• No results found

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

N/A
N/A
Protected

Academic year: 2021

Share "C Soldering Temperature, for 10 seconds 300 (1.6mm from case )"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

IRF520N

HEXFET

®

Power MOSFET

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

S D

G

Parameter Max. Units

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 9.7

ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 6.8 A

IDM Pulsed Drain Current  38

PD @TC = 25°C Power Dissipation 48 W

Linear Derating Factor 0.32 W/°C

VGS Gate-to-Source Voltage ± 20 V

EAS Single Pulse Avalanche Energy‚ 91 mJ

IAR Avalanche Current 5.7 A

EAR Repetitive Avalanche Energy 4.8 mJ

dv/dt Peak Diode Recovery dv/dt ƒ 5.0 V/ns

TJ Operating Junction and -55 to + 175

TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds 300 (1.6mm from case )

°C Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)

Absolute Maximum Ratings

Parameter Typ. Max. Units

RθJC Junction-to-Case ––– 3.1

RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W

RθJA Junction-to-Ambient ––– 62

Thermal Resistance

V

DSS

= 100V

R

DS(on)

= 0.20

I

D

= 9.7A

TO-220AB

l

Advanced Process Technology

l

Dynamic dv/dt Rating

l

175°C Operating Temperature

l

Fast Switching

l

Fully Avalanche Rated

Description

(2)

Parameter Min. Typ. Max. Units Conditions

IS Continuous Source Current MOSFET symbol

(Body Diode) ––– ––– showing the

ISM Pulsed Source Current integral reverse

(Body Diode)  ––– ––– p-n junction diode.

VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 5.7A, VGS = 0V „

trr Reverse Recovery Time ––– 99 150 ns TJ = 25°C, IF = 5.7A

Qrr Reverse RecoveryCharge ––– 390 580 nC di/dt = 100A/µs„

Source-Drain Ratings and Characteristics

S D

G

Parameter Min. Typ. Max. Units Conditions

V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V VGS = 0V, ID = 250µA

∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.11 ––– V/°C Reference to 25°C, ID = 1mA

RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.20 Ω VGS = 10V, ID = 5.7A „

VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA

gfs Forward Transconductance 2.7 ––– ––– S VDS = 50V, ID = 5.7A

––– ––– 25

µA VDS = 100V, VGS = 0V

––– ––– 250 VDS = 80V, VGS = 0V, TJ = 150°C

Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V

Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -20V

Qg Total Gate Charge ––– ––– 25 ID = 5.7A

Qgs Gate-to-Source Charge ––– ––– 4.8 nC VDS = 80V

Qgd Gate-to-Drain ("Miller") Charge ––– ––– 11 VGS = 10V, See Fig. 6 and 13 „

td(on) Turn-On Delay Time ––– 4.5 ––– VDD = 50V

tr Rise Time ––– 23 ––– ID = 5.7A

td(off) Turn-Off Delay Time ––– 32 ––– RG = 22Ω

tf Fall Time ––– 23 ––– RD = 8.6Ω, See Fig. 10 „

Between lead,

––– –––

6mm (0.25in.) from package

and center of die contact

Ciss Input Capacitance ––– 330 ––– VGS = 0V

Coss Output Capacitance ––– 92 ––– pF VDS = 25V

Crss Reverse Transfer Capacitance ––– 54 ––– ƒ = 1.0MHz, See Fig. 5

nH

Electrical Characteristics @ T

J

= 25°C (unless otherwise specified)

LD Internal Drain Inductance

LS Internal Source Inductance ––– –––

S D G IGSS ns 4.5 7.5 IDSS Drain-to-Source Leakage Current

 Repetitive rating; pulse width limited by

max. junction temperature. ( See fig. 11 ) ƒ

ISD ≤ 5.7A, di/dt ≤ 240A/µs, VDD ≤ V(BR)DSS,

TJ ≤ 175°C

Notes:

‚ VDD = 25V, starting TJ = 25°C, L = 4.7mH

RG = 25Ω, IAS = 5.7A. (See Figure 12)

„ Pulse width ≤ 300µs; duty cycle ≤ 2%. 9.7

38 A

(3)

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance

Vs. Temperature

Fig 2. Typical Output Characteristics

1 1 0 1 0 0 0.1 1 1 0 1 0 0 I , D rai n -t o -S ou rc e Cur re nt ( A ) D

V , D rain -to -S ourc e V o lta ge (V )D S

VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 20 µ s P U LS E W ID TH T = 2 5°CC A 4.5 V 1 1 0 1 0 0 0.1 1 1 0 1 0 0 4 .5V I , D rai n -t o -S ou rc e Cur re nt ( A ) D

V , D rain-to-S ource V oltage (V )DS

VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 2 0µ s P U L S E W ID T H T = 17 5°CC A 1 1 0 1 0 0 4 5 6 7 8 9 1 0 T = 25 °CJ G S

V , G ate-to -S ource V olta ge (V )

D I , D ra in -to -S o u rc e C u rr e n t (A ) V = 5 0 V 2 0 µ s P U LS E W ID TH D S T = 17 5 °CJ A 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 - 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 J

T , J unc tion T em perature (°C )

R , D ra in -to -S o u rc e O n R e s is ta n c e D S (on) (N o rm a li z e d ) V = 1 0V G S A I = 9.5 AD

(4)

Fig 7. Typical Source-Drain Diode

Forward Voltage

Fig 5. Typical Capacitance Vs.

Drain-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 6. Typical Gate Charge Vs.

Gate-to-Source Voltage

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 1 1 0 1 0 0 C , Cap ac it a n c e ( p F ) D S

V , D rain-to -S ource V olta ge (V )

A V = 0V , f = 1 M H z C = C + C , C S H O R TE D C = C C = C + C G S is s g s g d d s rs s g d o ss d s g d C iss C os s C rs s 0 4 8 1 2 1 6 2 0 0 5 1 0 1 5 2 0 2 5

Q , T otal G ate C harge (nC )G

V , G a te -t o -S o u rc e V o lt a g e ( V ) GS V = 80 V V = 50 V V = 20 V D S D S D S A F O R TE S T C IR C U IT S E E F IG U R E 1 3 I = 5.7 AD 1 1 0 1 0 0 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 T = 2 5°CJ V = 0V G S

V , S ourc e-to -D rain V o ltage (V )

I , R e v e rs e D ra in C u rr e n t ( A ) S D SD A T = 17 5°CJ 0.1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0

V , D rain-to-S ource V oltage (V )D S

I , Dr ai n C u rr e nt ( A ) O P E R A T IO N IN T H IS A R E A LIM IT E D B Y R D D S (o n) 1 0 µ s 1 0 0 µ s 1 m s 1 0 m s A T = 25 °C T = 17 5°C S ing le P u ls e C J

(5)

Fig 9. Maximum Drain Current Vs.

Case Temperature

Fig 10a. Switching Time Test Circuit

VDS 90% 10% VGS td(on) tr td(off) tf VDS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %

Fig 10b. Switching Time Waveforms

RD

VGS

RG

D.U.T.

10V

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

+ -VDD 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 Notes: 1. Duty factor D = t / t 2. Peak T = P x Z + T 1 2 J DM thJC C P t t DM 1 2

t , Rectangular Pulse Duration (sec)

Thermal Response (Z ) 1 thJC 0.01 0.02 0.05 0.10 0.20 D = 0.50 SINGLE PULSE (THERMAL RESPONSE) 25 50 75 100 125 150 175 0.0 2.0 4.0 6.0 8.0 10.0 T , Case Temperature ( C)

I , Drain Current (A)

°

C

(6)

Fig 12a. Unclamped Inductive Test Circuit

VDS L D.U.T. VDD IAS tp 0.01 RG + -tp VDS IAS VDD V(BR)DSS 10 V

Fig 12b. Unclamped Inductive Waveforms

D.U.T. VDS ID IG 3mA VGS .3µF 50KΩ .2µF 12V Current Regulator Same Type as D.U.T.

Current Sampling Resistors

+

-Fig 13b. Gate Charge Test Circuit

Q

G

Q

GS

Q

GD

V

G

Charge

10 V

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy

Vs. Drain Current

0 4 0 8 0 1 2 0 1 6 0 2 0 0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5 J E , S in g le P u ls e A v a la n c h e E n e rg y ( m J ) AS A

S tarting T , J unc tion T em perature (°C )

V = 25 V I T O P 2 .3 A 4.0 A B O T T O M 5 .7A D D D

(7)

P.W. Period

di/dt Diode Recovery

dv/dt

Ripple ≤ 5%

Body Diode Forward Drop Re-Applied

Voltage Reverse Recovery Current

Body Diode Forward Current

VGS=10V

VDD

ISD Driver Gate Drive

D.U.T. ISDWaveform D.U.T. VDSWaveform Inductor Curent D = P.W. Period + -+ + +

-Fig 14. For N-Channel HEXFETS

*

VGS = 5V for Logic Level Devices

Peak Diode Recovery dv/dt Test Circuit

ƒ „ ‚ RG VDD • dv/dt controlled by RG

• Driver same type as D.U.T. • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test

D.U.T Circuit Layout Considerations

• Low Stray Inductance • Ground Plane

• Low Leakage Inductance Current Transformer



(8)

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

TO-220AB

Part Marking Information

L E A D A S S IG NM E NT S 1 - G A T E 2 - D R A IN 3 - S O U RC E 4 - D R A IN B -1 .32 (.05 2) 1 .22 (.04 8) 3 X 0.55 (.02 2) 0.46 (.01 8) 2 .92 (.11 5) 2 .64 (.10 4) 4.69 ( .18 5 ) 4.20 ( .16 5 ) 3X 0.93 (.03 7)0.69 (.02 7) 4.06 (.16 0) 3.55 (.14 0) 1.15 (.04 5) M IN 6.47 (.25 5) 6.10 (.24 0) 3 .7 8 (.149 ) 3 .5 4 (.139 ) A -10 .54 (.4 15) 10 .29 (.4 05) 2.87 (.11 3) 2.62 (.10 3) 1 5.24 (.60 0) 1 4.84 (.58 4) 1 4.09 (.55 5) 1 3.47 (.53 0) 3 X1 .4 0 (.0 55 ) 1 .1 5 (.0 45 ) 2.54 (.10 0) 2 X 0 .3 6 (.01 4) M B A M 4 1 2 3 N O TE S :

1 D IM E N S IO N IN G & TO L E R A N C ING P E R A N S I Y 1 4.5M , 1 9 82. 3 O U T LIN E C O N F O R M S TO JE D E C O U T LIN E TO -2 20 -A B . 2 C O N TR O L LIN G D IM E N S IO N : IN C H 4 H E A TS IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S . P A R T N U M B E R IN T E R N A T IO N A L R E C T IF IE R L O G O E X A M P L E : T H IS IS A N IR F 1 0 1 0 W IT H A S S E M B L Y L O T C O D E 9 B 1M A S S E M B L Y L O T C O D E D A T E C O D E (Y Y W W ) Y Y = Y E A R W W = W E E K 9 2 4 6 IR F 1 0 10 9B 1 M A

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

(9)

References

Related documents

When permanent dedicated connections are required, a point-to-point link is used to provide a single, pre-established WAN communications path from the customer prem- ises, through

Productivity-diversity relationships, whereby higher productivity sustains 598 higher diversity, have also been suggested in the deep-sea (McClain & Schlacher 2015, Woolley 599

Similar work by Kim and Yu (2012) evaluated the rumen bacterial community using real-time PCR to quantify cultured and uncultured species in liquid and solid fractions of Jersey

In the USA the minimum factor of safety of the suspension ropes is based on the actual rope speed corresponding to the rated speed of the car and is slightly greater for

Chapter 4 examined the effect of a butyrate-enriched milk replacer on animal performance and rumen and hindgut microbiota in dairy calves, showing an association

 Have good Onsite-Offshore co-ordination experience in evaluating the functional specs with process teams, delivering the road map of the functional specs to offshore

Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet,

A network analysis including relative abundances of all ruminal microbial genera (archaea, bacteria, fungi, and protists) and their genes was performed to improve our understanding