• No results found

Connexions module: m The Cell Membrane. OpenStax College. Abstract. By the end of this section, you will be able to:

N/A
N/A
Protected

Academic year: 2021

Share "Connexions module: m The Cell Membrane. OpenStax College. Abstract. By the end of this section, you will be able to:"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

The Cell Membrane

OpenStax College

This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License 3.0†

Abstract By the end of this section, you will be able to:

• Describe the molecular components that make up the cell membrane • Explain the major features and properties of the cell membrane

• Dierentiate between materials that can and cannot diuse through the lipid bilayer

• Compare and contrast dierent types of passive transport with active transport, providing examples of each

Despite dierences in structure and function, all living cells in multicellular organisms have a surrounding cell membrane. As the outer layer of your skin separates your body from its environment, the cell membrane (also known as the plasma membrane) separates the inner contents of a cell from its exterior environment. This cell membrane provides a protective barrier around the cell and regulates which materials can pass in or out.

1 Structure and Composition of the Cell Membrane

The cell membrane is an extremely pliable structure composed primarily of back-to-back phospholipids (a bilayer). Cholesterol is also present, which contributes to the uidity of the membrane, and there are various proteins embedded within the membrane that have a variety of functions.

A single phospholipid molecule has a phosphate group on one end, called the head, and two side-by-side chains of fatty acids that make up the lipid tails (Figure 1 (Phospholipid Structure )). The phosphate group is negatively charged, making the head polar and hydrophilicor water loving. A hydrophilic molecule (or region of a molecule) is one that is attracted to water. The phosphate heads are thus attracted to the water molecules of both the extracellular and intracellular environments. The lipid tails, on the other hand, are uncharged, or nonpolar, and are hydrophobicor water fearing. A hydrophobic molecule (or region of a molecule) repels and is repelled by water. Some lipid tails consist of saturated fatty acids and some contain unsaturated fatty acids. This combination adds to the uidity of the tails that are constantly in motion. Phospholipids are thus amphipathic molecules. An amphipathic molecule is one that contains both a hydrophilic and a hydrophobic region. In fact, soap works to remove oil and grease stains because it has amphipathic properties. The hydrophilic portion can dissolve in water while the hydrophobic portion can trap grease in micelles that then can be washed away.

Version 1.6: Feb 20, 2014 11:51 am -0600http://creativecommons.org/licenses/by/3.0/

(2)

Phospholipid Structure

Figure 1: A phospholipid molecule consists of a polar phosphate head, which is hydrophilic and a non-polar lipid tail, which is hydrophobic. Unsaturated fatty acids result in kinks in the hydrophobic tails.

The cell membrane consists of two adjacent layers of phospholipids. The lipid tails of one layer face the lipid tails of the other layer, meeting at the interface of the two layers. The phospholipid heads face outward, one layer exposed to the interior of the cell and one layer exposed to the exterior (Figure 2 (Phospolipid Bilayer)). Because the phosphate groups are polar and hydrophilic, they are attracted to water in the intracellular uid. Intracellular uid (ICF) is the uid interior of the cell. The phosphate groups are also attracted to the extracellular uid. Extracellular uid (ECF) is the uid environment outside the enclosure of the cell membrane. Interstitial uid (IF) is the term given to extracellular uid not contained within blood vessels. Because the lipid tails are hydrophobic, they meet in the inner region of the membrane, excluding watery intracellular and extracellular uid from this space. The cell membrane has many proteins, as well as other lipids (such as cholesterol), that are associated with the phospholipid bilayer. An important feature of the membrane is that it remains uid; the lipids and proteins in the cell membrane are not rigidly locked in place.

(3)

Phospolipid Bilayer

Figure 2: The phospholipid bilayer consists of two adjacent sheets of phospholipids, arranged tail to tail. The hydrophobic tails associate with one another, forming the interior of the membrane. The polar heads contact the uid inside and outside of the cell.

2 Membrane Proteins

The lipid bilayer forms the basis of the cell membrane, but it is peppered throughout with various proteins. Two dierent types of proteins that are commonly associated with the cell membrane are the integral proteins and peripheral protein (Figure 3 (Cell Membrane)). As its name suggests, an integral protein is a protein that is embedded in the membrane. A channel protein is an example of an integral protein that selectively allows particular materials, such as certain ions, to pass into or out of the cell.

(4)

Cell Membrane

Figure 3: The cell membrane of the cell is a phospholipid bilayer containing many dierent molecular components, including proteins and cholesterol, some with carbohydrate groups attached.

Another important group of integral proteins are cell recognition proteins, which serve to mark a cell's identity so that it can be recognized by other cells. A receptor is a type of recognition protein that can selectively bind a specic molecule outside the cell, and this binding induces a chemical reaction within the cell. A ligand is the specic molecule that binds to and activates a receptor. Some integral proteins serve dual roles as both a receptor and an ion channel. One example of a receptor-ligand interaction is the receptors on nerve cells that bind neurotransmitters, such as dopamine. When a dopamine molecule binds to a dopamine receptor protein, a channel within the transmembrane protein opens to allow certain ions to ow into the cell.

Some integral membrane proteins are glycoproteins. A glycoprotein is a protein that has carbohydrate molecules attached, which extend into the extracellular matrix. The attached carbohydrate tags on glyco-proteins aid in cell recognition. The carbohydrates that extend from membrane glyco-proteins and even from some membrane lipids collectively form the glycocalyx. The glycocalyx is a fuzzy-appearing coating around the cell formed from glycoproteins and other carbohydrates attached to the cell membrane. The glycocalyx can have various roles. For example, it may have molecules that allow the cell to bind to another cell, it may contain receptors for hormones, or it might have enzymes to break down nutrients. The glycocalyces found in a person's body are products of that person's genetic makeup. They give each of the individual's trillions of cells the identity of belonging in the person's body. This identity is the primary way that a person's immune defense cells know not to attack the person's own body cells, but it also is the reason organs donated by another person might be rejected.

Peripheral proteins are typically found on the inner or outer surface of the lipid bilayer but can also be attached to the internal or external surface of an integral protein. These proteins typically perform a specic function for the cell. Some peripheral proteins on the surface of intestinal cells, for example, act as digestive enzymes to break down nutrients to sizes that can pass through the cells and into the bloodstream.

(5)

3 Transport across the Cell Membrane

One of the great wonders of the cell membrane is its ability to regulate the concentration of substances inside the cell. These substances include ions such as Ca++, Na+, K+, and Cl; nutrients including sugars, fatty

acids, and amino acids; and waste products, particularly carbon dioxide (CO2), which must leave the cell.

The membrane's lipid bilayer structure provides the rst level of control. The phospholipids are tightly packed together, and the membrane has a hydrophobic interior. This structure causes the membrane to be selectively permeable. A membrane that has selective permeability allows only substances meeting certain criteria to pass through it unaided. In the case of the cell membrane, only relatively small, nonpolar materials can move through the lipid bilayer (remember, the lipid tails of the membrane are nonpolar). Some examples of these are other lipids, oxygen and carbon dioxide gases, and alcohol. However, water-soluble materialslike glucose, amino acids, and electrolytesneed some assistance to cross the membrane because they are repelled by the hydrophobic tails of the phospholipid bilayer. All substances that move through the membrane do so by one of two general methods, which are categorized based on whether or not energy is required. Passive transport is the movement of substances across the membrane without the expenditure of cellular energy. In contrast, active transport is the movement of substances across the membrane using energy from adenosine triphosphate (ATP).

3.1 Passive Transport

In order to understand how substances move passively across a cell membrane, it is necessary to understand concentration gradients and diusion. A concentration gradient is the dierence in concentration of a substance across a space. Molecules (or ions) will spread/diuse from where they are more concentrated to where they are less concentrated until they are equally distributed in that space. (When molecules move in this way, they are said to move down their concentration gradient.) Diusion is the movement of particles from an area of higher concentration to an area of lower concentration. A couple of common examples will help to illustrate this concept. Imagine being inside a closed bathroom. If a bottle of perfume were sprayed, the scent molecules would naturally diuse from the spot where they left the bottle to all corners of the bathroom, and this diusion would go on until no more concentration gradient remains. Another example is a spoonful of sugar placed in a cup of tea. Eventually the sugar will diuse throughout the tea until no concentration gradient remains. In both cases, if the room is warmer or the tea hotter, diusion occurs even faster as the molecules are bumping into each other and spreading out faster than at cooler temperatures. Having an internal body temperature around 98.6◦

F thus also aids in diusion of particles within the body.

: Visit this link1to see diusion and how it is propelled by the kinetic

energy of molecules in solution. How does temperature aect diusion rate, and why?

Whenever a substance exists in greater concentration on one side of a semipermeable membrane, such as the cell membranes, any substance that can move down its concentration gradient across the membrane will do so. Consider substances that can easily diuse through the lipid bilayer of the cell membrane, such as the gases oxygen (O2) and CO2. O2 generally diuses into cells because it is more concentrated outside of

(6)

them, and CO2typically diuses out of cells because it is more concentrated inside of them. Neither of these

examples requires any energy on the part of the cell, and therefore they use passive transport to move across the membrane.

Before moving on, you need to review the gases that can diuse across a cell membrane. Because cells rapidly use up oxygen during metabolism, there is typically a lower concentration of O2 inside the cell than

outside. As a result, oxygen will diuse from the interstitial uid directly through the lipid bilayer of the membrane and into the cytoplasm within the cell. On the other hand, because cells produce CO2 as a

byproduct of metabolism, CO2concentrations rise within the cytoplasm; therefore, CO2 will move from the

cell through the lipid bilayer and into the interstitial uid, where its concentration is lower. This mechanism of molecules spreading from where they are more concentrated to where they are less concentration is a form of passive transport called simple diusion (Figure 4 (Simple Diusion across the Cell (Plasma) Membrane)).

Simple Diusion across the Cell (Plasma) Membrane

Figure 4: The structure of the lipid bilayer allows only small, non-polar substances such as oxygen and carbon dioxide to pass through the cell membrane, down their concentration gradient, by simple diusion.

Solutes dissolved in water on either side of the cell membrane will tend to diuse down their concentration gradients, but because most substances cannot pass freely through the lipid bilayer of the cell membrane, their movement is restricted to protein channels and specialized transport mechanisms in the membrane. Facilitated diusion is the diusion process used for those substances that cannot cross the lipid bilayer due to their size and/or polarity (Figure 5 (Facilitated Diusion)). A common example of facilitated diusion is the movement of glucose into the cell, where it is used to make ATP. Although glucose can be more concentrated outside of a cell, it cannot cross the lipid bilayer via simple diusion because it is both large and polar. To resolve this, a specialized carrier protein called the glucose transporter will transfer glucose molecules into the cell to facilitate its inward diusion.

(7)

Facilitated Diusion

Figure 5: (a) Facilitated diusion of substances crossing the cell (plasma) membrane takes place with the help of proteins such as channel proteins and carrier proteins. Channel proteins are less selective than carrier proteins, and usually mildly discriminate between their cargo based on size and charge. (b) Carrier proteins are more selective, often only allowing one particular type of molecule to cross.

In some cases, facilitated diusion might move two substances in the same direction across the membrane, called a symport. For example, in intestinal cells, sodium ions and glucose molecules are co-transported into the cells. In other cases, the facilitated diusion might only require a tunnel-like channel for particular solutes, such as electrolytes (small charged ions), to pass through the membrane (this is called a uniport). As an example, even though sodium ions (Na+) are highly concentrated outside of cells, these electrolytes are

polarized and cannot pass through the nonpolar lipid bilayer of the membrane. Their diusion is facilitated by membrane proteins that form sodium channels (or pores), so that Na+ ions can move down their

(8)

undergo facilitated diusion to move into a cell, such as amino acids, or to move out of a cell, such as wastes. Because facilitated diusion is a passive process, it does not require energy expenditure by the cell.

Water also can move freely across the cell membrane of all cells, either through protein channels or by slipping between the lipid tails of the membrane itself. Osmosis is the diusion of water through a semipermeable membrane (Figure 6 (Osmosis)).

Osmosis

Figure 6: Osmosis is the diusion of water through a semipermeable membrane down its concentration gradient. If a membrane is permeable to water, though not to a solute, water will equalize its own concentration by diusing to the side of lower water concentration (and thus the side of higher solute concentration). In the beaker on the left, the solution on the right side of the membrane is hypertonic.

The movement of water molecules is not itself regulated by cells, so it is important that cells are exposed to an environment in which the concentration of solutes outside of the cells (in the extracellular uid) is equal to the concentration of solutes inside the cells (in the cytoplasm). Two solutions that have the same concentration of solutes are said to be isotonic (equal tension). When cells and their extracellular environments are isotonic, the concentration of water molecules is the same outside and inside the cells, and the cells maintain their normal shape (and function).

Osmosis occurs when there is an imbalance of solutes outside of a cell versus inside the cell. A solution that has a higher concentration of solutes than another solution is said to be hypertonic, and water molecules tend to diuse into a hypertonic solution (Figure 7 (Concentration of Solutions)). Cells in a hypertonic solution will shrivel as water leaves the cell via osmosis. In contrast, a solution that has a lower concentration of solutes than another solution is said to be hypotonic, and water molecules tend to diuse out of a hypotonic solution. Cells in a hypotonic solution will take on too much water and swell, with the risk of eventually bursting. A critical aspect of homeostasis in living things is to create an internal environment in which all of the body's cells are in an isotonic solution. Various organ systems, particularly the kidneys, work to maintain this homeostasis.

(9)

Concentration of Solutions

Figure 7: A hypertonic solution has a solute concentration higher than another solution. An iso-tonic solution has a solute concentration equal to another solution. A hypoiso-tonic solution has a solute concentration lower than another solution.

Another mechanism besides diusion to passively transport materials between compartments is ltration. Unlike diusion of a substance from where it is more concentrated to less concentrated, ltration uses a hydrostatic pressure gradient that pushes the uidand the solutes within itfrom a higher pressure area to a lower pressure area. Filtration is an extremely important process in the body. For example, the circulatory system uses ltration to move plasma and substances across the endothelial lining of capillaries and into surrounding tissues, supplying cells with the nutrients. Filtration pressure in the kidneys provides the mechanism to remove wastes from the bloodstream.

3.2 Active Transport

For all of the transport methods described above, the cell expends no energy. Membrane proteins that aid in the passive transport of substances do so without the use of ATP. During active transport, ATP is required to move a substance across a membrane, often with the help of protein carriers, and usually against its concentration gradient.

One of the most common types of active transport involves proteins that serve as pumps. The word pump probably conjures up thoughts of using energy to pump up the tire of a bicycle or a basketball. Similarly, energy from ATP is required for these membrane proteins to transport substancesmolecules or ionsacross the membrane, usually against their concentration gradients (from an area of low concentration to an area of high concentration).

The sodium-potassium pump, which is also called Na+/K+ ATPase, transports sodium out of a cell

while moving potassium into the cell. The Na+/K+pump is an important ion pump found in the membranes

of many types of cells. These pumps are particularly abundant in nerve cells, which are constantly pumping out sodium ions and pulling in potassium ions to maintain an electrical gradient across their cell membranes. An electrical gradient is a dierence in electrical charge across a space. In the case of nerve cells, for example, the electrical gradient exists between the inside and outside of the cell, with the inside being negatively-charged (at around -70 mV) relative to the outside. The negative electrical gradient is maintained because each Na+/K+ pump moves three Na+ ions out of the cell and two K+ ions into the cell for each

ATP molecule that is used (Figure 8 (Sodium-Potassium Pump)). This process is so important for nerve cells that it accounts for the majority of their ATP usage.

(10)

Sodium-Potassium Pump

Figure 8: The sodium-potassium pump is found in many cell (plasma) membranes. Powered by ATP, the pump moves sodium and potassium ions in opposite directions, each against its concentration gradient. In a single cycle of the pump, three sodium ions are extruded from and two potassium ions are imported into the cell.

Other forms of active transport do not involve membrane carriers. Endocytosis (bringing into the cell) is the process of a cell ingesting material by enveloping it in a portion of its cell membrane, and then pinching o that portion of membrane (Figure 9 (Three Forms of Endocytosis)). Once pinched o, the portion of membrane and its contents becomes an independent, intracellular vesicle. A vesicle is a membranous saca spherical and hollow organelle bounded by a lipid bilayer membrane. Endocytosis often brings materials into the cell that must to be broken down or digested. Phagocytosis (cell eating) is the endocytosis of large particles. Many immune cells engage in phagocytosis of invading pathogens. Like little Pac-men, their job is to patrol body tissues for unwanted matter, such as invading bacterial cells, phagocytize them, and digest them. In contrast to phagocytosis, pinocytosis (cell drinking) brings uid containing dissolved substances into a cell through membrane vesicles.

(11)

Three Forms of Endocytosis

Figure 9: Endocytosis is a form of active transport in which a cell envelopes extracellular materials using its cell membrane. (a) In phagocytosis, which is relatively nonselective, the cell takes in a large particle. (b) In pinocytosis, the cell takes in small particles in uid. (c) In contrast, receptor-mediated endocytosis is quite selective. When external receptors bind a specic ligand, the cell responds by endocytosing the ligand.

Phagocytosis and pinocytosis take in large portions of extracellular material, and they are typically not highly selective in the substances they bring in. Cells regulate the endocytosis of specic substances via receptor-mediated endocytosis. Receptor-mediated endocytosis is endocytosis by a portion of the cell membrane that contains many receptors that are specic for a certain substance. Once the surface receptors have bound sucient amounts of the specic substance (the receptor's ligand), the cell will endocytose the part of the cell membrane containing the receptor-ligand complexes. Iron, a required component of hemoglobin, is endocytosed by red blood cells in this way. Iron is bound to a protein called transferrin in the blood. Specic transferrin receptors on red blood cell surfaces bind the iron-transferrin molecules, and the cell endocytoses the receptor-ligand complexes.

In contrast with endocytosis, exocytosis (taking out of the cell) is the process of a cell exporting material using vesicular transport (Figure 10 (Exocytosis)). Many cells manufacture substances that must be secreted, like a factory manufacturing a product for export. These substances are typically packaged into membrane-bound vesicles within the cell. When the vesicle membrane fuses with the cell membrane, the vesicle releases it contents into the interstitial uid. The vesicle membrane then becomes part of the cell membrane. Cells of the stomach and pancreas produce and secrete digestive enzymes through exocytosis (Figure 11 (Pancreatic Cells' Enzyme Products)). Endocrine cells produce and secrete hormones that are sent throughout the body, and certain immune cells produce and secrete large amounts of histamine, a chemical important for immune responses.

(12)

Exocytosis

Figure 10: Exocytosis is much like endocytosis in reverse. Material destined for export is packaged into a vesicle inside the cell. The membrane of the vesicle fuses with the cell membrane, and the contents are released into the extracellular space.

(13)

Pancreatic Cells' Enzyme Products

Figure 11: The pancreatic acinar cells produce and secrete many enzymes that digest food. The tiny black granules in this electron micrograph are secretory vesicles lled with enzymes that will be exported from the cells via exocytosis. LM × 2900. (Micrograph provided by the Regents of University of Michigan Medical School ©2012)

: View the University of Michigan WebScope at http://virtualslides.med.umich.edu/Histology/EMsmallCharts/3%20Image%20Scope%20nals/226%20-%20Pancreas_001.svs/view.apml2to explore the tissue sample in greater detail.

: Cell: Cystic Fibrosis

Cystic brosis (CF) aects approximately 30,000 people in the United States, with about 1,000 new cases reported each year. The genetic disease is most well known for its damage to the lungs, causing breathing diculties and chronic lung infections, but it also aects the liver, pancreas, and intestines. Only about 50 years ago, the prognosis for children born with CF was very grima life expectancy rarely over 10 years. Today, with advances in medical treatment, many CF patients live into their 30s.

The symptoms of CF result from a malfunctioning membrane ion channel called the cystic brosis transmembrane conductance regulator, or CFTR. In healthy people, the CFTR protein is an integral

(14)

membrane protein that transports Cl ions out of the cell. In a person who has CF, the gene for

the CFTR is mutated, thus, the cell manufactures a defective channel protein that typically is not incorporated into the membrane, but is instead degraded by the cell.

The CFTR requires ATP in order to function, making its Cltransport a form of active transport.

This characteristic puzzled researchers for a long time because the Cl ions are actually owing

down their concentration gradient when transported out of cells. Active transport generally pumps ions against their concentration gradient, but the CFTR presents an exception to this rule. In normal lung tissue, the movement of Clout of the cell maintains a Cl-rich, negatively charged

environment immediately outside of the cell. This is particularly important in the epithelial lining of the respiratory system. Respiratory epithelial cells secrete mucus, which serves to trap dust, bacteria, and other debris. A cilium (plural = cilia) is one of the hair-like appendages found on certain cells. Cilia on the epithelial cells move the mucus and its trapped particles up the airways away from the lungs and toward the outside. In order to be eectively moved upward, the mucus cannot be too viscous; rather it must have a thin, watery consistency. The transport of Cland the

maintenance of an electronegative environment outside of the cell attract positive ions such as Na+

to the extracellular space. The accumulation of both Cl and Na+ ions in the extracellular space

creates solute-rich mucus, which has a low concentration of water molecules. As a result, through osmosis, water moves from cells and extracellular matrix into the mucus, thinning it out. This is how, in a normal respiratory system, the mucus is kept suciently watered-down to be propelled out of the respiratory system.

If the CFTR channel is absent, Cl ions are not transported out of the cell in adequate numbers,

thus preventing them from drawing positive ions. The absence of ions in the secreted mucus results in the lack of a normal water concentration gradient. Thus, there is no osmotic pressure pulling water into the mucus. The resulting mucus is thick and sticky, and the ciliated epithelia cannot eectively remove it from the respiratory system. Passageways in the lungs become blocked with mucus, along with the debris it carries. Bacterial infections occur more easily because bacterial cells are not eectively carried away from the lungs.

4 Chapter Review

The cell membrane provides a barrier around the cell, separating its internal components from the extra-cellular environment. It is composed of a phospholipid bilayer, with hydrophobic internal lipid tails and hydrophilic external phosphate heads. Various membrane proteins are scattered throughout the bilayer, both inserted within it and attached to it peripherally. The cell membrane is selectively permeable, allowing only a limited number of materials to diuse through its lipid bilayer. All materials that cross the membrane do so using passive (non energy-requiring) or active (energy-requiring) transport processes. During passive transport, materials move by simple diusion or by facilitated diusion through the membrane, down their concentration gradient. Water passes through the membrane in a diusion process called osmosis. During active transport, energy is expended to assist material movement across the membrane in a direction against their concentration gradient. Active transport may take place with the help of protein pumps or through the use of vesicles.

5 Interactive Link Questions

Exercise 1 (Solution on p. 16.)

Visit this link3to see diusion and how it is propelled by the kinetic energy of molecules in solution.

(15)

6 Review Questions

Exercise 2 (Solution on p. 16.)

Because they are embedded within the membrane, ion channels are examples of ________. a. receptor proteins

b. integral proteins c. peripheral proteins d. glycoproteins

Exercise 3 (Solution on p. 16.)

The diusion of substances within a solution tends to move those substances ________ their ________ gradient. a. up; electrical b. up; electrochemical c. down; pressure d. down; concentration Exercise 4 (Solution on p. 16.)

Ion pumps and phagocytosis are both examples of ________. a. endocytosis

b. passive transport c. active transport d. facilitated diusion

Exercise 5 (Solution on p. 16.)

Choose the answer that best completes the following analogy: Diusion is to ________ as endocytosis is to ________.

a. ltration; phagocytosis b. osmosis; pinocytosis

c. solutes; uid

d. gradient; chemical energy

7 Critical Thinking Questions

Exercise 6 (Solution on p. 16.)

What materials can easily diuse through the lipid bilayer, and why?

Exercise 7 (Solution on p. 16.)

Why is receptor-mediated endocytosis said to be more selective than phagocytosis or pinocytosis?

Exercise 8 (Solution on p. 16.)

What do osmosis, diusion, ltration, and the movement of ions away from like charge all have in common? In what way do they dier?

(16)

Solutions to Exercises in this Module

to Exercise (p. 14)

Higher temperatures speed up diusion because molecules have more kinetic energy at higher temperatures. to Exercise (p. 15) B to Exercise (p. 15) D to Exercise (p. 15) C to Exercise (p. 15) B to Exercise (p. 15)

Only materials that are relatively small and nonpolar can easily diuse through the lipid bilayer. Large particles cannot t in between the individual phospholipids that are packed together, and polar molecules are repelled by the hydrophobic/nonpolar lipids that line the inside of the bilayer.

to Exercise (p. 15)

Receptor-mediated endocytosis is more selective because the substances that are brought into the cell are the specic ligands that could bind to the receptors being endocytosed. Phagocytosis or pinocytosis, on the other hand, have no such receptor-ligand specicity, and bring in whatever materials happen to be close to the membrane when it is enveloped.

to Exercise (p. 15)

These four phenomena are similar in the sense that they describe the movement of substances down a particular type of gradient. Osmosis and diusion involve the movement of water and other substances down their concentration gradients, respectively. Filtration describes the movement of particles down a pressure gradient, and the movement of ions away from like charge describes their movement down their electrical gradient.

Glossary

Denition 1: active transport

form of transport across the cell membrane that requires input of cellular energy Denition 2: amphipathic

describes a molecule that exhibits a dierence in polarity between its two ends, resulting in a dierence in water solubility

Denition 3: cell membrane

membrane surrounding all animal cells, composed of a lipid bilayer interspersed with various molecules; also known as plasma membrane

Denition 4: channel protein

membrane-spanning protein that has an inner pore which allows the passage of one or more sub-stances

Denition 5: concentration gradient

dierence in the concentration of a substance between two regions Denition 6: diusion

movement of a substance from an area of higher concentration to one of lower concentration Denition 7: electrical gradient

dierence in the electrical charge (potential) between two regions Denition 8: endocytosis

(17)

Denition 9: exocytosis

export of a substance out of a cell by formation of a membrane-bound vesicle Denition 10: extracellular uid (ECF)

uid exterior to cells; includes the interstitial uid, blood plasma, and uid found in other reservoirs in the body

Denition 11: facilitated diusion

diusion of a substance with the aid of a membrane protein Denition 12: glycocalyx

coating of sugar molecules that surrounds the cell membrane Denition 13: glycoprotein

protein that has one or more carbohydrates attached Denition 14: hydrophilic

describes a substance or structure attracted to water Denition 15: hydrophobic

describes a substance or structure repelled by water Denition 16: hypertonic

describes a solution concentration that is higher than a reference concentration Denition 17: hypotonic

describes a solution concentration that is lower than a reference concentration Denition 18: integral protein

membrane-associated protein that spans the entire width of the lipid bilayer Denition 19: interstitial uid (IF)

uid in the small spaces between cells not contained within blood vessels Denition 20: intracellular uid (ICF)

uid in the cytosol of cells Denition 21: isotonic

describes a solution concentration that is the same as a reference concentration Denition 22: ligand

molecule that binds with specicity to a specic receptor molecule Denition 23: osmosis

diusion of molecules down their concentration across a selectively permeable membrane Denition 24: passive transport

form of transport across the cell membrane that does not require input of cellular energy Denition 25: peripheral protein

membrane-associated protein that does not span the width of the lipid bilayer, but is attached peripherally to integral proteins, membrane lipids, or other components of the membrane

Denition 26: phagocytosis endocytosis of large particles Denition 27: pinocytosis endocytosis of uid

Denition 28: receptor

protein molecule that contains a binding site for another specic molecule (called a ligand) Denition 29: receptor-mediated endocytosis

endocytosis of ligands attached to membrane-bound receptors Denition 30: selective permeability

(18)

Denition 31: sodium-potassium pump

(also, Na+/K+ ATP-ase) membrane-embedded protein pump that uses ATP to move Na+ out of a

cell and K+ into the cell

Denition 32: vesicle

References

Related documents

22) K. Zeeberg “Stromal Composition And Hypoxia Modulate Pancreatic Ductal Adenocarcinoma Pdac Cancer Stem Cell Behavior And Plasticity By Controlling The Angiogenic Secretome”. 23)

b In cell B11, write a formula to find Condobolin’s total rainfall for the week.. Use Fill Right to copy the formula into cells C11

The key segments in the mattress industry in India are; Natural latex foam, Memory foam, PU foam, Inner spring and Rubberized coir.. Natural Latex mattresses are

When a compatible medication is added to the Glucose Intravenous Infusion, the solution must be administered immediately.. Those additives known to be incompatible should not

How Many Breeding Females are Needed to Produce 40 Male Homozygotes per Week Using a Heterozygous Female x Heterozygous Male Breeding Scheme With 15% Non-Productive Breeders.

is to develop a useful algorithm to discriminate weed, using image filtering to extract color and area features, then, a process to label each object in the scene is

The broadcast count is defined as the number of transmissions (time-slots) re- quired to make a broadcast in a frame (to reach all the nodes if possible, or at least the maximum

Covering the domain of ‘knowing how,’ the *ĝnō-based verb in Slo ve ne (znati) has been extending into the domain of possibility and, on this basis, de veloping into a modal verb.