (18) 0.35143 (15) 0.0574 (4)

H5 −0.2259 0.7706 0.3846 0.069*

C6 −0.04983 (19) 0.85490 (18) 0.29153 (16) 0.0616 (5)

H6 −0.0650 0.9366 0.2849 0.074*

C7 0.07051 (18) 0.83380 (17) 0.24039 (16) 0.0573 (4)

H7 0.1359 0.9017 0.2003 0.069*

C8 0.09417 (15) 0.71536 (15) 0.24816 (14) 0.0475 (4)

H8 0.1752 0.7039 0.2124 0.057*

C9 −0.00263 (15) 0.60869 (15) 0.30991 (12) 0.0430 (3) C10 −0.12578 (15) 0.62982 (16) 0.36463 (13) 0.0490 (4) C11 0.14374 (15) 0.45955 (14) 0.26067 (13) 0.0423 (3) C12 0.22162 (17) 0.38127 (15) 0.32642 (14) 0.0526 (4)

H12 0.1918 0.3404 0.4097 0.063*

C13 0.37459 (17) 0.41987 (16) 0.16029 (16) 0.0535 (4)

H13 0.4561 0.4082 0.1256 0.064*

C14 0.19194 (14) 0.51403 (14) 0.13353 (12) 0.0387 (3) C15 0.12498 (14) 0.62361 (13) −0.05942 (12) 0.0385 (3) C16 0.22325 (16) 0.58013 (17) −0.13202 (14) 0.0531 (4) H16A 0.2232 0.4878 −0.0894 0.080* H16B 0.3060 0.6217 −0.1457 0.080* H16C 0.2040 0.6028 −0.2078 0.080* C17 0.47810 (15) −0.01293 (14) 0.82413 (12) 0.0416 (3) C18 0.37447 (17) −0.10496 (16) 0.88365 (14) 0.0524 (4) H18 0.3844 −0.1894 0.8958 0.063* C19 0.25289 (18) −0.07460 (18) 0.92704 (16) 0.0603 (5) H19 0.1841 −0.1389 0.9678 0.072* C20 0.23632 (16) 0.04897 (17) 0.90920 (14) 0.0543 (4)

(5)

supporting information

sup-3

Acta Cryst. (2007). E63, o195–o196

C21 0.32672 (16) 0.27622 (16) 0.82942 (14) 0.0522 (4)

H21 0.2463 0.2979 0.8547 0.063*

C22 0.42834 (17) 0.36959 (17) 0.77440 (16) 0.0576 (4)

H22 0.4170 0.4537 0.7626 0.069*

C23 0.54950 (17) 0.33825 (16) 0.73590 (16) 0.0557 (4)

H23 0.6188 0.4019 0.6994 0.067*

C24 0.56796 (15) 0.21627 (15) 0.75083 (14) 0.0465 (4)

H24 0.6495 0.1979 0.7241 0.056*

C25 0.46377 (13) 0.11615 (14) 0.80699 (12) 0.0392 (3) C26 0.34032 (14) 0.14759 (15) 0.84902 (12) 0.0424 (3) C27 0.60582 (14) −0.04808 (14) 0.78141 (13) 0.0417 (3) C28 0.67047 (17) −0.12698 (16) 0.86208 (15) 0.0526 (4) H28 0.6309 −0.1597 0.9435 0.063* C29 0.83767 (17) −0.11026 (17) 0.71363 (18) 0.0591 (5) H29 0.9193 −0.1308 0.6901 0.071* C30 0.66898 (14) −0.00305 (14) 0.65795 (13) 0.0410 (3) C31 0.63956 (15) 0.10959 (14) 0.44876 (12) 0.0428 (3) C32 0.74810 (18) 0.06245 (19) 0.38940 (15) 0.0640 (5) H32A 0.7396 −0.0306 0.4296 0.096* H32B 0.8272 0.0952 0.3936 0.096* H32C 0.7475 0.0923 0.3067 0.096* H1O −0.099 (2) 0.757 (2) −0.072 (2) 0.090 (8)* H3N 0.0453 (18) 0.6067 (18) 0.0991 (17) 0.065 (5)* H2O 0.434 (2) 0.265 (2) 0.390 (2) 0.080 (7)* H7N 0.5380 (17) 0.0975 (18) 0.5978 (17) 0.059 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C10 0.0487 (9) 0.0669 (10) 0.0311 (7) 0.0081 (8) −0.0080 (7) −0.0231 (7) C11 0.0546 (9) 0.0406 (8) 0.0346 (7) 0.0096 (6) −0.0183 (6) −0.0164 (6) C12 0.0725 (12) 0.0487 (9) 0.0383 (8) 0.0128 (8) −0.0265 (8) −0.0157 (7) C13 0.0562 (10) 0.0599 (10) 0.0566 (10) 0.0244 (8) −0.0281 (8) −0.0311 (8) C14 0.0435 (8) 0.0413 (7) 0.0349 (7) 0.0126 (6) −0.0168 (6) −0.0174 (6) C15 0.0393 (8) 0.0425 (7) 0.0289 (6) 0.0062 (6) −0.0103 (6) −0.0115 (6) C16 0.0556 (10) 0.0680 (10) 0.0363 (8) 0.0152 (8) −0.0105 (7) −0.0251 (7) C17 0.0477 (8) 0.0469 (8) 0.0300 (6) 0.0094 (7) −0.0145 (6) −0.0153 (6) C18 0.0603 (10) 0.0480 (9) 0.0426 (8) 0.0016 (8) −0.0081 (7) −0.0176 (7) C19 0.0535 (11) 0.0667 (11) 0.0480 (9) −0.0119 (9) 0.0032 (8) −0.0225 (8) C20 0.0447 (9) 0.0713 (11) 0.0428 (8) 0.0032 (8) −0.0029 (7) −0.0263 (8) C21 0.0506 (9) 0.0625 (10) 0.0470 (9) 0.0176 (8) −0.0110 (7) −0.0289 (8) C22 0.0625 (11) 0.0501 (9) 0.0635 (11) 0.0153 (8) −0.0135 (9) −0.0301 (8) C23 0.0548 (10) 0.0490 (9) 0.0610 (10) 0.0049 (8) −0.0072 (8) −0.0268 (8) C24 0.0405 (8) 0.0517 (9) 0.0494 (9) 0.0092 (7) −0.0091 (7) −0.0261 (7) C25 0.0416 (8) 0.0472 (8) 0.0308 (6) 0.0112 (6) −0.0121 (6) −0.0182 (6) C26 0.0405 (8) 0.0538 (9) 0.0319 (7) 0.0090 (7) −0.0074 (6) −0.0196 (6) C27 0.0488 (9) 0.0426 (8) 0.0393 (7) 0.0135 (6) −0.0196 (6) −0.0197 (6) C28 0.0655 (11) 0.0530 (9) 0.0471 (9) 0.0187 (8) −0.0292 (8) −0.0228 (7) C29 0.0536 (10) 0.0642 (11) 0.0824 (13) 0.0292 (8) −0.0340 (9) −0.0457 (10) C30 0.0411 (8) 0.0455 (8) 0.0430 (8) 0.0134 (6) −0.0175 (6) −0.0227 (6) C31 0.0447 (8) 0.0475 (8) 0.0320 (7) 0.0042 (7) −0.0071 (6) −0.0158 (6) C32 0.0649 (12) 0.0790 (13) 0.0440 (9) 0.0191 (9) −0.0055 (8) −0.0286 (9)

Geometric parameters (Å, º)

O1—N4 1.4199 (16) C8—H8 0.9300

O1—H1O 0.86 (2) C9—C10 1.431 (2)

O2—N8 1.4175 (17) C11—C12 1.368 (2)

O2—H2O 0.88 (2) C11—C14 1.4256 (19)

N1—C13 1.323 (2) C12—H12 0.9300

N1—C12 1.344 (2) C13—H13 0.9300

N2—C13 1.3277 (19) C15—C16 1.488 (2) N2—C14 1.3369 (18) C16—H16A 0.9600 N3—C14 1.3684 (18) C16—H16B 0.9600 N3—C15 1.3907 (17) C16—H16C 0.9600 N3—H3N 0.901 (18) C17—C18 1.370 (2) N4—C15 1.2790 (18) C17—C25 1.426 (2)

N5—C29 1.326 (2) C17—C27 1.489 (2)

N5—C28 1.346 (2) C18—C19 1.412 (2)

N6—C29 1.327 (2) C18—H18 0.9300

N6—C30 1.3401 (18) C19—C20 1.364 (2)

N7—C30 1.3638 (18) C19—H19 0.9300

N7—C31 1.3951 (18) C20—C26 1.415 (2)

N7—H7N 0.870 (18) C20—H20 0.9300

N8—C31 1.274 (2) C21—C22 1.363 (2)

C1—C2 1.376 (2) C21—C26 1.411 (2)

(7)

supporting information

sup-5

Acta Cryst. (2007). E63, o195–o196

C1—C11 1.485 (2) C22—C23 1.396 (2)

C2—C3 1.407 (3) C22—H22 0.9300

C2—H2 0.9300 C23—C24 1.360 (2)

C3—C4 1.368 (3) C23—H23 0.9300

C3—H3 0.9300 C24—C25 1.427 (2)

C4—C10 1.413 (2) C24—H24 0.9300

C4—H4 0.9300 C25—C26 1.4294 (19)

C5—C6 1.362 (3) C27—C28 1.367 (2)

C5—C10 1.409 (2) C27—C30 1.423 (2)

C5—H5 0.9300 C28—H28 0.9300

C6—C7 1.390 (2) C29—H29 0.9300

C6—H6 0.9300 C31—C32 1.487 (2)

C7—C8 1.359 (2) C32—H32A 0.9600

C7—H7 0.9300 C32—H32B 0.9600

C8—C9 1.421 (2) C32—H32C 0.9600

N4—O1—H1O 98.9 (15) N3—C15—C16 122.39 (13) N8—O2—H2O 97.5 (14) C15—C16—H16A 109.5 C13—N1—C12 114.56 (14) C15—C16—H16B 109.5 C13—N2—C14 116.63 (13) H16A—C16—H16B 109.5 C14—N3—C15 130.23 (13) C15—C16—H16C 109.5 C14—N3—H3N 115.0 (13) H16A—C16—H16C 109.5 C15—N3—H3N 114.2 (13) H16B—C16—H16C 109.5 C15—N4—O1 111.06 (12) C18—C17—C25 119.44 (14) C29—N5—C28 114.32 (14) C18—C17—C27 120.44 (14) C29—N6—C30 116.43 (14) C25—C17—C27 120.08 (13) C30—N7—C31 130.34 (13) C17—C18—C19 121.52 (16) C30—N7—H7N 115.1 (12) C17—C18—H18 119.2 C31—N7—H7N 114.1 (13) C19—C18—H18 119.2 C31—N8—O2 111.40 (12) C20—C19—C18 120.04 (15) C2—C1—C9 119.40 (15) C20—C19—H19 120.0 C2—C1—C11 120.27 (15) C18—C19—H19 120.0 C9—C1—C11 120.32 (13) C19—C20—C26 120.78 (15) C1—C2—C3 121.27 (17) C19—C20—H20 119.6

C1—C2—H2 119.4 C26—C20—H20 119.6

C3—C2—H2 119.4 C22—C21—C26 121.77 (15) C4—C3—C2 120.23 (17) C22—C21—H21 119.1

C4—C3—H3 119.9 C26—C21—H21 119.1

C2—C3—H3 119.9 C21—C22—C23 119.64 (15) C3—C4—C10 120.85 (17) C21—C22—H22 120.2

C3—C4—H4 119.6 C23—C22—H22 120.2

C10—C4—H4 119.6 C24—C23—C22 121.15 (16) C6—C5—C10 121.85 (16) C24—C23—H23 119.4

C6—C5—H5 119.1 C22—C23—H23 119.4

C10—C5—H5 119.1 C23—C24—C25 120.88 (14) C5—C6—C7 119.67 (17) C23—C24—H24 119.6

C5—C6—H6 120.2 C25—C24—H24 119.6

(8)

C8—C7—C6 120.99 (17) C17—C25—C26 119.11 (13) C8—C7—H7 119.5 C24—C25—C26 117.90 (13) C6—C7—H7 119.5 C21—C26—C20 122.28 (14) C7—C8—C9 121.24 (15) C21—C26—C25 118.62 (13) C7—C8—H8 119.4 C20—C26—C25 119.10 (14) C9—C8—H8 119.4 C28—C27—C30 115.80 (14) C8—C9—C1 123.02 (14) C28—C27—C17 120.37 (14) C8—C9—C10 117.73 (14) C30—C27—C17 123.83 (13) C1—C9—C10 119.25 (14) N5—C28—C27 124.22 (16) C5—C10—C4 122.60 (16) N5—C28—H28 117.9 C5—C10—C9 118.49 (15) C27—C28—H28 117.9 C4—C10—C9 118.91 (16) N5—C29—N6 128.26 (15) C12—C11—C14 115.04 (14) N5—C29—H29 115.9 C12—C11—C1 121.42 (14) N6—C29—H29 115.9 C14—C11—C1 123.54 (13) N6—C30—N7 119.35 (13) N1—C12—C11 124.61 (15) N6—C30—C27 120.95 (14) N1—C12—H12 117.7 N7—C30—C27 119.70 (13) C11—C12—H12 117.7 N8—C31—N7 120.72 (14) N1—C13—N2 127.78 (16) N8—C31—C32 116.61 (14) N1—C13—H13 116.1 N7—C31—C32 122.64 (14) N2—C13—H13 116.1 C31—C32—H32A 109.5 N2—C14—N3 119.78 (12) C31—C32—H32B 109.5 N2—C14—C11 121.24 (13) H32A—C32—H32B 109.5 N3—C14—C11 118.97 (13) C31—C32—H32C 109.5 N4—C15—N3 120.00 (13) H32A—C32—H32C 109.5 N4—C15—C16 117.57 (13) H32B—C32—H32C 109.5

(9)

supporting information

sup-7

Acta Cryst. (2007). E63, o195–o196

C2—C1—C11—C12 −66.0 (2) C18—C17—C27—C28 −68.1 (2) C9—C1—C11—C12 112.85 (17) C25—C17—C27—C28 109.68 (17) C2—C1—C11—C14 113.21 (18) C18—C17—C27—C30 112.52 (18) C9—C1—C11—C14 −67.9 (2) C25—C17—C27—C30 −69.7 (2) C13—N1—C12—C11 −0.3 (2) C29—N5—C28—C27 −0.3 (3) C14—C11—C12—N1 3.1 (2) C30—C27—C28—N5 1.5 (2) C1—C11—C12—N1 −177.60 (14) C17—C27—C28—N5 −177.89 (14) C12—N1—C13—N2 −1.9 (3) C28—N5—C29—N6 −1.1 (3) C14—N2—C13—N1 0.8 (3) C30—N6—C29—N5 0.9 (3) C13—N2—C14—N3 −178.20 (14) C29—N6—C30—N7 −179.77 (14) C13—N2—C14—C11 2.5 (2) C29—N6—C30—C27 0.6 (2) C15—N3—C14—N2 19.0 (2) C31—N7—C30—N6 14.0 (3) C15—N3—C14—C11 −161.64 (14) C31—N7—C30—C27 −166.31 (15) C12—C11—C14—N2 −4.2 (2) C28—C27—C30—N6 −1.7 (2) C1—C11—C14—N2 176.50 (14) C17—C27—C30—N6 177.71 (14) C12—C11—C14—N3 176.43 (14) C28—C27—C30—N7 178.68 (14) C1—C11—C14—N3 −2.8 (2) C17—C27—C30—N7 −1.9 (2) O1—N4—C15—N3 2.1 (2) O2—N8—C31—N7 1.4 (2) O1—N4—C15—C16 179.69 (13) O2—N8—C31—C32 179.46 (14) C14—N3—C15—N4 179.04 (15) C30—N7—C31—N8 179.00 (15) C14—N3—C15—C16 1.5 (2) C30—N7—C31—C32 1.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1O···N5i 0.86 (2) 1.89 (2) 2.744 (2) 175.4 (19)

O2—H2O···N1 0.88 (2) 1.89 (2) 2.762 (2) 172.7 (18) N3—H3N···O1 0.90 (2) 2.064 (19) 2.4878 (17) 107.5 (15) N7—H7N···O2 0.870 (19) 2.097 (18) 2.5068 (18) 108.0 (14)

Figure

Figure 2

References

Related documents

Following seven months of unsuccessful conservative care, a revision of the Axial Lumbar Interbody Fusion rod was performed that utilized the same presacral approach and used a

Chromotherapy, an emerging technique, uses the visible spectrum (colors) of electromagnetic radiations to cure ailments [4]. In the past few years, Colour Therapy has emerged as

Laryngeal Framework Surgery Although long-acting injection materials have become increasingly popular, laryn- geal framework surgery remains the crite- rion standard long-term

In the patients with left-sided injection, to determine any abnor- mality in the mediastinum or compression of the left brachiocephalic vein between the arch of the aorta and

Increasing baseline emissions inflates the cost of future abatement efforts and thus triggers lower emissions today, a higher surplus and cancellation volume, thus lower

This Kemess Stream refers to a streaming contract that Centerra sold to Triple Flag Mining Finance for the Kemess Project, which includes the Kemess Underground project and

Neural network approaches have recently made great strides in several natural language process- ing tasks, including machine translation and de- pendency parsing.. Partially these

We also find that the effects of these shocks on the probability of a crisis are larger for floating exchange rate regimes and that capital controls mitigate the effects