• No results found

Maths Concept Map_X CBSE

N/A
N/A
Protected

Academic year: 2021

Share "Maths Concept Map_X CBSE"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

Concept Maps

Class X

Real Numbers

Polynomials

Linear equations in two variables

Quadratic equation

Airthmetic Progression

Similar Triangles

Height & Distance

Tengent

Coordinate Geometry

Trignometry

Construction

Area related to circle

Surface area & volume

Probability

Statistics

(2)

Real Numbers

Irrational Numbers Rational Numbers

Terminating Non-Integers

Non-Terminating

Integers

Euclid's division lemma Definition

Application H.C.F L.C.M

Real Numbers

p,

2

1,1/2,

7/5...

5 2 3 2 ! 103 0 1 -3 -2 -1 2 3 .... .... ... .... 89 ) r , p ( F . C . H ) r , q .( F . C . H ) q , p .( F . C . H ) r , q , p ( F . C . H ) r q p ( ! ! ! ! ! H.C.F. (p,q,r) = ) r , p .( M . C . L ) r , q .( M . C . L ) q , p .( M . C . L ) r , q , p .( M . C . L ) r q p ( ! ! ! ! !

(3)

Polynomials

Polynomials

F(x) = ax + bx + c F(x) = ax + bx + cx + d 2 3 2

Value of polynomial Remainder theorem

Factor theorem Degree of polynomial

Highest power of x in polynomial

Dividend = divisor´quotient + remainder

Replace 'x' with 'k'®P(k)

Then 'k' is a root or zero of the polynomial.

Geometrical interpretation of roots of zeroes of polynomial. If P(k) = 0 n 1 n x of t coefficien x of t coefficien " " a b n x of t coefficien term t tan cons a d

1 root 2 roots 1 root No roots 3 roots

0 0 0 0 0 X' X' X' X' X' X X X X X Y Y Y Y Y Y' Y' Y' Y' Y'

(4)

Linear equations in two variables

Methods to solve Linear equation in two variables a x + b y + c = 0 ..(1) a x + b y + c = 0 ..(2) 1 1 1 2 2 2 Equation of a straight line

Algebric method Graphical method

Substitution method Elimination method

Intersecting

Coincident

Parallel

Cross multiplication method Equations reducible to a pair of linear equations ax + by + c = 0 ® Let Multiply b in (1) & b in (2) a b x + b b y + c b = 0 ..(3) b a x + b b y + c b = 0 ..(4) (3) -(4) .... (a b -b a )x + (c b -c b ) = 0 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 1 2 2 1 (intersect at 1 point) one solution (consistent) Infinite solution No solution (inconsistent) (Coincide) (No intersection) b1 c1 a1 b1 b2 c2 a2 b2

Solution (x,y) point lying on straight line. ® # # $ # # % & # # ' # # ( ) * * * + . nos real are c , b , a 0 b , 0 a 0 b a2 2 0 X' X Y Y' -4 2 y = 2x– 4 1 2 2 1 1 2 1 2 1 1 1 a c y b a y b a c a )} 2 ( in Substitute { a y b c x " , + " " " " , 1 2 2 1 1 2 2 1 b a b a c b c b x " " , 1 2 2 1 1 2 2 1 b a b a c b c b x " " , 1 2 2 1 1 2 2 1 b a b a c b c b x " " , 1 2 2 1 2 1 1 2 b a b a c a c a y " " , 1 2 2 1 2 1 1 2 b a b a c a c a y " " , 1 2 2 1 2 1 1 2 b a b a c a c a y " " , 2p + 3q = 13 5p – 4q = –2 1 2 2 1 2 1 2 1 1 2 2 1 ab ab 1 c a a c y c b c b x " , " , " x y 1 2 y 4 x 5 , 13 y 3 x 2 " , " , + q y 1 , p x 1 , , -* 2 1 2 1 b b a a -, , 2 1 2 1 2 1 c c b b a a -* , 2 1 2 1 2 1 c c b b a a

(5)

Quadratic equation

Methods to solve Factorization Quadratic Formula Completing the square Standard form Roots Convert to (x+a) -b = 02 2 Product of roots = –4 Sum of roots = 3 e.g. x + 4x = 0 x + 4x + 4 – 4 = 0 (x + 2) – 2 = 0 2 2 2 2 Þ Þ e.g. x – 3x – 4 = 0 x + (–4 + 1)x + (–4 1) = 0 (x – 4) (x + 1) = 0 2 2 Þ ´ Þ a 2 ) ac 4 b ( b+ 2" " , . a 2 ) ac 4 b ( b" 2" " , / ax +bx + c = 0 ; a p(x) = 0

"where p(x) is polynomial of degree 2" 2 ¹ 0 ax + bx + c = 0 ;2 \ a+ b = ab= e.g. (x + 2) = x – 4 x + 4x + 2 = 0 (after simplification) 3 3 2 Þ

If and are the roots of the above equation then : a + b + c = 0 a + b + c = 0 a b a a b b 2 2 a b " a c 0 0 0

PPLICATIONS OF QUADRATIC EQUATIONS

A :

1. Speed =

2. Area of figures

3. Flow rate time = volume of water

4. Number or ages ´

X' (b – 4ac 0 real roots)

2

³ ®

(b – 4ac = 02 ® equal roots)

(b – 4ac < 02 ® Complex roots) X' X' X X X Y Y Y Y' Y' Y' Time ce tan Dis

(6)

Arithmetic

Progressions

Note :

Taken 3 terms in A.P. :

Taken terms in A.P. :

(a – d), a, (a + d) 5

(a – 2d), (a – d), a, (a + d), (a + 2d)

Numbers in the series are called Terms.

T = a + (n–1) d.n Sum of 1 n terms of an A.P. S S = a + a + a + .... + a + a . S = [2a + (n-1)d] = [a + a ]. [2 + ( -1) ] = st ® n n 1 2 3 n- 1 n n 1 n e.g. S25 = (2) 25 3 950 a1®a = 21 ®1 Term st a2®a + d = 51 ®2 Term nd a a + 2d = 5 3 Term . . a a + (n–1)d = 74 25 Term 3 1 n 1 ® ® ® ® rd th

Common difference 'd' can be zero, positive, negative. a – a = a – a = a – a = a – a = a -a = d. 5 – 2 = 8 – 5 = 11 – 8 = 14 – 11 = 17 – 14 = 3. 2 1 3 2 4 3 5 4 n n-1 Properties n Termth Sum of n Terms RESULTS Terms

Sum of n natural nos.

S =n

e.g. Sum of first 7 natural nos. Þ (n–m + 1) termth e.g. T = 3n + 5 put n = 1,2,3... T = 8, T = 11, T = 14... n 1 2 3 T = Sn n–Sn-1 e.g. S = n + 2n T = 2n + 1 n n 2 \ If a, b, c are 3 terms of an A.P. then : a + c = 2b. Common difference

m term from endth

Find A.P. whose n term is given ?

th

Find T when S is givenn n

Condition of an A.P. a , a , a ,... a , a . form an A.P. 1 2 3 n-1 n e.g. 2, 5, 8, 11, ... up to 25 terms. 2 n 2 n 2 25 2 ) 1 n ( n + 28 2 8 7 , !

Airthmetic Progression

(7)

Similar Triangles

Similar

Triangles

Criteria

If s are similar

D

Pythagoras

theorem

Area

theorem

Means 'Same shape' e.g. All circles are similar.

All squares are similar.

NOTE :

ABC ~ PQR doesn't mean ABC ~ QPR. D D D D Then : P P P Q Q Q R R R A A A B B B C C B A D C C AA criterion : If A = P and B = Q then ABC ~ PQR. Ð Ð Ð Ð D D SSS criterion : If then ABC ~ PQR D D If ABC ~ PQR :D D ( ) : D D Ð D D D ´ ´ ´

ABC is righ angledt B = 90°

ABC ~ BDC ~ ADB BD = AD BC. BC = CD AC. AB = CA AD. AB + BC = AC ® P.Th. 2 2 2 2 2 2 SAS criterion : If and B = Q then ABC ~ PQR Ð Ð D D QR BC PR AC PQ AB , , Q R B C P Q A B , 2 2 2 QR BC PR AC PQ AB ) PQR ( Area ) ABC ( Area 0 1 2 3 4 5 , 0 1 2 3 4 5 , 0 1 2 3 4 5 , 6 6 QR BC PR AC PQ AB , , and A = P B = Q C = R Ð Ð Ð Ð Ð Ð A B C D E If DE | | BC then, EC AE DB AD ,

Converse of B.P.T. :

EC AE DB AD If , then DE | | BC. Proved by Basic Proportionality theorem (THALES THEOREM)

(8)

Height & Distance

Heights

& Distance

Elevation

Applications

Depression

A C C A B B q a Height of tower BC = AB tan (given AB & ) ´ q q Height of tower AB = (given CD,a, b) Height of tower PD = (given AB,a, b) Height of tower BD = (given AB,a, b) Height of tower AB = tan (given & BC) q a ´BC q =Angle of elevation Horizontal Horizontal a= Angle of Depression Definition : Definition :

Angle formed by the line of sight with the horizontal when the point is above the horizontal.

e.g.

e.g.

e.g.

@ Navigation @ Land surveys @ Buildings @ Optics @ Statics @ Crystallography

Angle formed by the line of sight with the horizontal when the point is below the horizontal. a a a a b b b b ) tan (tan tan tan CD . " / / ! . ! AB tan ) tan (tan ! . . " / ) tan (tan tan AB / " . / !

(9)

NO TANGENT ONE TANGENT AND

TANGENT

QT= 1/2 QR In PQR PQ=PR, hence PQR = PRQ = 1/2 (180– ) Since OQR = 90º, OQR = OQP – PQR

OQR = 90º – (90 – 1/2 ) =1/2 2 OQR = QPR. D q q q Þ Ð Ð Ð Ð Ð Ð Ð Ð Ð Tangent Length of tangents from an

external point to a circle are equal .

In OQP & ORP = -OQ = OR (radii), OP = OP OQP ORP PQ = PR D D \ D Þ ÐQPR + QOR = 180º QPO = RPO QOP = ROP Ð Ð Ð Ð Ð 7

P

P

P

P

Q

O

R

B

&

*

Tengent

(10)

Distance

formula

y

y

y

x

x

x

Section

formula

Area of

Triangle

Coordinate Geometry

(x ,y )1 1 (x ,y )1 1 (x ,y )2 2 (x,y) (x,y) (x ,y )2 2 (x ,y )2 2 (x ,y )3 3 (x ,y )2 1 (x ,O)1 (x ,O)2 P A B A B R S R S T Q P R Q T C C Q O O O RS = (x –x ) = PT SQ = y ; ST = y ; QT = (y – y ) Applying Pythagoras in PTQ PQ = PT + QT = (x – x ) + (y – y ) PQ = 2 1 2 1 2 1 2 1 2 1 D 2 2 2 2 2 (Distance formula) Coordinates of P(x–xy) = A(x y ) B(x ,y ) C(x ,y ) Area = 1/2 base Altitude

Area = 1/2 [x (y –y ) + x (y –y ) +x (y -y )] If Area = 0,

then points are

1 1 2 2 3 3 1 2 3 2 3 1 3 1 2 ´ ´ collinear 2 1 2 2 1 2 x) (y y) x ( " + " 2 1 1 2 2 1 m m x m x m + + 2 1 1 2 2 1 m m y m y m + + , , 2 1 1 2 2 1 m m x m x m " " 2 1 1 2 2 1 m m y m y m " " (m : n externally) Verifying collinearity A(x ,y ), B(x ,y ), C(x ,y )

Find AB,BC,CA using distance formula If AB + BC = CA

or BC + CA = AB or AB + CA = BC

Then 3 pointare collinear

1 1 2 2 3 3

® ®

®

Application of distance formula

Verifying collinearity

A(x ,y ), B(x ,y ), C(x ,y ), D(x ,y ) Fin AB,BC,CD,DA using distance formula

Find diagonals A & BD

Check with different properties of quadrilaterals 1 1 2 2 3 3 4 4 ® ® ® d C

Verifying triangle formations A(x ,y ), B(x ,y ), C(x ,y )

Fin AB,BC,CA using distance formula Check if AB + BC > CA

BC + CA > AB AB + CA > BC

If yes, it is triangle, check for right using pythagoras therom

If no, it is not a 1 1 2 2 3 3 ® ® ® d D D (m : n Internally)

{

{

{

{

(11)

1 AC BC AC AB 2 2 2 2 , + =sin A + cos A = 12 2

Divide both sides by Interrelationship between T-ratios

T-ratios

Complimentry Angles

Graphs

Identities

Simplified trigonometric values

sinA = cosA = tanA =

cosecA = = sinA = = sin ÐA of ABC =D ÐA of AMPD sin A = = Note ;

The values of the trignometric ratios of an angle do not vary with the lengths of the sides of the triangle, if the angle remains the same.

0° 30° 45° 60° 90° cos tan cosec sec cot =cot A+1 = cosec A2 2

cosA = = secA = = = 1+tan A = sec A2 2 tanA = = cotA = = 2 2 2 2 BC AC 1 BC AB , + 2 2 2 2 AB AC AB BC 1+ , AC BC H P BC AC P H AC AB H B AB AC B H AB BC B P BC AB P B AC BC 0 0 4 1 4 1 4 2 4 2 4 3 4 3 4 4 4 4 4 0 4 0 3 1 2 2 1 3 1 4 1 4 2 4 2 4 3 4 3 4 4 4 4 4 1 3 2 2 3 1 4 0 AP MP A A T R I G O O M E TR Y N C C x' 0 0 B B 90° M P 2 38 " "8 2 8 " 2 8 2 8 y y y' y' -1 -1 1 1 0.5 0.5 0.5 0.5 ecA cos 1 A sec 1 A cot 1 AB + BC = AC2 2 2 AB2 x x x 2 38 2 38 8 8 8 2 8 2 38 8 2 8 2 0 y y' tan(90-A)= cosec(90-A)= sin(90-A) =

cosA = secA = secA =

cos(90-A) =

sinA = tanA = cosecA =

cot(90-A) = sec(90-A) = AC AB BC AB AB AC AC AB BC AB AB AC AC BC AB BC BC AC AC BC AB BC BC AC

9

9

9

9

AC2 BC2

TAN

SIN

COS

(12)

Triangle

Scaling

CALING

S

Constructing

Tangents

Division of a

line segment

in m:n(3:2)ratio

Alternate-Method

Construction

1. Scaling up 5/3 2. Scaling down 3/4 B C'||B C C'A'||CA 3 4 Join A B3 2 B C'||B C C'A'||CA 5 3 Join A C such that A C is parallel to A B 3 3 5

1. Join PO and bisect it (at O )1 2

2. O as centre & O O as radius draw a circle

2 1 2

3. 2 circles intersect at Q & R 4. Join PQ & PR (Tangents) DABC ~ A'BC' DAA C ~ AA BD hence 3 5 = = DABC ~ A'BC' DAA C ~3 DBB C2 = = = = = = = = = , , A A B A B A B C B C x x C x B1 B1 B1 B1 B2 B2 B2 B2 B3 B3 B3 B3 B4 B4 B4 B4 B5 B5 B B A A' A' A C' O2 O1 Q R P C C C x B ' A AB ' C ' A AC ' BC BC BC ' BC 3 5 BB BB 3 5 AB B ' A AC ' C ' A BC ' BC 4 3 A A B B X X 3 2 5 3 3 A A AA CB AC 2 3 A B A B X X Y Y B2 B2 B1 B1 A1 A1 A2 A2 A3 A3 3 2 2 3 BB AA BC AC 2 3

(13)

Sector of a circle

Area = R

p

2

Area of combination

of plane figures

Area related to circle

Major sector r q r P B Q e.g. = 60° r = 3m q Generally sector implies minor sector

Area of segment (APB) =

Area of sector (AOB) – Area of AOBD

Note:

2 Rn = speed Time = Distance covered n = number of rotations For rotating wheel

p ´

r + r + r + r = length of square 4r = ; r = 1/2

Area of shaded reg. = Area of square – Area of 4 circles = (2 2) – 4 = 4 – Þ ´ ´ p

Area of shaded reg. = Area of

square ABCD –Area of (1+2+3+4) = 4 – 2(4 – ) = 2 – 4 p p e.g. e.g. Length of sector AB = ´2 Rp AOBP = ´ pR 2 AB = ´2p ´3 AOBP = ´ p ´3 2 m Þ p Þ e.g. e.g. Area of sector e.g. Sol.

Area I + III = A(ABCD) – Area of semicircle with AD & BC as diameter = 4 – p A 360 : 360 : 360 : 360 60 2 38 m

r

I I II II III III IV IV A A A B B B 2 units 2 units 2 units D D D C C C 4 ) 1 ( 2 8 Sol. Sol.

(14)

Cuboid

Cube

Frustum

Hemisphere

Sphere

Cylinder

Cone

Surface area & volume

1. T.S.A®2[lb +bh + hl]

NOTE :

1. C.S.A. Curved surface area 2. T.S.A. Total surface area 3. l Length 4. b Breadth 5. h Height 6. l Slant height 7. r Radius 8. a Side of cube ® ® ® ® ® ® ® ® 1. T.S.A®6a2 1. T.S.A®2 r(r+h)p

Volume = Volume of cylinder

– Volume of hemisphere

Total surface area = C.S.A. of 2 hemispheres + C.S.A of cylinder

1. C.S.A = T.S.A. = 4 rp 2 1. C.S.A = 2 rp

2

1. C.S.A =p1r1 1l – r ( – )p 2l1l 1. T.S.A® pr( + r)l

2. C.S.A®2[bh +hl]

2. C.S.A®4a2

2. C.S.A®2 rhp 2. Volume = 4/3 rp 3 2. T.S.A. = 3 rp

3 2. T.S.A. =pl(r +r ) + (r + r )1 2 p 1 2 2 2 3. Volume = 2/3 rp 3 3. Volume = 1/3ph(r + r + r r ) 4. Slant height = 1 2 1 2 2 2 2. C.S.A® p lr 3. Volume®l´b´h 3. Volume®a3 3. Volume® pr h2 3. Volume ® 4. Diagonal ® 2 2 2 4. Diagonal ® h b + +  3a r h 3 1 2 8 b r r r r r1 r2 r r a a h h h h h1 l a l l1-l 2 2 1 2 (r r ) h + "

(15)

Probability

ROBABILITY

P

Elementary event (E) : Only one outcome

sum of the probabilities of all elementary events is 1.

0 £ P(E) £ 1

Applications

Gambling, insurance & statistics control theory.

Case -1) One dice is rolled: P(1) = Probability of getting 1. Similarly P(2),P(3), P(4), P(5) & P(6) P(1) =

P(E) > 4 Probability of getting 5 & 6.

® Examples

Case -2) Two dice are rolled: P(sum = 8) = Probability of getting two numbers whose sum is 8.

Case -3) Box with balls : A box contains 2 black, 4 green and 4 red balls.

Complimentary Events(E) Not E = E, P(E) = 1 – P (E) ln case 1 : P(1) = ; P(1) = 1 – = In case 3 In case 2 In case 1 EVENT(E) P(1) = not getting 1 ; = getting 2,3,4, 5 and 6 6 1 6 1 6 5

Certain event P(E) = 1 Impossible event P(E) = 0

P(sum 13) is impossible. In case 2 : Sum = 8 for (2,6) (3,5) (4,4) (5,3) (6,2) P(E) > 4 =P(5) + P(6) = = P(E) = 4 = P(1) + P(2) + P(3) + P(4) = = Probability of picking up black P(B) = P(E) = hence, P (sum 13) = 0

Red Red Red

Red Green Green Black Black Green P(sum 8) =36 5 outcomes possible all of . No E to favourable outcomes of . No 6 2 3 1 6 4 3 2 9 2 1 2 3 4 5 6 1 1,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 3 3,1 3,2 3,3 3,4 3,5 3,6 4 4,1 4,2 4,3 4,4 4,5 4,6 5 3,1 5,2 5,3 5,4 5,5 5,6 36 posibilities 6 1 6 , 5 , 4 , 3 , 2 , 1 1 ,

(16)

Grouped

Ungrouped

Statistics

Class of Intervals 10-25 25-40 40-55 55-70 70-85 85-100 NO. of Students 2 3 7 6 6 6 n = 30 ; n/2 = 15 55-70 is median class lower limit of the median class ( ) = 55

c.f. = cum frequency of median preceeding class

l

Class size (h) = 15 Max. frequency f = 7 Modal class = 40-55

Lower limit of modal class = 40 f = 3 (Previous class f value) f = 6 (next class f value)

Mode = 40 + 4/5 15 = 52 1 0 2 Mode = l+ ´ x = x , x , ... x1 2 n®observations n is even MEAN MEAN MODE MODE MEDIAN MEDIAN n is odd f , f , ... f1 2 n®frequencies

Average of & observation.

The value of the observation having the max. frequency

3 Methods Direct Method x = = 62 x = a + hu x = a + d x = a + = 62 x = a + h =62

Step deviation Assumed mean method

Intervals No. of students C.f. n-C.f. 10-25 2 2 28 25-40 3 5 25 40-55 7 12 18 55-70 6 18 12 70-85 6 24 6 85-100 6 30 0 Median = l + h = 62.5 f . f . c 2 / n ! " h f f f 2 f f 2 0 1 0 1 ! 0 0 1 2 3 3 4 5 " " "

;

;

i i i f x f th 1 2 n 0 1 2 3 4 5 + th 2 n 0 1 2 3 4 5 th 2 1 n 0 1 2 3 4 5 + observation.

;

;

i i i f x f 0 0 1 2 3 3 4 5

;

;

i i i f x f 0 0 1 2 3 3 4 5

;

;

i i i f d f Class Intervel fi xi fixi di= xi–a ui= fiui fidi 10-25 2 17.5 35 -30 -2 -4 -60 25-40 3 32.5 97.5 -15 -1 -3 -45 40-55 7 47.5 332.5 0 0 0 0 55-70 6 62.5 375 15 1 6 90 70-85 6 77.5 465 30 2 12 180 85-100 6 92.5 555 45 3 18 270 30 1860 = 29 = 435 h a xi"

;

fiui

;

fidi

References

Related documents

Trademark law and practice: recent developments in law and compatibility with international laws, changes in fees, class headings – practice of national office after IP

Lateral area of a frustum of a right pyramid equals one half of the sum of the perimeters of two bases times the slant height... Lateral area of a frustum of a cone is found

contrary experience in New York City may be an anomaly. The costs of crime— and particularly gun crimes—are too significant to avoid considering every possible measure for reducing

3-D shapes: cube, cuboid, triangular prism, hexagonal prism, sphere, cone, cylinder, square-based pyramid; shopping bag containing the following items: orange, cube of paper

Interestingly, there is also a Round Rail bearing using concavex rollers running on a cylindrical inner race that offer up to 20 times that load capacity of conventional linear

Perimeter, Area and Volume: Radius, diameter, circumference, area, semi-circle, sector, segment, cube, cuboid, prism, cylinder, sphere, hemisphere, arc, perimeter, surface

c) Develop the bidding procedures and mechanisms for land leases tenders as a follow-up on the lead generation procedures. The consultants are to draft the bidding procedures and

The form fulfills requirements ”I can create triples”, ”I can edit triples”, ”After modifying the ontology, my changes will not be visible until verified by a domain expert and