• No results found

Flowcharts and Design Equations - Eurocode 2

N/A
N/A
Protected

Academic year: 2021

Share "Flowcharts and Design Equations - Eurocode 2"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Slab Design Flowchart

2

for f <= 90 N/mm

ck

BENDING

Carry out check to

L/d 7.4.2 (2) See separate flowchart Calculate to 7.4.3 No cracking check required

CRACKING

Use Table 7.3 7.3.2 (2) for bar spacing Check A , min tos See separate flowchart As 0.13% 26%f /fctm yk

but not 1.5As & n

Dist 0.12% 0.2Asprov

>= >= > >= >= 9.2.1.1 9.3.1.1(1) 9.3.1.1(2) Primary s 3h 400 Secondary s 3.5h 450

(smaller near point loads)

<= <= <= <= 9.3.1.1 (3) &(4)

Concrete Stress Block

Design stress = hfcd where f = a f /gcd cc ck c and h = 1 - (f -50)/200 <= 1 ck l = 0.8 - (f -50)/400 <= 0.8ck

3.1.6 (1) (3.21) & (3.22) (3.19) & (3.20)

(

)

d xmax = d -0.4 from (5.10)

(

)

[

K K

]

d d z 1 1 2 c min , ' 0.95 2 + - £ = g

(

'

)

0 '=bd2f K-K ³ M ck

Design Formulae

ck f bd M K = 2 ÷ ø ö ç è æ -= 2 ' max 2 max d x d x K c l g l

(

'

)

' ' d d f M As sc -= yd sc yd f f As z f M M As= - '+ '

Steel Design Stress

f = f /g yd yk s Fig 3.8 s yk sc f x d x f g £ ÷ ø ö ç è æ -=700 '

SHEAR

Construction overload or striking < 7 days? Is h > 200 mm?

DEFLECTION

No No Yes Yes If VRd,ct V no links,Ed otherwise see beams.

>= Where

(

f

)

f b d k d b V l ck ctd w c w ct Rd 100 0.4 18 . 0 3 1 , = r ³ g (6.2) 2 200 1+ £ = d k = £0.02 d b As w l l r and (3.16) c ctm ct ctd f f g a 7 . 0 =

(2)

Concrete Stress Block

As for Slabs s ,L = 0.75d max s ,T 0.75d max 600 (9.6) (9.8) = <=

For point load near support, use 6.2.2.5or 6.2.3 (8)

Tee & Ell Beam Flowchart

2

for f <= 90 N/mm

ck

BENDING

Steel Design Stress

As for Slabs

Treat as rectangular section, substituting b for b.f Is M > MORf ? No Yes

(

)

f f ORf f b bw b M M =

-(

)

÷ ø ö ç è æ -+ ÷÷ ø ö çç è æ -= 2 2 x d M M M h d M M z f f f l 0 '=M -MOR ³ M

(

'

)

' ' d d f M As sc -= yd sc yd f f As z f M M As= - '+ ' As 0.13% 26%f /fctm yk Ascrack

Part of top steel at supports must be spread across the width of the flange

>= >= >= As 9.2.1.1 7.3.2 (2) 9.2.1.2 (2)

SHEAR

Compression & tension flange widths to 5.3.2.1

At d from support face

max cot min s A zf V s A s A sw ywk s Ed sw sw £ = £ q g (6.7) yk ck w sw f f b s A 0.08 min = where (9.4) & (9.5) y w k s w c d s w f b f s A 2 m a x = n g and (6.9) Process as Slabs See separate flowchart

CRACKING

DEFLECTION

Use Table 7.3 for bar spacing See separate flowchart Check main steel tensile

force due to shear) at zcotq/2 from support

T (d

Or use Shift Rule 6.2.3 (7) Fig 9.2 z may be taken as 0.9d Flange MOR ÷÷ ø ö çç è æ -= = 2 f f f cd ORf h d h b f M h

(

)

max 2 6 10 2 1 1 x d f b M M d x cd w f £ ú ú û ù ê ê ë é - -= h l

(

)

[

f f w w

]

cd OR f zh b b xb M =h - +l At support face Ed cd w V f z b n q q w =cot +tan = (6.8) ÷ ø ö ç è æ -= 2 5 0 1 6 . 0 fc k n (6.5) where 5 . 2 2 4 cot 1 2 £ -+ = £ q w w 6.2.3 (2) 2 200 1+ £ = d k = £0.02 d b As w l l r where and (3.14)

(

)

Ed cd w Rd V f z b V ³ + = q q n tan cot max , (6.8)

(

f

)

f b d k d b V l ck ctd w c w ct Rd 100 0.4 18 . 0 3 1 , = r ³ g (6.2) c ctm ct ctd f f g a 7 . 0 =

(3)

Rectangular Columns

Design Flowchart

Final design moment

M = M + M Ed 0Ed 2 M >= MEd 02

(5.33)

First order moment

M = M + M0Ed 0E imp Imperfections M = q N.l /2imp i 0 where q =(2/3<=2/ l<=1)/200i Ö Joint stiffnesses

At each end, k = relative column stiffness ie. EI/l / S(EI/lcol beams), but assume 50% of beam stiffnesses to allow for cracking

simplification of 5.8.3.2 (3)

Slenderness ratio

l = l /i 0

where i = radius of gyration of section (including reinforcement)

(5.14) Curvature 1/r = K . K .1/rr f 0 where 1/r = f /(0.45d.E )0 yd s = f /103500d andyk K = 1 + bf >= 1 f ef (5.34) (5.37)

Axial load correction factor

K = (n - n)/(n - n ) <= 1 r u u bal where n = N /(A .f )Ed c cd

n = 1 + wu

(5.36)

n may be taken as 0.4bal

Creep correction f = fMef 0Eqp/ M 0Ed (5.19) f from 3.1.3 Is f <= 2, M/N >= h and l <= 75? No check needed Is eyb/exh<= 0.2 or exh/eyb <= 0.2? b = 0.35 + f /200 - l /150ck k = 1f

Second order moment

M = N e2 Ed 2 2 where e = (1/r) l /c2 0

(5.33)

2

c normally p unless constant M0E

Second order moment

M = 02 Effective length (5.16) þ ý ü î í ì ÷÷ ø ö çç è æ + + ÷÷ ø ö çç è æ + + + + = 2 2 1 1 2 1 2 1 0 1 1 . 1 1 ; 10 1 max . k k k k k k k k l l

SLENDERNESS

BUCKLING

MOMENTS

BIAXIAL BENDING Is Column braced? No No No No Yes Yes Yes Yes Is l <= 25(w+0.9)(2 - M /M )?01 02 where w =A f /(A f )>=0.05s yd c cd (from 5.8.3.1) M and M to01 02

include any global second order

effects

Equivalent end moment

M = 0.6M + 0.4M >= 0.4M0E 02 01 02 where M >= M02 01 (5.32)

Determine Rebar and MRd

from N:M interaction charts

ú û ù ê ë é ÷ ø ö ç è æ + ÷ ø ö ç è æ + = 3 1 5 , 2 , 12 11 10 , 1 , 7 . 0 Max n Min n n If a p y d s c d c E d f A f A N n + = . Let , then nd

Repeat all for 2 axis then check 1 £ ÷ ÷ ø ö ç ç è æ + ÷÷ ø ö çç è æ a Rdy Edy a Rdx Edx M M M M (5.39) ÷÷ ø ö çç è æ + + ÷÷ ø ö çç è æ + + = 2 2 1 1 0 45 . 0 1 . 45 . 0 1 5 . 0 k k k k l l Effective length (5.15)

(4)

may be taken as for internal columns for edge columns or for corner columns

b

1.15 1.4 1.5 6.4.3 (6)

Enhancement

factor

b

Slab Punching Flowchart

(rectangular columns)

Do adjacent spans differ by <= 25%?

c

1 = column dim in direction of M.

c

2 = column width.

c

x = column dim parallel to edge.

c

y = column dim normal to edge.

u

1 = full control perimeter (2d locus from column face, allowing for holes as ).

u

1* = reduced control perimeter. d = (dx + dy) 6.4.2 (3) (6.33) ½ Internal Column

b

= 1 + k MEd

u

1 /(VEd W ) 1 where, if

c

1/

c <

2 = 1, k = 0.45 + 0.3(

c

1/

c

2 - 0.5) >= 0.45 or if

c

1/

c

2 > 1, k = 0.6 + 0.1(

c

1/

c

2 - 1) <= 0.8 and to (6.40) Table 6.1 (6.42) 1 2 2 2 1 2 1 1 4 16 2 2 cc c d d dc c W = + + + + p Edge Column

where k is as internal column, but replace c /c with c /2c1 2 1 2

and to

1

(6.46) p a r e W u k u u 1 1 1 1 * + = b 2 2 1 2 1 2 1 1 4 8 4 cc cd d dc c W = + + + +p

(

d c

)

d c u1*= 2 +min3 , 1 +2p 02 . 0 . £ = lx ly l r r r No No No Or Yes Yes Yes

Shear Stress

Links

At Column Face vEd = bVEd/(u .d)0 (6.54) Is vEd > 0.3fcd[1-fck/250]? Is vEd > vRd,c ? Increase h

Links not required

At Control Perimeter vEd = bVEd/(u .d) 1 (6.39)

(

l ck

)

ctd c c Rd k f f v , =0.18 100r 1/3 ³0.4 g (6.48)

(

)

e f y w d c R d E d r s w f u v v S A , 1 , 5 . 1 7 5 . 0 -= y w d e f y w d f d f = + £ 4 2 5 0 , where

Asw = total link area on 1st

perimeter (at >=0.3d &<=0.5d) Outer control perimeter

u = V /(v d)out Ed Rd,c

(6.55)

Last link perimeter <= 1.5d from u (polygonal shape) out

st St,max <= 1.5d on 1 and <= 2d on last perimeter y k t r s w f S f c k S A . 5 . 1 8 . 0 m i n , = (9.11) Internal

u

0 = 2(c1+c2) Edge

u

0 = min(cx+3d,cx+2cy) Corner

u

0 = min(3d,cx+cy) 6.4.5 (2) Corner Column (6.47) where * 1 1 u u = b d c d c d u ÷+p ø ö ç è æ + ÷ ø ö ç è æ = 2 , 5 . 1 min 2 , 5 . 1 min * 1 2 1 If e is towards outside, treat as internal column Min h = 200

(5)

Flexural Crack Width Calculation

Flowchart

(rectangular sections)

M = full SLS moment t = age at cracking in days

fs = maximum tension bar diameter S = maximum tension bar spacing s = cement type coefficient

0.20 for rapid hardening high strength 0.25 for normal & rapid hardening 0.38 for slow hardening

MATERIALS

Concrete modulus 0.3 Ecm = 22[(fck+8)/10] Modular ratio ae = Es /Ecm Time factor,

Mean concrete strength at cracking fcm(t) = bcc(t).fcm

Average concrete tensile strength If f >50, fck ct,eff = 2.12ln(1+fcm,t /10) 2/3 otherwise, fct,eff = cm,t 0.3(f - 8) Table 3.1 (3.2) ú ú û ù ê ê ë é ÷ ÷ ø ö ç ç è æ -= t s t cc 2 8 1 exp ) ( b

STRESSES

CRACKING

Neutral axis depth

Concrete stress

Stress in tension steel

(

)

(

)

ú ú û ù ê ê ë é ÷ ø ö ç è æ + + -+ -= d d d x ae r r' ae2 r r'2 2ae r r' 2

(

)(

)

(

)

ú û ù ê ë é -+ ÷ ø ö ç è æ -= x d x d d As x d bx M e c 2 2 2 1 3 2 a s ÷ ø ö ç è æ -= x x d s scae s Crack width W = s (e - e )k max sm cm (7.8)

Effective tension area

and 7.3.4 (2)

(

)

(

)

ú û ù ê ë é -= 2 , 3 , 5 . 2 min , h x h d h Aceff eff c eff p A As , , = r

Average strain for crack width calculation

(7.9)

(

)

s s s eff p e eff p eff ct s cm sm E E f s r a r s e e 0.6 1 4 . 0 , , , ³ + -=

-Max final crack spacing, if spacing <=5c+2.5f

otherwise, sr,max = 1.3(h-x)

where k = 0.8 for high bond, otherwise 1.61 and c = cover (7.12) e f f p r k c s , 1 m a x , 2 1 2 5 . 0 4 . 3 r f + = (7.11)

(6)

d x cu       + + ≥ ε δ 0.4 0.6 0.0014 Equation (5.10)       + − = cu d x ε δ 0014 . 0 6 . 0 4 . 0 max

(

)

      + − = ∴ cu d x ε δ 0014 . 0 6 . 0 4 . 0 max Where

(

)

.0035 40 90 0009 . 0026 . 4 ≤     − − = ck cu f

ε Code equation is wrongTable 3.1& Fig 3.5

(

)

8 . 0 400 50 8 . 0 − − ≤ = fck λ Equations (3.19) & (3.20)

(

)

0 . 1 200 50 0 . 1 − − ≤ = fck η Equations (3.21) & (3.22) c ck cc cd f f γ α = where 85αcc =0. Equation (3.15) c ck cd c f b x f bx F γ ηλ λ η = max = ∴ when 2 max x d z= −λ Figure 3.5 ck c ck cc c conc K bd f x d bx f z F M max max ' 2 2 =     − = = ∴ λ γ ηλ α       − = ∴ 2 ' max 2 max d x d x K c cc λ γ ηλ α

Design Equations (Rectangular section)

ck f bd M K = 2

(

min , '

)

2 2f K K bd x d bx f z F M ck c ck cc c conc =      − = = λ γ ηλ α

(

)

2 ' , min 2 2 x dx K K d cc c λ ηλα γ − = →

(

min , '

)

0 2 2 2 = + − cc c K K d dx x ηλα γ λ

(

)

(

)

     = − ± = ∴ 1 1 2 min , ' ' , min 2 1 K K d K K d d x cc c cc c ηα γ λ λ ηα γ or

(

)

                − − − = − = 1 0.5 1 1 2 min , ' 2 d K K x d z cc c ηα γ λ

(

)

        − + = ∴ 1 1 2 min , ' 2 K K d z cc c ηα γ but limit to z ≤0.95d Residual M =bd2f

(

K K'

)

0 ck       − = x d x cu sc ' 3 ε ε and       − = x x d cu st ε 3 ε s yk sc sc f f γ ε ≤ = 200000 and s yk st st f f γ ε ≤ = 200000

(

'

)

' d d f M As sc res − = and st sc st res f f As z f M M As= − + '

(7)

(

)

      + − = ∴ cu d x ε δ 0014 . 0 6 . 0 4 . 0 max Flange MOR       − = = 2 f f f cd ORf h d h b f M η If MMORf

treat as rectangular section, substituting bf for b If M fMORf take

(

)

f f ORf f b bw b M M = − and 2 f f h d z = −

For web section,

     − = − 2 x d x b f M M f η cd w λ λ

(

)

max 2 6 10 2 1 1 x d f b M M d x cd w f         − = η λ and 2 x d zw = −λ

Composite concrete lever arm,

(

)

     − − +       − = 2 2 x d M M M h d M M z f f f λ

Remaining equations as rectangular section

Equations for Shear

Ed cd w V f z b ν θ θ

ω =cot +tan = (6.8) where VEd is at support face, and

(

)

250 1 6 . 0 − fck = ν (6.5) 5 . 2 2 4 cot 1≤ θ =ω+ ω2− ≤ 6.2.3 (2)

(

f

)

f b d k d b V l ck ctd w c w ct Rd 100 0.4 18 . 0 13 , = γ ρ ≥ (6.2) where =1+ 200 ≤2 d k = ≤0.02 d b As w l l ρ c ctm ct ctd f f γ α 7 . 0 = (3.16)

(

w cd

)

Ed Rd V f z b V ≥ + = θ θ ν tan cot max

, at support face (6.8) (z may be taken as 0.9d)

max cot min A s zf V s A s A sw ywk s Ed sw sw ≤ = ≤ θ γ

(6.7) where VEd is at d from support face

where yk ck w sw f f b s A min=0.08 (9.4) & (9.5) and ywk s w cd sw f b f s A 2 max=ν γ (6.9)

References

Related documents

Next, we investigate the uncoded IEEE 802.11a based OFDM performance for both pure and composite Nakagami fading channels with either 48 or 24 independent sub-carriers in the

Please coordinate with the FP&amp;M project manager or the building supervisor to ensure that a central location for mail delivery has been established or that you have an

After calculating family income with and without SNAP benefits, the estimates of the antipoverty effects of the Food Stamp Program are drawn from comparing the percent decline in

mergers and acquisitions) 39% 46% 15% Evaluating potential investments in new HR technology 37% 41% 22% Increasing awareness of the fiduciary status of HR professionals 37% 53%

cancer. Drug targeting of sphingolipid metabolism: Sphingomyelinases and ceramidases. Ceramide-orchestrated signalling in cancer cells. Discovery of highly potent acid

Our customers have many different switching vendors within their environments and we felt it important to discover what level of impact switch selection has on VMware

However, it is important to point out that, because Zheng and Lo’s setting treats the alternative value of the hypothesis as known, their variation is also different from the

There is a signifi- cant study done in Pakistan which showed 14.2% had mild severity while 50.7% had severe OSA and they only performed polysomnography test of everyone who presented