• No results found

Vol 3, No 4 (2012)

N/A
N/A
Protected

Academic year: 2020

Share "Vol 3, No 4 (2012)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Available online through

ISSN 2229 – 5046

ADMITTING A CONFORMAL TRANSFORMATION GROUP ON

KAEHLERIAN RECURRENT SPACES

U. S. Negi* & Kailash Gairola

Department of Mathematics, H. N. B. Garhwal University, Campus Badshahi Thaul, Tehri Garhwal – 249 199, Uttarakhand, India

E-mail:

(Received on: 26-03-12; Accepted on: 09-04-12)

_______________________________________________________________________________________________

ABSTRACT

Y

ano and Sawaki (1968) have studied Riemannian manifolds admitting a conformal transformation group. Yano (1969) has studied on Riemannian manifolds with constant scalar curvature admitting a conformal transformation group. In this paper, we have studied admitting a conformal transformation group on Kaehlerian recurrent spaces and several theorems have been obtained.

Key Words & Phrases: Kaehlerian, Conformal, Recurrent, Symmetric, transformation group, Space.

_______________________________________________________________________________________________

1. INTRODUCTION.

Let 𝐾𝐾𝑛𝑛 be a connected (𝐢𝐢∞ -) differentiable Kaehlerian spaces of dimension n and gji , βˆ‡π‘—π‘—, Rβ„Ž π‘˜π‘˜π‘—π‘—π‘˜π‘˜ , Rji and R, respectively

the components of metric tensor field, the operator of covariant differentiation with respect to the Levi-Civita connection, the curvature tensor field, the Ricci tensor field and the scalar curvature field. The indices a,b,c, …,i,j,k,…….run over the range 1,2,3,…..,n. We shall denote gjaβˆ‡π‘Žπ‘Ž by βˆ‡π‘—π‘—and the Laplace-Beltrami operator by βˆ†. In this paper, we assume that Kaehlerian spaces are connected and differentiable and functions are also differentiable.

An infinitesimal transformation πœπœβ„Žon Kn is said to be conformal, if it satisfies

(1.1) Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ =βˆ‡π‘—π‘—π‘£π‘£π‘˜π‘˜+βˆ‡π‘˜π‘˜π‘£π‘£π‘—π‘— = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜,

for some function 𝜌𝜌 on 𝐾𝐾𝑛𝑛, where denote the operator of Lie-derivation with respect to π‘£π‘£β„Ž and 𝑣𝑣𝑗𝑗 =π‘”π‘”π‘—π‘—π‘Žπ‘Žπ‘£π‘£π‘Žπ‘Ž .

The 𝜌𝜌 satisfies 𝜌𝜌=βˆ‡aπ‘£π‘£π‘Žπ‘ŽοΏ½π‘›π‘› .If 𝜌𝜌 in (1.1) is a constant, the transformation is said to be homothetic anf if 𝜌𝜌= 0, the transformation is called to be isometric. Hereafter, we shall denote the gradient of 𝜌𝜌 by πœŒπœŒπ‘—π‘— =βˆ‡π‘—π‘—πœŒπœŒ We, now, put

πΊπΊπ‘—π‘—π‘˜π‘˜ =π‘…π‘…π‘—π‘—π‘˜π‘˜ βˆ’ π‘…π‘…π‘”π‘”π‘—π‘—π‘˜π‘˜β„π‘›π‘›,

𝑍𝑍𝐾𝐾𝑗𝑗 π‘˜π‘˜β„Ž =π‘…π‘…π‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Žβˆ’ 𝑅𝑅(π‘”π‘”πΎπΎβ„Žπ‘”π‘”π‘—π‘—π‘˜π‘˜βˆ’ π‘”π‘”π‘—π‘—β„Žπ‘”π‘”π‘˜π‘˜π‘˜π‘˜ ⁄𝑛𝑛(𝑛𝑛 βˆ’1). We then have

(1. 2) Gji gji =0, 𝑍𝑍 π‘Žπ‘Žπ‘—π‘—π‘˜π‘˜π‘Žπ‘Ž βˆ’ πΊπΊπ‘—π‘—π‘˜π‘˜.

Here, Yano and Sawaki (1968) introduced the covariant tensor field

(1.3) Wkjih = aZkjih + b (gKh Gji – gjh Gki + GKh gji – Gjh gki) / (n-2) ,

Where a and b being constants, not both zero. It is easily seen that

Wkjih gkh = (a+b) Gji .

________________________________________________________________________________________________

(2)

Hereafter, we shall use the following notations:

f = Gji Gji, z = Zkjih Zkjih , w = Wkjih Wkjih .

Also, Yano and Sawaki (1968) give the following properties:

Definition (1.1): Suppose that a compact orientable Riemannian space Mn with constant scalar curvature field R and of

dimension >2 satiesfies

𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧 βˆ’ 𝛼𝛼1βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§=π‘π‘π‘π‘π‘›π‘›π‘π‘π‘π‘π‘Žπ‘Žπ‘›π‘›π‘π‘,

where 𝛼𝛼0,𝛼𝛼1,𝛽𝛽0 and 𝛽𝛽1 are non-negative constant, not all zero, such that if n > 6.

(1.4) 8 𝑅𝑅(𝑛𝑛 βˆ’1)βˆ’1𝛼𝛼1β‰₯(𝑛𝑛 βˆ’6)𝛼𝛼0β‰₯0,

8 𝑅𝑅(𝑛𝑛 βˆ’1)βˆ’1𝛽𝛽

1β‰₯(𝑛𝑛 βˆ’6)𝛽𝛽0β‰₯0.

If Mn admits and infinitesimal non-isometric conformal transformation π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ , 𝜌𝜌 β‰ 0 , then Mn is

isometric to a sphere.

Definition (1.2): If a compact orientable Riemannian space Mn with constant curvature field R and of dimension >2

admits an infinitesimal non-isometric conformal transformation π‘£π‘£β„Ž ∢ Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ , 𝜌𝜌 β‰ 0, such that

£𝑣𝑣£𝑣𝑣(𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧+𝛼𝛼1βˆ†π‘“π‘“+𝛽𝛽1βˆ†π‘§π‘§)≀0,

Where 𝛼𝛼0,𝛼𝛼1,𝛽𝛽0 and 𝛽𝛽1 are non-negative constants, not all zero, such that

(1.5) 4(𝑛𝑛 βˆ’1)π‘…π‘…βˆ’1𝛼𝛼0β‰₯(𝑛𝑛+ 6)𝛼𝛼1β‰₯0,

4𝑅𝑅(𝑛𝑛 βˆ’1)π‘…π‘…βˆ’1𝛽𝛽

0β‰₯(𝑛𝑛+ 6)𝛽𝛽1 β‰₯0.

then Mn is isometric to a sphere.

Definition (1.3): Suppose that a compact orientable Riemannian space Mn with constant scalar curvature field R and of

dimention >2 admits an infinitesimal non-isometric conformal transformation

π‘£π‘£β„ŽβˆΆ Β£

π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ , 𝜌𝜌 β‰ 0

If £𝑣𝑣£𝑣𝑣𝑀𝑀= 0 , a and b being constant such that a+bβ‰ 0, then Mn is isometric to a sphere.

2. ADMITTING A CONFORMAL TRANSFORMATION GROUP ON KAEHLERIAN RECURRENT SPACES

In a Riemannian space Mn, for an infinitesimal conformal transformation π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ , 𝜌𝜌 β‰ 0.we have Yano

(1957)

£𝑣𝑣𝑅𝑅 π‘˜π‘˜π‘—π‘—π‘˜π‘˜β„Ž =βˆ’π›Ώπ›Ώ π‘˜π‘˜β„Žβˆ‡π‘—π‘—πœŒπœŒπ‘˜π‘˜+𝛿𝛿 𝑗𝑗 β„Žβˆ‡π‘˜π‘˜πœŒπœŒπ‘˜π‘˜βˆ’(βˆ‡π‘˜π‘˜πœŒπœŒβ„Ž)π‘”π‘”π‘—π‘—π‘˜π‘˜+ (βˆ‡π‘˜π‘˜πœŒπœŒβ„Ž)π‘”π‘”π‘˜π‘˜π‘˜π‘˜,

Β£π‘£π‘£π‘…π‘…π‘—π‘—π‘˜π‘˜ =βˆ’(𝑛𝑛 βˆ’2)βˆ‡π‘—π‘—πœŒπœŒπ‘˜π‘˜βˆ’ βˆ†πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜

£𝑣𝑣𝑅𝑅=βˆ’2(𝑛𝑛 βˆ’1)βˆ†πœŒπœŒ βˆ’2πœŒπœŒπ‘…π‘…

Thus, for Kn with constant scalar curvature field R,

βˆ†πœŒπœŒ=βˆ’π‘…π‘…πœŒπœŒ/(𝑛𝑛 βˆ’1) π‘Žπ‘Žπ‘›π‘›π‘Žπ‘Ž

(2.1) βˆ‡π‘—π‘—πΊπΊπ‘—π‘—π‘˜π‘˜ = 1 2 (⁄ 𝑛𝑛 βˆ’1)π‘›π‘›βˆ’1βˆ‡π‘˜π‘˜π‘…π‘…= 0

We have, from (1.2),

(3)

Β£π‘£π‘£π‘π‘π‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž =βˆ’π‘”π‘”π‘˜π‘˜β„Žβˆ‡iρiβˆ’gjhβˆ‡kρiβˆ’ οΏ½βˆ‡kρhοΏ½gji+οΏ½βˆ‡jρhοΏ½gki+ 2βˆ‡Ο(gkhgjiβˆ’gjhgki)/n +2πœŒπœŒπ‘π‘π‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž .

By straightforward calculations, we have, in view of (1.3) and (2.2)

(Β£π‘£π‘£π‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž)π‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž=βˆ’4(π‘Žπ‘Ž+𝑏𝑏)2(βˆ‡π‘—π‘—πœŒπœŒπ‘˜π‘˜)π‘”π‘”π‘—π‘—π‘˜π‘˜ + 2πœŒπœŒπ‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Žπ‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž .

On the other hand, we get

(Β£π‘£π‘£π‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž)π‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž=οΏ½Β£π‘£π‘£π‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„ŽοΏ½π‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Žβˆ’8πœŒπœŒπ‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Žπ‘Šπ‘Šπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž .

Thus, we have

(2.3) £𝑣𝑣𝑀𝑀=βˆ’8(π‘Žπ‘Ž+𝑏𝑏)2(βˆ‡π‘—π‘—πœŒπœŒπ‘˜π‘˜)πΊπΊπ‘—π‘—π‘˜π‘˜ βˆ’4πœŒπœŒπ‘€π‘€.

Now, we have the following Lemmas:

Lemma (2.1): If a compact orientable Kaehlerian space Kn of dimension n admits an infinitesimal conformal

transformation π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ then foe any function F on Kn,

(2.4) βˆ«πΎπΎπ‘›π‘›πœŒπœŒFπ‘Žπ‘Žπ‘£π‘£=βˆ’1/π‘›π‘›βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£F π‘Žπ‘Žπ‘£π‘£ .

Proof: Since 𝜌𝜌=βˆ‡π‘Žπ‘Žπ‘£π‘£π‘Žπ‘Žβ„π‘›π‘›, we have by using Green’s Theorem

βˆ«πΎπΎπ‘›π‘›βˆ‡π‘Žπ‘Ž(Fπ‘£π‘£π‘Žπ‘Ž)π‘Žπ‘Žπ‘£π‘£=βˆ«πΎπΎπ‘›π‘› £𝑣𝑣Fπ‘Žπ‘Žπ‘£π‘£+βˆ«πΎπΎπ‘›π‘› 𝜌𝜌Fπ‘Žπ‘Žπ‘£π‘£= 0 ,

Which proves (2.4).

Lemma (2.2): If a compact Orientable Kaehlerian space Kn with constant scalar curvature field R and of dimension n

admits an infinitesimal conformal transformation on π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜, thenβˆ«πΎπΎπ‘›π‘›πœŒπœŒ(βˆ‡π‘—π‘—πœŒπœŒπ‘˜π‘˜)πΊπΊπ‘—π‘—π‘˜π‘˜π‘Žπ‘Žπ‘£π‘£=βˆ’βˆ«πΎπΎπ‘›π‘› πΊπΊπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£ .

Proof: This follows from (2.1) and

βˆ«πΎπΎπ‘›π‘›βˆ‡π‘—π‘—οΏ½GjiΟπ‘—π‘—πœŒπœŒοΏ½π‘Žπ‘Žπ‘£π‘£=βˆ«πΎπΎπ‘›π‘›οΏ½βˆ‡π‘—π‘—πΊπΊπ‘—π‘—π‘˜π‘˜οΏ½πœŒπœŒπ‘˜π‘˜πœŒπœŒπ‘Žπ‘Žπ‘£π‘£+βˆ«πΎπΎπ‘›π‘›πΊπΊπ‘—π‘—π‘˜π‘˜(βˆ‡π‘—π‘—πœŒπœŒπ‘˜π‘˜)πœŒπœŒπ‘Žπ‘Žπ‘£π‘£+ βˆ«πΎπΎπ‘›π‘›πΊπΊπ‘—π‘—π‘˜π‘˜Οπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£= 0.

Lemma (2.3): Hiramatu gives, If a compact orientable Kaehlerian space Kn with constant scalar curvature field R and

of dimension n admits an infinitesimal conformal transformation π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜, then

(2.5) βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£π‘“π‘“π‘Žπ‘Žπ‘£π‘£=βˆ’2𝑛𝑛(𝑛𝑛 βˆ’2)βˆ«πΎπΎπ‘›π‘› Gπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£+ 4π‘›π‘›βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2π‘“π‘“π‘Žπ‘Žπ‘£π‘£,

βˆ«πΎπΎπ‘›π‘› Β£π‘£π‘£Β£π‘£π‘£π‘§π‘§π‘Žπ‘Žπ‘£π‘£=βˆ’8π‘›π‘›βˆ«πΎπΎπ‘›π‘› Gπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£+ 4π‘›π‘›βˆ«πΎπΎπ‘›π‘› 𝜌𝜌2π‘§π‘§π‘Žπ‘Žπ‘£π‘£,

Lemma (2.4): If a compact orientable Kaehlerian space Kn with

constant scalar curvature field R and of dimension n admits an infinitesimal conformal transformation π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ , then

(2.6) βˆ«πΎπΎπ‘›π‘› Β£π‘£π‘£Β£π‘£π‘£π‘€π‘€π‘Žπ‘Žπ‘£π‘£=βˆ’8𝑛𝑛(π‘Žπ‘Ž+𝑏𝑏)2βˆ«πΎπΎπ‘›π‘› Gπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£+ 4π‘›π‘›βˆ«πΎπΎπ‘›π‘› 𝜌𝜌2π‘€π‘€π‘Žπ‘Žπ‘£π‘£.

Proof: Making use of (2.3) and Lemmas (2.1) and (2.2), we have

βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£π‘€π‘€π‘Žπ‘Žπ‘£π‘£=βˆ’π‘›π‘›βˆ«πΎπΎπ‘›π‘› πœŒπœŒΒ£π‘£π‘£π‘€π‘€π‘Žπ‘Žπ‘£π‘£ = 8𝑛𝑛(π‘Žπ‘Ž+𝑏𝑏)2∫

πΎπΎπ‘›π‘›πœŒπœŒ( βˆ‡π‘—π‘—πœŒπœŒπ‘˜π‘˜)πΊπΊπ‘—π‘—π‘˜π‘˜π‘Žπ‘Žπ‘£π‘£+ 4π‘›π‘›βˆ«πΎπΎπ‘›π‘› 𝜌𝜌2π‘€π‘€π‘Žπ‘Žπ‘£π‘£

Which shows (2.6).

Lemma (2.5): Hiramatu gives, If a compact Orientable Kaehlerian space Kn with constant scalar curvature field R and

of dimension n β‰₯ 2 admits an infinitesimal conformal transformation π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜, then for any function F on Kn ,

βˆ«πΎπΎπ‘›π‘› Β£π‘£π‘£Β£π‘£π‘£βˆ‡πΉπΉπ‘Žπ‘Žπ‘£π‘£=βˆ’ 𝑅𝑅

𝑛𝑛 βˆ’1βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£πΉπΉπ‘Žπ‘Žπ‘£π‘£+

𝑛𝑛(𝑛𝑛+ 2)

(4)

Lemma (2.6): Yano (1966) gives, If a compact Oreintable Kaehlerian space Kn with constant scalar curvature field R

and of dimension >2 admits on infinitesimal non-isometric conformal transformation π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜,𝜌𝜌 β‰ 0 , then

βˆ«πΎπΎπ‘›π‘› Gπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£ ≀0 ,

The equality holds if and only if Kn is isometric to a sphere.

We have the following

Theorem (2.1): If a compact orientable Kaehlerian space Kn with constant scalar curvature field R and of dimension >2

admits an infinitesimal non - isometric conformal transformation

π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ , 𝜌𝜌 β‰ 0 then

(2.7) βˆ«Β£πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£(𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧 βˆ’ 𝛼𝛼1βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§)π‘Žπ‘Žπ‘£π‘£

β‰₯𝑛𝑛(𝑛𝑛+2)

2 βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2(𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧 βˆ’ 𝛼𝛼1βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§)π‘Žπ‘Žπ‘£π‘£

Holds, where π‘Žπ‘Žπ‘£π‘£ denotes the volume element of Kn and 𝛼𝛼0,𝛼𝛼1,𝛽𝛽0 and 𝛽𝛽1 are non-negative constants, not all zero,

such that if n>6, (1.4) holds, the equality in (2.7) holds if and only if Kn is isometric to a sphere.

Proof: Making use of (2.5) in Lemma (2.3) and (2.5) we get

βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£(𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧 βˆ’ 𝛼𝛼1βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§)π‘Žπ‘Žπ‘£π‘£ βˆ’π‘›π‘›(𝑛𝑛+2)

2 βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2(𝛼𝛼0𝑓𝑓+ βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§)π‘Žπ‘Žπ‘£π‘£

=βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£(𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧)π‘Žπ‘Žπ‘£π‘£ βˆ’ 𝑅𝑅

π‘›π‘›βˆ’1βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£(βˆ’π›Όπ›Ό1𝑓𝑓 βˆ’ 𝛽𝛽1𝑧𝑧)π‘Žπ‘Žπ‘£π‘£+ 𝑛𝑛(𝑛𝑛+2)

2 {βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2(βˆ’π›Όπ›Ό1βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§)π‘Žπ‘Žπ‘£π‘£ βˆ’ βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2(𝛼𝛼

0𝑓𝑓+𝛽𝛽0𝑧𝑧 βˆ’ 𝛼𝛼1βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§)π‘Žπ‘Žπ‘£π‘£}

=�𝛼𝛼0+ 𝑅𝑅

π‘›π‘›βˆ’1𝛼𝛼1οΏ½ βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£π‘“π‘“π‘Žπ‘Žπ‘£π‘£+�𝛽𝛽0+π‘›π‘›βˆ’1𝑅𝑅 𝛽𝛽1οΏ½ βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£π‘§π‘§π‘Žπ‘Žπ‘£π‘£ βˆ’π‘›π‘›(𝑛𝑛+2)2 βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2(𝛼𝛼0𝑓𝑓 βˆ’ 𝛽𝛽0𝑧𝑧)π‘Žπ‘Žπ‘£π‘£

=βˆ’[2𝑛𝑛(𝑛𝑛 βˆ’2) �𝛼𝛼0+ 𝑅𝑅

π‘›π‘›βˆ’1𝛼𝛼1οΏ½+8n�𝛽𝛽0+ 𝑅𝑅

π‘›π‘›βˆ’1𝛽𝛽1οΏ½] βˆ«πΎπΎπ‘›π‘›Gπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£+𝑛𝑛 οΏ½ 4𝑅𝑅 π‘›π‘›βˆ’1𝛼𝛼1βˆ’

π‘›π‘›βˆ’6

2 𝛼𝛼0οΏ½ βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2π‘Žπ‘Žπ‘£π‘£+ 𝑛𝑛(π‘›π‘›βˆ’14𝑅𝑅 𝛽𝛽1βˆ’π‘›π‘›βˆ’62 𝛽𝛽0)βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2π‘§π‘§π‘Žπ‘Žπ‘£π‘£

From Lemma (2.6) and our assumption, we can see that the right hands side of the above relation in non-negative and consequently (2.7) holds. If the equality in (2.7) holds, then, from our assumption, we have

(2.8) βˆ«πΎπΎπ‘›π‘›Gπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£= 0,

And Kn is isometric to a sphere, by virtue of Lemma (2.6).

Conversely, If Kn is isometric to a sphere, we get Gπ‘—π‘—π‘˜π‘˜=0 and Zπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž=0 and the equality in (2.7) holds.

Remark (2.1): If we assueme that 𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧 βˆ’ 𝛼𝛼1βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§=𝑐𝑐 (constant), from Theorem (2.1), we have c≀0 . On the other hand cβ‰₯0 holds, because

π‘π‘βˆ«πΎπΎπ‘›π‘›π‘Žπ‘Žπ‘£π‘£=βˆ«πΎπΎπ‘›π‘›π‘π‘π‘Žπ‘Žπ‘£π‘£=βˆ«πΎπΎπ‘›π‘›(𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧 βˆ’ 𝛼𝛼1βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§)π‘Žπ‘Žπ‘£π‘£

=𝛼𝛼0βˆ«πΎπΎπ‘›π‘›π‘“π‘“π‘Žπ‘Žπ‘£π‘£+𝛽𝛽0βˆ«πΎπΎπ‘›π‘›π‘§π‘§π‘Žπ‘Žπ‘£π‘£ β‰₯0 .

Thus, if 𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧 βˆ’ 𝛼𝛼1βˆ†π‘“π‘“ βˆ’ 𝛽𝛽1βˆ†π‘§π‘§ is a constant, then the constant is equal to zero and consequently the equality in (2.7) holds, and Kn is isometric to a sphere.

Theorem (2.2): If a compact orientable Kaehlerian space Kn with constant scalar curvature field R and of dimension >2

admits an infinitesimal non-isometric conformal transformation

π‘£π‘£β„Ž: Β£

π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ , 𝜌𝜌 β‰ 0 then

(5)

Holds, where 𝛼𝛼0,𝛼𝛼1,𝛽𝛽0 and 𝛽𝛽1, are non-negative constant, not all zero, such that (1.5) holds, the equality in (2.9) holds if and only if Kn is isometric to a sphere.

Proof: Making use of (2.5) in Lemmas (2.3), (2.5) and

(2.10) 1/2βˆ‡πœŒπœŒ2=πœŒπœŒπ‘˜π‘˜πœŒπœŒπ‘˜π‘˜βˆ’ π‘…π‘…πœŒπœŒ2/(𝑛𝑛 βˆ’1),

We have

βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£(𝛼𝛼0𝑓𝑓+𝛽𝛽0𝑧𝑧+𝛼𝛼1βˆ†π‘“π‘“+𝛽𝛽1βˆ†π‘§π‘§)π‘Žπ‘Žπ‘£π‘£

= (𝛼𝛼0βˆ’π‘›π‘› βˆ’π‘…π‘…1𝛼𝛼1)βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£π‘“π‘“π‘Žπ‘Žπ‘£π‘£+ (𝛽𝛽0βˆ’π‘›π‘› βˆ’π‘…π‘…1𝛽𝛽1)βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£π‘§π‘§π‘Žπ‘Žπ‘£π‘£+𝑛𝑛(𝑛𝑛2+ 2)𝛼𝛼1βˆ«πΎπΎπ‘›π‘›(βˆ†πœŒπœŒ2)π‘“π‘“π‘Žπ‘Žπ‘£π‘£

+𝑛𝑛(𝑛𝑛2+ 2)𝛽𝛽1βˆ«πΎπΎπ‘›π‘›(βˆ†πœŒπœŒ2)π‘§π‘§π‘Žπ‘Žπ‘£π‘£

= (𝛼𝛼0βˆ’ 𝑅𝑅

π‘›π‘›βˆ’1𝛼𝛼1)βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£π‘“π‘“π‘Žπ‘Žπ‘£π‘£+ (𝛽𝛽0βˆ’π‘›π‘›βˆ’1𝑅𝑅 𝛽𝛽1) βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£π‘§π‘§π‘Žπ‘Žπ‘£π‘£+ 𝑛𝑛(𝑛𝑛+ 2) βˆ«πΎπΎπ‘›π‘›πœŒπœŒπ‘˜π‘˜πœŒπœŒπ‘˜π‘˜(𝛼𝛼1𝑓𝑓+ +𝛽𝛽1𝑧𝑧)π‘Žπ‘Žπ‘£π‘£+𝑛𝑛(𝑛𝑛+ 2)π‘›π‘›βˆ’1𝑅𝑅 βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2(𝛼𝛼1𝑓𝑓+𝛽𝛽1𝑧𝑧)π‘Žπ‘Žπ‘£π‘£

=βˆ’[2𝑛𝑛(𝑛𝑛 βˆ’2)�𝛼𝛼0βˆ’ 𝑅𝑅

π‘›π‘›βˆ’1𝛼𝛼1οΏ½+ 8𝑛𝑛(𝛽𝛽0βˆ’ 𝑅𝑅

π‘›π‘›βˆ’1𝛽𝛽1) βˆ«πΎπΎπ‘›π‘›Gπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£+𝑛𝑛(𝑛𝑛 βˆ’2)βˆ«πΎπΎπ‘›π‘›πœŒπœŒπ‘˜π‘˜πœŒπœŒπ‘˜π‘˜(𝛼𝛼1𝑓𝑓+ +𝛽𝛽1𝑧𝑧)π‘Žπ‘Žπ‘£π‘£+𝑛𝑛[4𝛼𝛼0βˆ’(𝑛𝑛+6)π‘…π‘…π‘›π‘›βˆ’1 𝛼𝛼1]βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2π‘“π‘“π‘Žπ‘Žπ‘£π‘£+𝑛𝑛[4𝛽𝛽0βˆ’(𝑛𝑛+6)π‘…π‘…π‘›π‘›βˆ’1 𝛽𝛽1]βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2π‘§π‘§π‘Žπ‘Žπ‘£π‘£.

From Lemma (2.6) and our assumption, we can see that the right hand side of the above equation is non-negative and consequently (2.9) holds, because it follows from our assumption that

𝛼𝛼0 𝑅𝑅(𝑛𝑛 βˆ’1)βˆ’1𝛼𝛼1π‘Žπ‘Žπ‘›π‘›π‘Žπ‘Žπ›½π›½0 𝑅𝑅(𝑛𝑛 βˆ’1)βˆ’1𝛽𝛽1

are non-negative and not both zero. If the equality in (2.9) holds, then we have (2.8) and Kn is isometric to a sphere by

virtue of Lemma (2.6).

Conversely, If Kn is isometric to a sphere, we get Gπ‘—π‘—π‘˜π‘˜ = 0 and Zπ‘˜π‘˜π‘—π‘—π‘˜π‘˜ β„Ž = 0 and the equality in (2.9) holds.

Theorem (2.3): If a compact orientable space Kn with constant scalar curvature field R and of dimension >2 admits an

infinitesimal non-isometric conformal transformation on π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ , 𝜌𝜌 β‰ 0 then

(2.11) βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£(𝛼𝛼0πœ”πœ” βˆ’ 𝛼𝛼1βˆ†πœ”πœ”)π‘Žπ‘Žπ‘£π‘£ β‰₯𝑛𝑛(𝑛𝑛+2)

2 βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2(𝛼𝛼0πœ”πœ” βˆ’ 𝛼𝛼1βˆ†πœ”πœ”)π‘Žπ‘Žπ‘£π‘£, holds,

where a and b are constants such that a+bβ‰ 0, 𝛼𝛼0 and 𝛼𝛼1 , are non-negative constants such that if n > 6 the first inequality in (1.4) holds, the equality in (2.11) holds if and only if Kn is isometric to a sphere.

Proof: Similarly, as in the proof of the Theorem (2.1), by using (2.6) in Lemma (2.4) and Lemma (2.5) and (2.6), we get

βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£(𝛼𝛼0𝑀𝑀 βˆ’ 𝛼𝛼1βˆ†π‘€π‘€)π‘Žπ‘Žπ‘£π‘£ βˆ’π‘›π‘›(𝑛𝑛+2)

2 ,βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2(𝛼𝛼0𝑀𝑀 βˆ’ 𝛼𝛼1βˆ†π‘€π‘€)π‘Žπ‘Žπ‘£π‘£,=�𝛼𝛼0+ 𝑅𝑅

π‘›π‘›βˆ’1𝛼𝛼1οΏ½ βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£π‘€π‘€π‘Žπ‘Žπ‘£π‘£ βˆ’ 𝑛𝑛(𝑛𝑛+2)

2 𝛼𝛼0) βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2π‘€π‘€π‘Žπ‘Žπ‘£π‘£ =βˆ’8𝑛𝑛(π‘Žπ‘Ž+𝑏𝑏)2�𝛼𝛼0+ 𝑅𝑅

π‘›π‘›βˆ’1𝛼𝛼1οΏ½ βˆ«πΎπΎπ‘›π‘›Gπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£+𝑛𝑛(π‘›π‘›βˆ’14𝑅𝑅 𝛼𝛼1βˆ’π‘›π‘›βˆ’62 𝛼𝛼0) βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2π‘€π‘€π‘Žπ‘Žπ‘£π‘£ β‰₯0 ,

Which proves (2.11). It is easily proved from Lemma (2.6) and our assumption that the equality in (2.11) holds if only if Kn is isometric to a sphere.

Theorem (2.4): If a compact orientable space Kn with constant scalar curvature field R and of dimension > 2 admits an

infinitesimal non- isometric conformal transformation π‘£π‘£β„Ž: Β£π‘£π‘£π‘”π‘”π‘—π‘—π‘˜π‘˜ = 2πœŒπœŒπ‘”π‘”π‘—π‘—π‘˜π‘˜ , 𝜌𝜌 β‰ 0. then

(2.12) βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£(𝛼𝛼0πœ”πœ” βˆ’ 𝛼𝛼1βˆ†πœ”πœ”)π‘Žπ‘Žπ‘£π‘£ β‰₯0

holds, where a and b are constant such that a+b β‰ 0 and 𝛼𝛼0 and 𝛼𝛼1 are non-negative constant, not both zero, such that the first inequality in (1.5) holds, the equality in (2.12) holds if Kn is isometric to a sphere.

(6)

βˆ«πΎπΎπ‘›π‘›Β£π‘£π‘£Β£π‘£π‘£(𝛼𝛼0𝑀𝑀+𝛼𝛼1βˆ†π‘€π‘€)π‘Žπ‘Žπ‘£π‘£

=βˆ’8𝑛𝑛(π‘Žπ‘Ž+𝑏𝑏)2�𝛼𝛼

0βˆ’π‘›π‘› βˆ’π‘…π‘…1𝛼𝛼1οΏ½ βˆ«πΎπΎπ‘›π‘›gπ‘—π‘—π‘˜π‘˜πœŒπœŒπ‘—π‘—πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£+𝑛𝑛(𝑛𝑛+ 2)𝛼𝛼1βˆ«πΎπΎπ‘›π‘›πœŒπœŒπ‘˜π‘˜πœŒπœŒπ‘˜π‘˜π‘Žπ‘Žπ‘£π‘£+𝑛𝑛[4𝛼𝛼0

βˆ’(𝑛𝑛𝑛𝑛 βˆ’+ 6)1𝑅𝑅𝛼𝛼1]βˆ«πΎπΎπ‘›π‘›πœŒπœŒ2πœ”πœ”π‘Žπ‘Žπ‘£π‘£ β‰₯0 ,

Which proves (2.12). It is easily proved from Lemma (2.6) and our assumption that the equality in (2.12) holds if and only if Kn is isometric to a sphere.

REFERENCES

[1] H. Hiramatu, on integral inequalities in Riemannian manifolds admitting a one-Parameter conformal transformation group, Kodai Math. Sem. Rep. (To appear).

[2] K. Yano, and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom., 2 (1968), 161-184.

[3] K. Yano, The Theory of Lie-Derivatives and its Applications, North-Halland, Amsterdam (1957).

[4] K. Yano, On Riemannian manifolds with constant scalar curvature admitting a conformal transformation group. Proc. Nat. Acad. Sci., U.S.A. 62 (1969), 314-319.

[5] K. Yano, Riemannain manifolds admitting a conformal transformation group, Proc. Nat. Acad. Sci., U.S.A., 55 (1966), 472-476.

[6] Singh, A.K. and Kumar, S.On Einstein-Tachibana conharmonic recurrent spaces. Acta ciencia indica, Vol.XXXIIM, No.2(2006), pp.833-837.

[7] Chauhan, T.S., Chauhan, I.S.and Singh, R.K. On Einstein-Kaehlerian space with recurrent Bochner curvature tensor. Acta Ciencia Indica, Vol. XXXIVM, No.1 (2008), pp.23-26.

[8] Negi U.S. and Rawat Aparna, Some theorems on almost Kaehlerian spaces with recurrent and symmetric projective curvature tensors. ACTA Ciencia Indica, Vol. XXXVM, No 3(2009), pp. 947-951.

References

Related documents

This paper has proposed an efficient meta-heuristic algorithm, Iterative Random PSO (IRPSO) in order to solve the no-wait flow shop scheduling problem minimizing the total

We invite unpublished novel, original, empirical and high quality research work pertaining to the recent developments & practices in the areas of Com- puter Science &

Motivated by complex phenomena embedded into time series, this paper proposes EHLAC (Exponential-Weighted Higher-Order Local Auto-Correlation), an approach to extract features from

As can be seen, the concentration of the active substance in the last rinsing liquid at each stage of the validation process of cleaning equipment surfaces in

Dynamic compliance (C dyn ) and lung resistance (R L ) measured in anesthetized animals at rest and following exposure to HDM allergen, methacholine, and albuterol were

Exploring her affective potential, I ask what these feelings can tell us about our relationships with technology and conclude that the way we are able to affect and be affected