• No results found

Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest

N/A
N/A
Protected

Academic year: 2021

Share "Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Applied

Earth

Observation

and

Geoinformation

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e /j a g

Estimating

leaf

functional

traits

by

inversion

of

PROSPECT:

Assessing

leaf

dry

matter

content

and

specific

leaf

area

in

mixed

mountainous

forest

Abebe

Mohammed

Ali

a,b,∗

,

Roshanak

Darvishzadeh

a

,

Andrew

K.

Skidmore

a

,

Iris

van

Duren

a

,

Uta

Heiden

c

,

Marco

Heurich

d

aFacultyofGeo-InformationScienceandEarthObservation(ITC),UniversityofTwente,P.O.Box217,7500AEEnschede,TheNetherlands bDepartmentofGeographyandEnvironmentalStudies,WolloUniversity,P.O.Box1145,Dessie,Ethiopia

cGermanAerospaceCenter(DLR),GermanRemoteSensingDataCenter(DFD)Oberpfaffenhofen,82234Wessling,Germany dBavarianForestNationalPark,94481,Grafenau,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received30April2015

Receivedinrevisedform16October2015 Accepted3November2015

Availableonline16November2015 Keywords:

Functionalleaftraits Radiativetransfermodel PROSPECT

LDMC SLA

a

b

s

t

r

a

c

t

Assessmentsofecosystemfunctioningrelyheavilyonquantificationofvegetationproperties.Thesearch isonformethodsthatproducereliableandaccuratebaselineinformationonplantfunctionaltraits.In thisstudy,theinversionofthePROSPECTradiativetransfermodelwasusedtoestimatetwofunctional leaftraits:leafdrymattercontent(LDMC)andspecificleafarea(SLA).InversionofPROSPECTusually aimsatquantifyingitsdirectinputparameters.Thisisthefirsttimethetechniquehasbeenusedto indirectlymodelLDMCandSLA.Biophysicalparametersof137leafsamplesweremeasuredinJuly2013 intheBavarianForestNationalPark,Germany.Spectraoftheleafsamplesweremeasuredusingan ASDFieldSpec3equippedwithanintegratingsphere.PROSPECTwasinvertedusingalook-uptable(LUT) approach.TheLUTsweregeneratedwithandwithoutusingpriorinformation.Theeffectofincorporating priorinformationontheretrievalaccuracywasstudiedbeforeandafterstratifyingthesamplesinto broadleafandconifercategories.TheestimatedvalueswereevaluatedusingR2andnormalizedroot

meansquareerror(nRMSE).

AmongtheretrievedvariablesthelowestnRMSE(0.0899)wasobservedforLDMC.Forbothtraits higherR2values(0.83forLDMCand0.89forSLA)werediscoveredinthepooledsamples.Theuseofprior

informationimprovedaccuracyoftheretrievedtraits.Thestrongcorrelationbetweentheestimated traitsandtheNIR/SWIRregionoftheelectromagneticspectrumsuggeststhattheseleaftraitscouldbe assessedatcanopylevelbyusingremotelysenseddata.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Componentsofbiodiversitythatinfluenceecosystem dynam-ics,stability,productivity,nutrientbalanceandotheraspectsof ecosystemfunctioningarecollectivelyreferredasfunctional diver-sity(e.g.,Tilmanetal.,1997;Tilman,2001).Mostecologistsnow agreethatamajordeterminantofecosystemfunctioningis func-tionaldiversity,ratherthannumberof speciesperse(Díaz and Cabido,2001).Byquantifyingfunctionaldiversityinnatural com-munities,researchersgainadditionalunderstandingofthespatial andtemporaldistributionofbiodiversity,ecosystemservicesand

∗ Correspondingauthorat:FacultyofGeo-InformationScienceandEarth Observa-tion(ITC),UniversityofTwente,P.O.Box217,Enschede,7500AE,TheNetherlands.

E-mailaddress:abebemohammed@yahoo.co.uk(A.M.Ali).

plantcommunityproductivity(Cadotteetal.,2009;Lavoreletal., 2011).Itisbelievedthatbetterconservationandrestoration deci-sions canbe madeby measuringand understandingfunctional diversity(Cadotteetal.,2011).Thisrealizationhasunderpinned theshiftinfocusofbiodiversityresearchfromspeciesdiversityto functionaldiversity(Tilman,2001).

Likespeciesdiversity,functionaldiversityisquantifiedonthe basisoftraitvaluesoforganisms(PetcheyandGaston,2006;Zhang etal.,2012).Atraitisanymeasurablemorphological, physiologi-calorphenologicalfeatureofanorganism(Violleetal.,2007).In plants,atraitiscalledafunctionaltrait(e.g.,specificleafarea)when itaffectsplantfitnessindirectlyviaitsimpactsonplantgrowth, reproduction,andsurvival(Violleetal.,2007).Itisthe combina-tionofplantfunctionaltraitsthatdetermineshowplantsrespond toenvironmentalfactors,affectothertrophiclevels,andinfluence

http://dx.doi.org/10.1016/j.jag.2015.11.004

(2)

ecosystemprocessesandservices(Zhangetal.,2012).Forinstance, plantsgrowingina resource-richenvironmentwillhavea rela-tivelyhighspecificleafareaandlowdrymattercontent,whereas forplantsgrowinginaresource-poorenvironmenttheoppositeis true(Wilsonetal.,1999).Traitsalsoprovidealinkbetween ecosys-temfunctionaldiversityandspeciesrichness(Carlsonetal.,2007; Gregory,2008).Thefunctionaltraitsareincreasinglyusedto inves-tigatecommunitystructureandecosystemfunctioning,aswellas toclassifyspeciesintofunctionaltypes(Smithetal.,1997)orforto validateglobalvegetationmodels(Albertetal.,2010).

In general, plant traits can be categorized into four groups (Cornelissenetal.,2003):whole-planttraits(e.g.,growthformand height),stemandbelowgroundtraits(e.g.,stemspecificdensity andspecificrootlength),regenerativetraits(e.g.,seedmassand dispersalmode)andleaffunctionaltraits.Twofundamentalleaf functionaltraitsthatareofcentralinterestforresearchersareLeaf DryMatterContent(LDMC)andSpecificLeafArea(SLA)(Wilson etal.,1999;Asneretal.,2011).TheLDMC,sometimesreferredto astissuedensity,isthedrymassofaleafdividedbyitsfreshmass, commonlyexpressedinmg/g(Cornelissenetal.,2003).Itreflects plantgrowthrateandcarbonassimilationandisabetterpredictor oflocationonanaxisofresourcecapture,usageandavailability (Wilsonetal.,1999).TheSLAisdefinedastheleafareaperunitof dryleafmassusuallyexpressedinm2/kg(Cornelissenetal.,2003).

Itisreferredtoasleafmassperunitarea,asspecificleafmass,as wellasleafspecificmass.SLAlinksplantcarbonandwatercycles, andprovidesinformationonthespatialvariationofphotosynthetic capacity andleafnitrogencontent(Pierceet al.,1994). Accord-ingtothelatter,“SLAisindicativeofplantphysiologicalprocesses suchaslightcapture,growthratesandlifestrategiesofplants”.A worldwidefoliardatasetindicatesthat82%ofallvariationin pho-tosyntheticcapacitycanbeexplainedbySLAandnitrogen(Wright etal.,2004).SLAisspecies-specific,butsignificantplasticityexists withinandbetweenindividualplantsofthesamespecies(Pierce etal.,1994;Asneretal.,2011).

Besidestheirindependentroleasimportantecological indica-tors,LDMCandSLAcouldbeusedtoestimateleafthickness(LT). TheestimationofLTfromthetwotraitshasbeeninvestigatedin detailbyVileetal.(2005).ThisimpliesSLAisacompoundtrait whichisinverselyproportionaltotheproductofLDMCandLT.A studybyHodgsonetal.(2011)foundthatLDMC×LTaccountedfor nearlythreequartersoftheobservedvariationinSLAandthatvery differentcombinationsofLTandLDMCregularlygeneratesimilar valuesofSLA.However,therearemisconceptionsinthedefinition ofthestatedtraits.Inmanypublications,leafmassperarea(LMA orCm),whichistheinverseofSLA,isdefinedasLDMC.

Several trait data bases have been established worldwide throughfieldmeasurements(e.g.,Kleyeretal.,2008;Kattgeetal., 2011).However,acquiringinformation onsuchtraitspurely on the basis of field measurements is labor-intensive and time-consuming,andthusexpensive.Remotelysenseddatacanplaya criticalroleinacquiringsuchdataatbroadspatialscales. Hyper-spectralremotesensinghastheadvantageofprovidingdetailed andcontinuousspectralinformation,whichcanpotentiallybeused formeasuringthesetraits.Previousstudieshavefocusedonusing hyperspectraldatatoquantifybiochemicalandbiophysical vari-ablesofvegetation,suchaschlorophyllcontent,nitrogenandleaf areaindex(Darvishzadehetal.,2008a;VohlandandJarmer,2008; AsnerandMartin,2009;Knoxetal.,2010;Skidmoreetal.,2010; Asneretal.,2011;Laurentetal.,2011;Ramoeloetal.,2011;Asner and Martin, 2012;Ramoelo et al., 2012). Hyperspectralremote sensinghasalsobeenusedtomapcanopyfunctionalandspecies diversity(Carlsonetal.,2007;Papes¸etal.,2010)andtoestimate biodiversity(evensimplyasthenumberofspecies)(Lauver,1997; Gould,2000;Saatchietal.,2008;Papes¸etal.,2010;FéretandAsner, 2011;Ruiliang,2011;FéretandAsner,2014).However,directly

mappingindividualspeciesfromremotesensingbecomesdifficult atlargerscalesandinecosystemswithveryhighspecies variabil-ity.Analternativeapproachtomappingspeciesistoestimateplant functionaltraits,particularlythosefoundintreecrownleaves,and tousethese forassessing and monitoringbiodiversity (Carlson etal.,2007;Gregory,2008).

Themethodsappliedtoretrieveplanttraitsfromremote sens-ingdatacanbegroupedintostatisticalandphysical(Darvishzadeh etal.,2008b;leMaireetal.,2008):statisticaltechniquesareused tofindarelationbetweentheplanttraitmeasuredinsituandits spectralreflectanceorsometransformationofreflectance. Vegeta-tionindicesarewidelyusedinthisapproach.Whenhyperspectral dataareutilized,itispossibletoselectthemostinformative nar-rowspectrumfeaturesfromtheentireelectromagneticspectrum domainandusethemforsimpleandfastassessmentof vegeta-tionproperties(BrogeandMortensen,2002).However,statistical methods are knownto besite-specific and lack generalization. Analternativeistouseadeductiveorphysicalmodelapproach (Radiative Transfer Model (RTM)) inversion, which is based on physicallaws..RunninganRTMenablesthecreationofasimulated trainingdatabasecoveringawiderangeofsituationsand configu-rations.SuchforwardRTMsimulationsallowforsensitivitystudies ofparametersanddevelopmentofvegetationindices.Thismakes RTMinversionapproaches morepowerfulthanstatistical meth-ods.However,theretrievalofvariablesthroughRTMsinversion isill-posed,sincedifferentcombinationoftheinputparameters mayproducethesamespectralsignature.Toovercometheeffect oftheill-posedproblem,Combaletal.(2003)recommendedthe useofpriorinformation.Severalstudieshavereportedsignificant improvement totheaccuracy ofparameterretrievalafterusing priorinformation (e.g.,Malenovskyetal.,2006;Dasguptaetal., 2009);others(Feretetal.,2011;Romeroetal.,2012)havetried toexcludeunrealisticcombinationsofinputparametersby apply-ingalinearregressionequationderivedfromcorrelatingtheinput parameters.

LeafRTMssimulateleafreflectanceandtransmittancebyusing certaininputparametersderived fromleaves.Therearea num-ber of leaf RTMs and each one requires a different number of inputparameters. Onesuchleafradiativetransfer modelis the LIBERTY(LeafIncorporatingBiochemistryExhibitingReflectance andTransmittanceYields)model(Dawsonetal.,1998)forconifer needles.However,itrequiresmanyinputparameterswhichneed to be obtained by intensive fieldwork and laboratory analysis (Malenovskyetal.,2006;Morsdorfetal.,2009).Anotherwidely appliedleafradiativetransfermodelisPROSPECT(Jacquemoudand Baret,1990).PROSPECT,whichstandsforPROpriétésSPECTrales (FrenchforSpectralProperties).Itsimulatesleafreflectanceand transmittanceandisthemostpopularleafopticalpropertiesmodel ofallthosepublishedsince1990(Jacquemoudetal.,2009).

Althoughmuchworkhasbeendoneonestimatingplanttraits fromremotesensing,theestimationofLDMCandSLAatallscales (i.e.,leaf,canopyandlandscape)israre.Toourknowledge,theuse ofremotesensingtechniquestoestimateLDMChasnotyetbeen testedatanyscale.Comparedtootherbiophysicalvariables,studies conductedonSLAarealsolimitedandhavemainlybeenconducted usingstatisticalmethodsatacanopyscale.Lymburneretal.(2000) testedseveralexistingvegetationindicesinordertoestimateSLA fromLandsatTMimageryandfoundastrongcorrelationbetween averagecanopySLAandgreen,red,NIRandMIRreflectanceof Land-satTMdata.Astrongcorrelationbetweenleafmassperareaand reflectanceinthe750–2500nmwavelengthrangehasbeenalso reportedfor tropicalrainforestleaf samples(Asner andMartin, 2008;Asneretal.,2011).Normalizedindicesforleafmassperarea atleafandcanopyscaleshavebeendevelopedonlyrecently,byle Maireetal.(2008)andFeretetal.(2011).However,theseindices needtobetestedonotherimages,sitesandcanopies(leMaire

(3)

Table1

Distributionofcollectedsamples,byspecies.

Category Species No.ofsamples

Broadleaftrees 1.Europeanbeech 44

2.Sycamoremaple 4

3.Mountainash 3

4.Goatwillow 2

Subtotal 53

aConifers 1.Norwayspruce 63

2.Fir 21

Subtotal 84

TotalNo.ofsamples 137

aEqualnumberofsamplesweretakenfromthecurrentgrowingperiod(C),

sec-ondgrowingperiod(C+)andthreeandmoregrowingperiods(C++)needleageclass (i.e.,thenumbersofsamplesperageclasswere21forNorwayspruceand7forfir species).

etal.,2008).Physicalmodels,whicharesupposedtobemuchmore robustthanstatisticalapproaches,havenotbeentestedforLDMC andSLAestimations.Ourstudythereforeaimedtoinvestigatehow accuratelyandpreciselytheLDMCandSLAcanbeestimatedin het-erogeneousforestsatleaflevelbyusingradiativetransfermodels, sothattheapplicationcanbeextendedtocanopyandlandscape scales.

2. Dataandmethods

2.1. Studyareaandfielddatacollection

Theareachosenforthisstudywasthemixedmountainforestof theBavarianForestNationalPark,whichismoreheterogeneousin treespeciesthansimilarareasintheregion.Itislocatedin south-easternGermanyalongtheborderwiththeCzechRepublic(490 319N,130129E).Elevationvariesfrom600mto1473mabove sealevel.Theclimateoftheregionistemperate,withhighannual precipitation(1200mmto1800mm)andlowaverageannual tem-perature(3◦to6◦Celsius).Heavysnowcoverischaracteristicofthe areainwinter.Brownsoilsarethepredominantsoiltypeatlower altitude(below900ma.s.l)whereasathighaltitude(above900m a.s.l)brownsoilsandbrownpodzolicsoilpredominate.Thesoilsin theareaarenaturallyacidicandlowinnutrientcontent(Heurich etal.,2010).

ThenaturalforestecosystemsoftheBavarianForestNational Parkvarywithaltitude:therearealluvialspruceforestsinthe val-leys,mixedmountainforestsonthehillsidesandmountainspruce forestsinthehighareas.Thedominanttreespeciesinclude Euro-peanbeech(Fagussylvatica),Norwayspruce(Piceaabies)andFir (Abiesalba).InthemixedmountainforestsSycamoremaple(Acer pseudoplatanusL.),Mountain ash(Sorbus aucupariaL.)andGoat willow(Salixcaprea)arealsofound(HeurichandNeufanger,2005). Afieldcampaignwasconductedbetween11Julyand23August 2013.Thestudyareawasstratifiedinto broadleaf,conifersand mixedforestcategories.Consideringthenatureoftheforest het-erogeneity,timeandcostconstraints,26plots(8inbroadleaf,7 inconiferand12inmixedstands)wererandomlyselectedwithin eachforestcategory.Eachplotwas30by30m,sothatthesamples couldsubsequently beusedtoestimatevariablesfrommedium resolutionremotesensingdata.Leafsampleswerethencollected fromeachtreespeciesfoundintheplot(Table1).Asthetwotraits ofinterest(SLAandLDMC)tendtovaryasonemovesdownward fromthetopofthetree,allthesamplesweretakenfrommature sunlitleavesatthetopofthecanopy.Acrossbowwasusedtoshoot anarrowattachedtoafishinglineatabranchwithsunlitleaves. Oncethefishinglinehadpassedaroundthetargetedbranch,the fishinglinewasusedtofeedaropeoverthebranchandthenthe branchwaspulleddowngentlyuntilitbrokeoff.Leaves/shoots

wereimmediatelyremovedfromthebranchandSPADchlorophyll measurementsweremadeforthebroadleafsamples.Theshootsof theconiferneedleswereclassifiedintothreeneedleageclasses: currentgrowingperiod(C),secondgrowingperiod(C+)andthree andmoregrowingperiods(C++).Thesampleswerethenplacedin azip-lockedplasticbagtogetherwithwetpulppaperand trans-portedtothelaboratoryinaportablecoolerwithfrozenicepacks. Inthelaboratory,theleafsampleswerestoredinacolddarkroom andprocessedwithinthedayofcollection.

2.2. Laboratorymeasurements 2.2.1. Physicalvariablemeasurements

Thebiophysicalcharacteristicsofthesamplessuchasfreshand dryweightandhemisphericalsurfaceareawereacquired simulta-neouslywiththespectrameasurements.Thefreshweightofeach samplewas determined(beforethespectral measurements)by usingadigitalscaleofhighprecision.Leafareaofbroadleafsamples wasmeasuredusingtheLI-3000Cportableleafareameter(Li-Cor, Inc,Lincoln,NE,USA).Inthecaseoftheconiferneedles,the sur-faceofthesampleneedleswasscannedusinganHPdoublelamp desktopscannerataresolutionof1200dpi;theneedleprojections werecomputedfromthegreyscaleimagesusingImageJimage pro-cessingsoftware(whichisfreelyavailableonline).Norwayspruce needlesarecylindricalandthereforetheirtotalsurfacewasfirst computedasaprojectedareamultipliedbyauniversalconversion factorof2.57derivedexperimentallyforNorwayspruceneedles (Waring, 1983).Then, thetotal needlesurfaceareawasdivided bytwotoacquirethehemispherical-surfaceprojectionofsampled spruceneedles.Finally,thesampleswereoven-driedat80◦Cfor 48handtheirdrybiomasswasweighed.Theleaftraitswerethen computedusingthesampleleavesorneedlesarea,freshweightand dryweight.Thesummarystatisticsofallthemeasuredvariablesare presentedinTable2.

2.2.2. Spectralmeasurements

Hemispherical reflectance and transmittance from 350 to 2500nmwith 1nm spectral resolution were measuredusing a FieldSpec®3portablespectroradiometerequippedwithan

inte-gratingspheremanufacturedbyAnalytical SpectralDevices,Inc (ASD), USA. The spectral measurement for each sample was obtainedbyaveragingthespectraon10randomlyselectedleaves inthecaseofbroadleafspeciesandon12–16needlesforconifers. Carewastakentoavoidlargeprimaryandsecondaryveinsduring thespectralmeasurement.Inordertominimizetheeffectof sig-nalvariance,twohundredscanswereaveragedineveryspectra measurementtoasinglespectrum.A calibratedreference stan-dard(withapproximately99%reflectance)wasusedtoconvertraw radiancetoreflectance.

Whereas thespectral measurement of broadleaf material is straightforward,thespectral measurementof coniferneedlesis not. Thisis because theconifer needles are very small and do notcoverthesampleportoftheintegratingsphere,whichhasa portdiameterof15mmforreflectanceand13.5mmfor transmit-tance.Therefore,thetechniquefirstdevelopedbyDaughtryetal. (1989)andlaterrevisedby(Mesarchetal.,1999)wasappliedto measurethespectral propertyoftheconifer needles.A univer-salsampleholderthatcouldaccommodatealllengthsofconifer needleswasdesigned,followingMalenovskyet al.(2006). Nee-dlesweredetachedfromeachsampleshoot,placedonthesample holder,securedwithscotchtapeandleavingaspaceof approx-imately one needle’s widthbetween needles toavoid multiple reflectancefromadjacentneedles(Daughtryetal.,1989).The sam-pleholderwascarefullyplacedatthesampleportoftheintegrating sphere,andreflectanceandtransmittancespectrawereacquired

(4)

Table2

Summarystatisticsofthemeasuredvariablesin137leafsamples.Thecalculatedvariableswereleafdrymattercontent(LDMC),leafmassperarea(Cm),Specificleafarea

(SLA)andleafwatercontent(Cw).

Category Basicstatistics Cm(g/cm2) Cw(g/cm2) LDMC(mg/g) SLA(cm2/g)

Broadleaf Minimumvalue 0.0034 0.0063 337.3 73.48

Maximumvalue 0.0136 0.0156 541.3 294.09

Meanvalue 0.0079 0.0092 460.6 135.38

St.deviation 0.0021 0.0021 42.70 38.25

Conifers Minimumvalue 0.0110 0.0116 361.5 34.36

Maximumvalue 0.0291 0.0337 598.4 90.74

Meanvalue 0.0202 0.0247 449.7 51.52

St.deviation 0.0039 0.0043 43.20 10.92

Fig.1.Theholescutintoabroadleafsampletomimicconiferneedlesamplesset upontheintegratingspheresampleport.

followingtheportconfigurationproceduresoftheASDintegrating

sphere.

Ablackpaintedpapermask witha15mmdiametercircular

aperture wasprecisely superimposed onthesamplesand

pho-tographsweretakenusinga16.1megapixelPanasonicDCM-TZ35

camera.Thenthegapfraction(GF)betweenilluminatedneedles

wascalculatedbasedontheilluminatedareaofthesampleport,

whichwas9mmdiameterforbothreflectanceandtransmittance.

Theilluminatedareasofthesampleswereclippedbydrawinga

circleof9mmdiameteratthecenterofeachpicture.The

propor-tionofpixelswithgapsbetweenneedleswasthendeterminedby

dividingthenumberofpixelswithgapsintothetotalnumberof

pixelsfoundinthe9mmcircularapertureareausingImageJ

soft-ware.Then,thefollowingequations(Eqs.(1)and(2))wereadapted

fromMesarchetal.(1999)fortheFieldspecASDspectrometer,to computethehemisphericalreflectanceandtransmittanceofthe sampledneedles. Reflectance= −Rd 1−Rd×Rr 1−GF (1) Transmittance=



1RdRd



− (PwGF)11GFRr (2) whereandaremeasuredsamplereflectanceandtransmittance, Rdisstraylight(measuredinreflectancemode),Rrisreferenceof samplereflectance,GFisthegapfractionofthesample,andPwis thereflectanceoftheintegratingspherewall.Straylight(ambient light)insidetheintegratingspherewasmeasuredasaradiation fluxof theempty illuminatedsample portin reflectancemode. Thereflectanceoftheintegratingspherewallwasdeterminedby: PW=1−FnFtn RrhereFtnandFnareradiancemeasurementsin trans-mittanceandreflectancemodeswithnosample(Daughtryetal., 1989).

Tocheckthereliabilityofthemethod,weconductedsome pre-liminaryexperimentsbeforemeasuringtheconiferneedles.The testentailedusingabroadleafsamplethatcoveredtheentireport oftheintegratingsphere.Firstwemeasuredthereflectanceand transmittancewhiletheentireportoftheintegratingspherewas coveredbytheselectedleafsample.Intheexactcircularareaof theleafthatcoveredtheportwethencutholes(Fig.1)tomimic thearrangementoftheconiferneedlesonthesampleport;we henceforthrefertothesampletreatedthiswayasthestriped sam-ple.We repositionedthecutcircular areaofthestripedsample

overtheportandrepeatedthespectralmeasurements.Wethen adjustedthestripedsample’sreflectanceandtransmittancesothat wecouldevaluatethegapfractioneffectsonthemeasured spec-traofconiferneedles.ThisreliabilitytestyieldedRMSE=0.08for transmittanceandRMSE=0.023forreflectance.Largererrors, par-ticularlyfortransmittance,wereobservedinthewavelengthranges 750–1300nmand1900–2500nm(Fig.2).

Throughvisualinspection,spectralmeasurementsintheranges of 350–400 and 2351–2500 were found tobe noisy and were removedfromallspectraldatasets.TheSavitzky–Golaysmoothing filter(SavitzkyandGolay,1964)withasecondorderpolynomial functionandbandwidthof15nmwasapplied,toeliminaterandom noisewithinthereflectanceandtransmittancespectralsignatures. 2.3. PROSPECTmodelsimulation

Testingtheaccuracyandrobustnessofphysical(i.e.,deductive) models,demanda largevolume ofdata.Obtaining thisdataby measuringrealleaveswouldbeverylaborious. Asolutionis to useradiativetransfermodels(RTM)togeneratealargespectral datasetincorporatingawiderangeofparametersandvariability. LeafRTMssimulateleafreflectanceandtransmittanceproperties byusingspecificinputparametersderivedfromleaves.Themost popularRTMforleafparametersisthePROSPECTleafoptical prop-ertiesmodel(Jacquemoudetal.,2009).Itidealizesaleafasastack ofplatescomposedofabsorbinganddiffusingconstituents.It sim-ulatesleafopticalproperties(i.e.,reflectanceandtransmittance) parameterizedbythefollowinginputs:chlorophyllcontent(Cab) in␮g/cm2,leafdrymassperunitarea(C

m)inmg/cm2,leafwater

massperunitarea(Cw)inmg/cm2,andeffectivenumberofleaf

lay-ers(N)(JacquemoudandBaret,1990).Themodelhasbeenwidely appliedtobroadleaf vegetationtoestimatechlorophyllcontent (Zhanget al., 2008;Ma etal., 2012;Rivera et al.,2013).It has alsobeensuccessfullyrecalibratedandusedtosimulatetheoptical propertiesofconiferousneedles(Malenovsk ´yetal.,2008;Morsdorf etal.,2009).ThemodelwasrevisedbyFeretetal.(2008)toimprove itsperformanceandapplicability.

BothPROSPECT-4andPROSPECT-5werereleasedatthesame time.ThedifferencebetweenthemisthatinPROSPECT-5leaf pig-mentsareseparatedintototalchlorophyllsandtotalcarotenoids, which improves the chlorophyll retrieval (Feret et al., 2008). Sincewewerenotinterestedinpigmentretrieval,inthisstudy, PROSPECT-4wasusedtosimulateleafreflectanceand transmit-tance.SLA(cm2/mg) wascomputed as1/C

m.SinceLDMCis the

amountofleafdryweightperunitoffreshleafmass,this parame-terwasderivedfromCmandCw.Eqs.(3)–(6)showthederivation

ofLDMCfromCmandCw: LDMC=Wd Wf (3) Cw= Wf−Wd A (4)

(5)

Fig.2.Comparisonofreflectance(left)andTransmittance(right)spectraofawholeleafsampleandstripedleafsampletakenfromabroadleaftree.

Fig.3. Comparisonofminimum,meanandmaximumleafreflectance(left)andtransmittance(right)ofmeasured(Mes)andPROSPECTsimulated(Sim)spectraforall137 samplescollectedinthemixedmountainforestsoftheBavarianForestNationalPark.

Cm=Wd

A (5)

ByreformulatingEqs.(4)and(5)forWdandWf

LDMC= Cm

Cm+Cw

(6) whereLDMCisleafdrymattercontentinmg/g,Cwisleafwater

massperareainmg/cm2,C

misleafdrymassperareaincm2/mg,

WdandWfareleafdryandfreshweightsinmgandgrespectively

andAisleafareaincm2.

Manystudieshaveconfirmedthatwavelengthsinthevisible andnearinfraredregion(400–800nm)arehighlysensitivetoleaf pigmentssuchaschlorophyllsandcarotenoids,whilethe short-waveinfrared regionisthemostsensitiveregionfor retrieving parametersrelatedtodrymatter(Jacquemoudetal.,1996;Asner etal., 2009,2011;Romero etal., 2012).Therefore,the spectral regionfrom800to2350nmwasusedtoretrieveLDMCandSLA. Thisrangeavoidstheneedtomeasureleafpigmentsformodel cal-ibrationandvalidation,sincetheyhavenoimpactontheselected rangespectralsignature(Romeroetal.,2012).Thelatterwasalso confirmedbysensitivityanalysisforthechlorophyll,byrunning themodelinforwardmode.

2.3.1. Generationoflook-uptables

Variousinversion algorithmscanbeusedtoretrievea given parameterthroughRTMs.Oneofthemostpopularandefficient isthe Look-UpTable(LUT) approach (Dasgupta etal., 2009).It involvesperformingrepeatedsimulationsofspectrabyusingthe

modelwithallcombinationsoftheinputparametersconstrained byreasonablerangesoftheinputvariables.TheLUTistheninverted duringretrievals.

WefollowedthegeneralproceduressetbyFeretetal.(2008)in theLUTgenerationandinversion.Thefirststepwastodetermine thestructuralinputparameterNofthe137leafsamples,which couldneitherbecollectedinthefieldnormeasuredinthe labora-tory.Thewavelength-independentparameterNwasretrievedfor eachsamplebyinvertingthemodelbyusingsimulationatthree wavelengthscorrespondingtomaximumreflectance,maximum transmittanceandminimumabsorptionofthemeasuredspectra (Jacquemoud andBaret, 1990;Feret etal., 2008).Althoughleaf structureparameterNcorrespondstothenumberofleaflayers andismostplausibleasawholenumber,totakeaccountofthe subtlevariationsinleafstructure,Ncanbeconsideredasareal numberwithcontinuousvalues(Jacquemoudetal.,1996).Tostart thesimulationthemaximumandminimumvaluesfoundinthe lit-eraturewereusedfortherangeofN.Therefore,Nwassetbetween 0.5and3.0(Combaletal.,2003;Malenovskyetal.,2006;Féretand Asner,2011).AminiLUT(251N×137=34387)wasgeneratedfrom allpossiblecombinationsofthefieldmeasuredvaluesofCmand

Cw(137pairs)withthatofNvaluessetatastepof0.01withinthe

statedrange(251Nvalues).ThestructuralparameterNwasthen retrieved(hereafterconsideredasmeasuredvalueofN)usingthe simulatedspectrawhichbestfitthemeasuredspectraofeach sam-ple.Thesearchforbestsimulationwasdeterminedbycalculating

(6)

Table3

LeafvariablesusedtobuildthespectraLUTwithandwithoutpriorinformationforthe137leafandconiferneedlesamplesbyusingthemaximumandminimumlimitsfrom theliteratureandfieldobservation.

Method Category Inputvariables

Cab(␮g/cm2) Cm(g/cm2) Cw(g/cm2) N

Unconstrained approach(without priorinformation)

Allthethreestrata (broadleaf,coniferand pooledsamples Min 40 0.0030 0.0060 0.50 Max 40 0.0295 0.0340 3.00 Step – 0.0005 0.0005 0.05 Constrainedapproach (withprior information)

Broadleafsamples Min 40 0.0034 0.0063 1.0

Max 40 0.0136 0.0156 1.85

Step – 0.0005 0.0005 0.05

Coniferneedles Min 40 0.0110 0.0116 1.0

Max 40 0.0291 0.0337 2.25

Step – 0.0005 0.0005 0.05

Pooledsamples Min 40 0.0034 0.0063 1.0

Max 40 0.0291 0.0337 2.25

Step – 0.0005 0.0005 0.05

Table4

DescriptivestatisticsofthestructuralparameterNvaluesforsampledtreesas retrievedbyinversionofthePROSPECT-4modelatthreeselectedwavelengthsin theinfraredregion.

Beech Maple Mountainash Fir Norwayspruce

C C+ C++ C C+ C++

Mean 1.42 1.43 1.70 1.63 1.69 1.89 1.47 1.50 1.56 Minimum 1.00 1.20 1.60 1.35 1.45 1.50 1.00 1.15 1.20 Maximum 1.80 1.60 1.85 2.05 2.00 2.25 2.20 2.10 2.20 St.deviation 0.16 0.17 0.13 0.23 0.20 0.25 0.28 0.23 0.27

andfindingthelowestrootmeansquareerrorofanunconstrained

non-linearmultivariatefunction(ColemanandLi,1996):

MN=







(mes−sim)2+ (messim)2



n (7)

where n is the number of wavelengths selected (three in this case), mesand mesare measured values of reflectance and transmittance,andsimandsimaresimulatedvaluesofthethree wavelengths ().

Beforeusing thePROSPECTmodel for simulation, it maybe necessary to calibrate physical and optical constants such as therefractiveindex andabsorption coefficientsof leafmaterial withexperimentaldata (Feret et al.,2008).Thus, forward sim-ulations werefirst conductedusing theretrieved N values and inputparameters correspondingto38broadleaf and56 conifer needle samples randomly selected from the total sample. The suitabilityoftheoriginalPROSPECTmodel hadbeenverifiedby calculating the RMSE between measured and simulated spec-traof theselectedsamples.TheRMSEwaswithintherange of RMSEs documented in the literature (Feret et al., 2008). As a result,PROSPECT-4wasapplieddirectly,withoutcalibration,to simulatethespectraofthedifferenttypesofsampleleavesand needles.

To generate theLUTs, the PROSPECTmodel was run in the forward mode under two scenarios. In the first scenario, the model input parameters (Cm, Cw and N) were generated using

a uniformdistributionbasedona maximum range availablein theliterature(Table3)(Combalet al.,2003;Malenovsky etal., 2006;Féretand Asner,2011).Inthesecondscenario,the max-imum and minimum values of the input parameters were set based onsamples statistics as prior information. The values of CmandCw weresetbasedonthemaximumandminimum

val-uesofthesamplescollectedinthefield(Table2).Forstructural parameterN,weusedtheretrieved rangepresented inTable4 in the Results section. During all simulations, chlorophyll con-tentwasarbitrarilysetto40␮g/cm2.Allpossiblecombinations

oftheinputvariables weresystematicallyusedtogenerateLUT records.

Therewashighvariation inthe spectralproperties between broadleaf and conifer needle samples. In order to observe the effect of sample heterogeneity onaccuracy (i.e.,R2 and RMSE)

we ran the model with and without stratifying the samples intobroadleavesandconiferneedles.Runningthemodelin for-ward mode generated a LUT for conifer needle and broadleaf samples separately, as well as for the samples pooled when constrained approach was applied. The unconstrained method yielded 156,978 LUT records (51N×54Cm×57Cw). When the

maximum and minimum limits of the input parameters were constrainedbypriorinformation,therewasalargereductionin the total number of LUTrecords: to 7182(18N×21Cm×19Cw)

forbroadleaf,43,290(26N×37Cm×45Cw)forconiferneedlesand

74,360(26N×52Cm×55Cw)forthepooledsamples.The

computa-tiontimeforgeneratingtheLUTvariedaccordingtothevolumeof theLUT.

2.3.2. Modelinversionandvalidation

ThePROSPECTinputparameters(N,CmandCw)andthetwoleaf

functionaltraits(LDMCandSLA)weresimultaneouslyretrievedby searchingthebestmatchestothemeasuredspectrainthe gener-atedLUT.Duringinversion,LDMCwasrepresentedbyCm/(Cm+Cw)

asshownonEq.(6)andSLAasinverseofCm.Thisistominimize

effects ofmeasurement errors ofCmand Cw onLDMC andSLA

estimateswheninversionwithpriorinformationwasused. Oth-erwisethetwoleaftraitsaretotallydependentonCmandCwand

canbecomputedfromtheestimatedvaluesofthesemodelinput parameters.

Twosearchingalgorithmswereusedintheinversionprocess. For the LUT generated without prior information we used an unconstrainedapproachwhichdependedsolelyoncomparingthe similaritybetweensimulatedandmeasuredspectra.Thiswasdone bycomputingtheRMSEandfindingitslowestvalue,usingthemerit function(MN)inEq.(7).However,differentsetsofinputvariables andsimulatedspectracouldresultintothesameRMSEwhen com-paredwiththemeasureddata.Therefore,when(spectral)RMSEis thecriteriontosearchthebestmatch,multiplesolutionsmayexist intheLUT.Toovercomethislimitation,theLUTsgeneratedwith priorinformationwereinvertedbyusingmeanandvarianceofthe measuredinputparametersasaconstraintinadditionto measur-ingthesimilaritiesbetweentheobservedandsimulatedspectra (Eq.(8))(Combaletal.,2003;Malenovskyetal.,2006;Lauvernet etal.,2008;Jacquemoudetal.,2009).Theestimationsofallthe variablesweremadeusingallavailablewavelengthsintheNIRand SWIR(801–2350nm).

(7)

Fig.4.RootMeanSquareErrors(RMSE)computedbetweenthemeasuredand PROSPECTsimulatedreflectanceandtransmittanceforthe137leafandneedle samples. (8)MN=



 (mes−sim)2 2 mes +



 (mes−sim)2 2 mes +



j (Vj−Vjprior) 2 2 Vjmes

where Vj is the estimated value of the simulta-neouslyretrievedvariablessuchasCm,Cw,LDMC,SLAandN,Vjprior

isthemeasuredpriorvalueofthevariablej(i.e.,meansofCm,Cw,

LDMCandSLAinTable2andmeanofNinTable4), 2 mes and

2

mesarevariancesofthemeasuredreflectanceandtransmittance

respectively and 2

Vjmes is the variance of the measured input variablej.The estimatedparameters werethen plotted against themeasuredleaftraitconcentrationsandevaluatedbymeansof rootmeansquareerror(RMSE); normalizedRMSE(nRMSE)was calculatedasRMSEdividedbythemeanofthegivenvariableand coefficientofdetermination(R2).

3. Results

3.1. DeterminationofthestructuralparameterNandmodel suitability

TheretrievedvaluesofNrangefrom1to2.25.ThemaximumN valuewasrecordedfortheC++ageclassoffirtree,whilethe min-imumvalueswereobservedinNorwayspruceCageclassneedles andEuropeanbeechleaves.TheaverageNvalueswere1.74forFir and1.5forNorwayspruce.Amongthebroadleafspecies,ahigher meanvalueofN(1.7)wasobservedinMountainash(Table4).

Inordertoevaluatethesuitabilityoftheleafmodel,we cal-culated R2 and the RMSE between measured spectra and the

correspondingsimulatedspectra. Thehemispherical reflectance andtransmittancemeasuredinlaboratoryandsimulatedusingthe PROSPECT-4leafmodelareillustratedinFig.3.Boththereflectance andtransmittancesignaturesshowedgoodmatchingthroughout theNIR-SWIRregion(R2valueof0.99and0.97forreflectanceand

transmittancerespectively).Greaterdisagreement(RMSEcloseto 3.5%)wasobservedinthewavelengthrangefrom1900to2350nm (Fig.4)forboth reflectanceand transmittance.ThemeanRMSE forbothreflectanceandtransmittancewasnear2%.Meanspectral valuesalsoshowedtheresemblanceofthesimulatedspectrato themeasuredspectralinformation.Nevertheless,moredeviations betweenthemeasuredandsimulatedmeanvalueswereobserved forreflectancethanfortransmittance.

3.2. Retrievaloftraitsbyinversionandevaluation

TheLUTswereusedtosearchforthematchesofalltheinput variables andthetwo traits(i.e.,LDMC and SLA)using Eqs.(7) and(8).Thevariationsbetweenthemeasuredvalueswithvalues retrievedwithorwithoutconstraininginformationarepresented inTable5.Theretrievalabilityoftheunconstrainedsearch algo-rithmrangesfromannRMSEvalueof0.8291(forSLAofbroadleaf samples)to0.2046(fortheLDMCofpooledsamples).Inmostcases, thelowestnRMSEwasobservedforLDMC.

The retrieval of SLA showed poor performance for most of theunconstrained inversion cases, ranging fornRMSE between 0.6903–0.8291.Inallcases,theapplicationofprior information enormously improvedthe accuracy of the retrieved values, as expected.Forinstance,inbroadleafsamples,whenprior informa-tionwasusedthenRMSEbetweenthemeasuredandestimated valuesdroppedfrom0.4683to0.2278forCm,from0.2909to0.2065

forCwandfrom0.2186to0.0925forLDMC.Despiteover

estima-tionoflowerandunderestimationofhighervaluesinsomecases, theretrieved valueswithprior informationwerealsoshoweda betterrelationshipwiththemeasuredvaluesinthescatterplots (Fig.5).ThenRMSEvaluesformanyoftheretrievedvariableswith priorinformationarelowerwhenthevariableswereretrievedfor broadleafandconifersamplesseparatelythanwhenretrievingthe variablesforthepooledsamples.ThelowestnRMSEwasobserved inallsamplesforLDMC.HighR2 valuesforthePROSPECTinput

parametersandthetwoleaftraitsweredetectedinthepooled sam-ples.Inmostcases,thecorrelationcoefficientbetweenretrieved andmeasuresSLAwashigherthanLDMC,buttheforecastprecision ofLDMCwasbetterthanthatofSLA.

4. Discussionandconclusions

Thisstudyquantifiesandestimatestwoimportantleaf func-tionaltraits: SLAand LDMC.These traits,whichare notwidely addressedinthefieldofremotesensing,canbeaccuratelyderived from the input parameters of the PROSPECT radiative transfer model.Themodel’sperformancewasevaluatedforsamplesfrom mixedforest.TheresultsindicatethatthePROSPECT4leafmodel accuratelysimulatesspectralinformationofsamplesfrommixed mountain forests and can be used to retrieve the biochemical contentof leaves/needlesdirectlyand indirectlythrough inver-sion.Insomecases,wefoundhigheraccuraciesfortheindirect estimatedvariable(LDMC) thanfor thedirectinputvariablesof themodel,whichfurthersupportsthereliability oftheindirect retrievalapproach.

ThevaluesofthestructuralparameterNinfirtreeneedlesof threeseasonsorolderwerehighcomparedtotheNvaluesofthe youngerneedles.Thiscanbeattributedtothelowerwatercontent intheolderleavesandconfirmsearlierfindingsbyJacquemoud etal.(1996),whostatedthatforthesamespecies,Nestimatedon dryleavesishigherthantheNestimatedforfreshleaves,duetoan increaseofmultiplescatteringresultingfromthelossofwater.Our estimatedvaluesofthestructuralparameterNfitwellwithinthe knownrange(1.0–2.5)forawidevarietyofspecies(Jacquemoud andBaret,1990).However,Malenovskyetal.(2006)foundhigher values(1.72–2.63)ofNforNorwayspruce;thismightbebecause ofsite-specificnatureoftheparameterorthebiasinspruceneedle samplesspectrameasurement(particularlytransmittance)(Fig.2) couldhavenegativelyaffectedtheretrievedNvalues.Themean valueof1.42forbeechtreesagreeswiththeresultsofDemarez etal.(1999),whostudiedtheseasonalvariationofNforselected broadleaftreespecies.

PROSPECTinversionwithaprioriinformationforbroadleaf sam-plesyieldedanRMSE=0.0018g/cm2 forC

(8)

Table5

Rootmeansquareerror(RMSE),normalizedRMSE(nRMSE)andregressionequationsbetweenobservedandestimatedvaluesofleafdrymassperarea(Cm),leafwater

contentperarea(Cw),SLAandLDMCwithorwithoutpriorinformationfrominversionofthePROSPECTmodelforbroadleafleafandconiferneedlesamples.

Method Category Variable RMSE nRMSE Regressionequation

Inversionwithoutprior information Broadleafsamples Cm 0.0037 0.47 Y=0.52x+0.00059 Cw 0.0024 0.26 Y=0.62x+0.0019 SLA 112.25 0.83 Y=1.9x−5.2 LDMC 100.7 0.22 Y=0.58x+110 Conifersamples Cm 0.0086 0.43 Y=0.36x+0.0054 Cw 0.0053 0.21 Y=0.73x+0.0039 SLA 35.36 0.69 Y=0.68x+48 LDMC 92.2 0.20 Y=0.86x−18 Pooledsamples Cm 0.0066 0.43 Y=0.97x−0.00076 Cw 0.0044 0.24 Y=1.2x+0.00075 SLA 63.88 0.76 Y=1.2x+17 LDMC 119.9 0.26 Y=0.81x+21

Inversionwithprior information Broadleafsamples Cm 0.0018 0.23 Y=0.41x+0.0041 Cw 0.0019 0.21 Y=0.55x+0.0043 SLA 26.7 0.20 Y=1.1x−2.8 LDMC 0.376 0.09 Y=0.74x+110 Conifersamples Cm 0.0032 0.16 Y=0.24x+0.016 Cw 0.0033 0.13 Y=0.37x+0.016 SLA 9.28 0.18 Y=0.22x+38 LDMC 41.3 0.09 Y=0.33x+150 Pooledsamples Cm 0.0033 0.21 Y=0.63x+0.0047 Cw 0.0036 0.19 Y=0.72x+0.0041 SLA 21.73 0.26 Y=0.77x+16 LDMC 40.8 0.09 Y=0.65x+130

resultsofRomeroetal.(2012),whoestimatedCmof11selected

species leaf samplesby inversion of themodel after removing unrealisticcombinationsbetweentheinputparametersfromthe LUT.TheRMSEand rangevalues for Cmfor both broadleafand

conifersamplesaswellasfor thepooleddatawerewithinthe rangereportedbyAsneretal.(2011),whoestimatedtheCmfor

2871samplescollectedfromheterogeneoushumidtropicalrain forests.However,ourestimationofCmandCwyieldedarelatively

lessaccurateresult(RMSE=0.0032and0.0033)forconiferneedles thantheestimatesobtainedbyMalenovskyetal.(2006),who stud-iedNorwayspruceneedlesamplesbyusingthespectralrangeof 450–110nm.Thisisprobablybecausethelatterstudywasonmono specieswhileinoursamplesthereareacoupleofconiferspecies. ThehighRMSEbetweenthemeasuredandsimulatedspectrainthe SWIRrange(Fig.3)mightbealsotheothercause.

Overall,theleaftraitLDMCwasmoreaccuratelyestimatedthan theothervariablesinvestigatedinthisstudy.Onepossiblereason forsuchaccurateestimateofLDMCcouldbetherelativelysmaller errorsintroducedduringLDMCfieldmeasurement.Itseemstobe morechallengingtomeasureCm,CwandSLAreliablyinthefield,

partlyduetoerrorsrelatedtomeasuringtheareaofsamples. Theresultsofthemodelinversionhighlightthereliabilityand feasibilityofusingremotesensingdataforestimationofleaftraits. Thecomparisonofthespectral-basedresultsofthisstudywithfield measurementsindicatesthepotentialofremotesensingdatato estimateleaftraitsoverarangeofvegetationtypes.Thisleaf-level resultindicatesthatleaftraits,especiallySLAandLDMC,are quanti-tativelyrepresentedbyleafspectra.Previousstudiesfocusedonthe estimationofsomeorallofthedirectinputvariablesofPROSPECT modelbyusingfewbandsofthevisibleandnearinfraredregions. Herewehaveshownthatmodelinversionfromawidespectral rangecanprovideindirectand directestimatesofmultipleleaf traitsformixedmountainforests.Mostimportantly,thisleaf-level analysisoffersabasistotestthepossiblegainsandlossesincurred inscalinguptothecanopyandlandscapescale.

Inthisstudywehavedemonstratedtheinversionresultsfrom thewavelengthrange from801to2350nm.Inversionbasedon selectedspectralbands (notshown here)doesnotimprovethe retrievalaccuracy.Thisisbecauseoftheinformativenatureofthe wholeshortwavespectralregionforestimatingvariablesrelatedto

leafdrymatterandthickness.Similarresultshavebeenreported inthetropicalrainforestwhenusingthesoilleafcanopymodel (Asneretal.,2009).

TheevaluationresultsoftheinversionpresentedinFig.5and Table5demonstratedtheinherentcapacityofusingprior infor-mationinimprovingtheaccuracyoftheestimatedvariablesusing RTMinversion.Thisisinagreementwithseveralpreviousstudies (e.g.,Malenovskyetal.,2006;Dasguptaetal.,2009).Besides limit-ingtheupperandlowerboundariesofthemodelinputparameters, weusedamodifiedcostfunctionintheLUTsearch,whichtakes intoaccounttheuncertaintyofthepriorinformationonthe vari-ablestobeestimated.However,theminimumdistancebetween themeasuredand modeled spectracouldprobablybe compro-misedfortheuncertaintyanalysis,whichiswhywefoundamuch lowerRMSEbetweenmeasuredandsimulatedspectraduringthe inversionwithoutpriorinformationthanduringtheinversionwith priorinformation(Fig.6).

ItwasobservedthattheRMSEbetweenmeasuredandobserved spectrawashigherforlongerwavelengthsthanforshorter wave-lengths(Fig.4).Thiscouldbeassociatedwithseveralfactors.One possiblereasoncouldbeerrorassociatedwiththeequipmentused forthespectralmeasurement.Ourpreliminaryreliabilitytestfor adjustinggapfraction(GF)effectshowederrorinclusionduring GFcorrectionforconifersamples.ThisagreeswithYanez-Rausell etal.(2014),whotriedtoaddresstheeffectofgapsbetween sam-plesandotherfactorsaffectingspectralmeasurement ofconifer needlesbyusingtheintegratingsphere.TheGFeffectisgenerally higherintheshortwaveregionthaninthevisibleandnearinfrared region.Althoughtheerrorwassystematicandoccurredacrossall samples,itprobablycontributedtothehigherRMSEbetweenthe measuredandPROSPECTsimulatedspectrashowninFig.4.This emphasizestheneedforfuturestudiestodevelopmoreaccurate spectralmeasurementtechniques.

ThedeterminationofSLA,CmandCwrequiresaccurate

measure-mentsofleafarea.Butthecalculationofareasofirregularshape, particularlyconiferneedles,ispronetoerror.Errorsareintroduced –particularlywhencalculatingtheareaofconiferneedlesamples– bytheshadoweffectwhilescanningsamples,whileclassifyingthe scannedimagestobinaryformat,whileroundingoffpixels,bythe correctionfactorusedand byotherprocedures.Studiesshowed

(9)

Fig.5. Actualvsretrievedleafmassperarea(Cm),leafwatercontent(Cw),SLAandLDMCwithoutpriorinformation(left),broadleafsamples,usingpriorinformation(middle)

andpooledsamples,usingpriorinformation(right).Thesolidlineshowsthe1:1relation.

thattheshape of theNorwayspruce needlesvary fordifferent ageclassesandneeddifferentconversionfactors(Homolovaetal., 2013).Butwesimplyusedauniversalconversionfactorfrom lit-eraturewhichcouldbesourceoferror.Althoughitisnotpossible

toavoidalltheseerrors,infuturestudieseffortsshouldbemadeto developsimpleandfasttechniquesforcomputingneedleareaand foropticalpropertymeasurementofnarrowleafsamplesbyusing theintegratingsphere.

(10)

Fig.6. RootMeanSquareErrors(RMSE)computedbetweenthemeasuredand PROSPECTsimulatedreflectanceforthe53broadleafsampleswithandwithout usingpriorinformation.

Ingeneral,ourresultshaveconfirmedthattwoimportantleaf functionaltraitsaremeasurablewithspectralinformation.Thisin turnhighlights thepotentialtoextendthestudytocanopyand landscapescales byusingadvanced hyperspectral airborneand spacebornesensors.However,itisworthmentioningthatwhen theobservationalscalemovesfromleaftocanopyandlandscape scales,therelationshipbetweenreflectedradiationandleaftraits maychange(Ustinetal.,2009).Thespectralpropertiescausedby leaftraitsarethenaffectedbysoil,non-photosyntheticvegetation, stemcharacteristics,canopystructure,shadows,illuminationand viewangles(Robertsetal.,2004;Ollingeretal.,2008).Retrieval methodsthathavebeendesignedatleafscalearelikelytosuffer fromthesestructuralandexternalfactorswhenusedatcanopy scale(Asneret al., 1998).Therefore, furtherstudyis neededto understandtheimpactofcanopystructuralandexternalfactors (suchassunzenithandazimuthangles)otherthantheleaf func-tionaltraitsoncanopyreflectanceinordertoaccuratelyestimate thetwofunctionaltraitsfromremote-sensingdataatcanopyor landscapescale.

Acknowledgments

ThisstudywasfundedbyNuffic-Netherlandsfellowship pro-gram. We acknowledge the assistance of Dr. Nicole Pinnel in GermanRemoteSensingData Center,GermanAerospaceCenter EarthObservationCenter(DLR)andDr.HoomanLatifiinInstitute ofGeographyandGeology,UniversityofWuerzburginselectingthe testsite,andorganizingandfacilitatingthefieldcampaign.Thanks alsogototheBavarianForestNationalParksforapprovingaccess tothestudyarea,providingthecrossbowwithitsaccessories,and otherfieldandcampingfacilities.Theauthorsalsowishtothank ZhihuiWangandTiejunWanginthefacultyofGeo-Information ScienceandEarthObservation,UniversityofTwente,whoassisted withthefieldworkdesignanddatacollection.Dr.JoyBurroughwas thelanguageeditorofanear-finaldraftofthepaper.

References

Albert,C.H.,Thuiller,W.,Yoccoz,N.G.,Soudant,A.,Boucher,F.,etal.,2010.

Intraspecificfunctionalvariability:extent,structureandsourcesofvariation.J. Ecol.98(3),604–613.

Asner,G.P.,Braswell,B.H.,Schimel,D.S.,Wessman,C.A.,1998.Ecologicalresearch needsfrommultiangleremotesensingdata.RemoteSens.Environ.63(2), 155–165.

Asner,G.P.,Martin,R.E.,2008.Spectralandchemicalanalysisoftropicalforests: scalingfromleaftocanopylevels.RemoteSens.Environ.112(10),3958–3970.

Asner,G.P.,Martin,R.E.,2009.Airbornespectranomics:mappingcanopychemical andtaxonomicdiversityintropicalforests.Front.Ecol.Environ.7(5),269–276.

Asner,G.P.,Martin,R.E.,2012.Contrastingleafchemicaltraitsintropicallianasand trees:implicationsforfutureforestcomposition.Ecol.Lett.15(9),1001–1007.

Asner,G.P.,Martin,R.E.,Ford,A.J.,Metcalfe,D.J.,Liddell,M.J.,2009.Leafchemical andspectraldiversityinAustraliantropicalforests.Ecol.Appl.19(1),236–253.

Asner,G.P.,Martin,R.E.,Tupayachi,R.,Emerson,R.,Martinez,P.,etal.,2011.

Taxonomyandremotesensingofleafmassperarea(LMA)inhumidtropical forests.Ecol.Appl.21(1),85–98.

Broge,N.H.,Mortensen,J.V.,2002.Derivinggreencropareaindexandcanopy chlorophylldensityofwinterwheatfromspectralreflectancedata.Remote Sens.Environ.81(1),45–57.

Cadotte,M.W.,Carscadden,K.,Mirotchnick,N.,2011.Beyondspecies:functional diversityandthemaintenanceofecologicalprocessesandservices.J.Appl. Ecol.48(5),1079–1087.

Cadotte,M.W.,Cavender-Bares,J.,Tilman,D.,Oakley,T.H.,2009.Using phylogenetic,functionalandtraitdiversitytounderstandpatternsofplant communityproductivity.PLoSOne4(5),e5695.

Carlson,K.M.,Asner,G.P.,Hughes,R.F.,Ostertag,R.,Martin,R.E.,2007.

HyperspectralremotesensingofcanopybiodiversityinHawaiianlowland rainforests.Ecosystems10(4),536–549.

Coleman,T.F.,Li,Y.Y.,1996.Aninteriortrustregionapproachfornonlinear minimizationsubjecttobounds.SiamJ.Optim.6(2),418–445.

Combal,B.,Baret,F.,Weiss,M.,Trubuil,A.,Mace,D.,etal.,2003.Retrievalofcanopy biophysicalvariablesfrombidirectionalreflectance—Usingpriorinformation tosolvetheill-posedinverseproblem.RemoteSens.Environ.84(1),1–15.

Cornelissen,J.H.C.,Lavorel,S.,Garnier,E.,Diaz,S.,Buchmann,N.,etal.,2003.A handbookofprotocolsforstandardisedandeasymeasurementofplant functionaltraitsworldwide.Aust.J.Bot.51(4),335–380.

Darvishzadeh,R.,Skidmore,A.,Schlerf,M.,Atzberger,C.,2008a.Inversionofa radiativetransfermodelforestimatingvegetationLAIandchlorophyllina heterogeneousgrassland.RemoteSens.Environ.112(5),2592–2604.

Darvishzadeh,R.,Skidmore,A.,Schlerf,M.,Atzberger,C.,Corsi,F.,etal.,2008b.LAI andchlorophyllestimationforaheterogeneousgrasslandusinghyperspectral measurements.ISPRSJ.Photogramm.RemoteSens.63(4),409–426.

Dasgupta,S.,Qu,J.J.,Bhoi,S.,2009.Constrainedradiativetransferinversionsfor vegetationmoistureretrievalsingrasslands.J.Appl.RemoteSens.3.

Daughtry,C.S.T.,Biehl,L.L.,Ranson,K.J.,1989.Anewtechniquetomeasurethe spectralpropertiesofconiferneedles.RemoteSens.Environ.27(1),81–91.

Dawson,T.P.,Curran,P.J.,Plummer,S.E.,1998.LIBERTY—modelingtheeffectsof leafbiochemicalconcentrationonreflectancespectra.RemoteSens.Environ. 65(1),50–60.

Demarez,V.,Gastellu-Etchegorry,J.P.,Mougin,E.,Marty,G.,Proisy,C.,etal.,1999.

Seasonalvariationofleafchlorophyllcontentofatemperateforest.Inversion ofthePROSPECTmodel.Int.J.RemoteSens.20(5),879–894.

Díaz,S.,Cabido,M.,2001.Viveladiffírence:plantfunctionaldiversitymattersto ecosystemprocesses.TrendsEcol.Evol.16(11),646–655.

Féret,J.-B.,Asner,G.P.,2014.Mappingtropicalforestcanopydiversityusing high-fidelityimagingspectroscopy.Ecol.Appl.

Féret,J.B.,Asner,G.P.,2011.Spectroscopicclassificationoftropicalforestspecies usingradiativetransfermodeling.RemoteSens.Environ.115(9),2415–2422.

Feret,J.B.,Francois,C.,Asner,G.P.,Gitelson,A.A.,Martin,R.E.,etal.,2008.

PROSPECT-4and5:advancesintheleafopticalpropertiesmodelseparating photosyntheticpigments.RemoteSens.Environ.112(6),3030–3043.

Feret,J.B.,Francois,C.,Gitelson,A.,Asner,G.P.,Barry,K.M.,etal.,2011.Optimizing spectralindicesandchemometricanalysisofleafchemicalpropertiesusing radiativetransfermodeling.RemoteSens.Environ.115(10),2742–2750.

Gould,W.,2000.Remotesensingofvegetation,plantspeciesrichness,andregional biodiversityhotspots.Ecol.Appl.10(6),1861–1870.

Gregory,A.,2008.Hyperspectralremotesensingofcanopychemistry,physiology, andbiodiversityintropicalrainforests.In:HyperspectralRemoteSensingof TropicalandSub-TropicalForests.CRCPress,pp.261–296.

Heurich,M.,Beudert,B.,Rall,H.,Krenova,Z.,2010.NationalParksasmodelregions forinterdisciplinarylong-termecologicalresearch.In:Müller,F.,Baessler,C., Schubert,H.,Klotz,S.(Eds.),Long-termEcologicalResearch.BetweenTheory andApplication.Springer,Netherlands,pp.327–344.

Heurich,M.,Neufanger,M.,2005.DieWälderdesNationalparksBayerischerWald. ErgebnissederWaldinventur2002/2003imgeschichtlichenund

waldökologischenKontext.Grafenau,178S.

Hodgson,J.G.,Montserrat-Marti,G.,Charles,M.,Jones,G.,Wilson,P.,etal.,2011.Is leafdrymattercontentabetterpredictorofsoilfertilitythanspecificleaf area?Ann.Bot.108(7),1337–1345.

Homolova,L.,Lukes,P.,Malenovsky,Z.,Lhotakova,Z.,Kaplan,V.,etal.,2013.

MeasurementmethodsandvariabilityassessmentoftheNorwaysprucetotal leafarea:implicationsforremotesensing.Trees-Struct.Funct.27(1),111–121.

Jacquemoud,S.,Baret,F.,1990.Prospect—amodelofleafoptical-properties spectra.RemoteSens.Environ.34(2),75–91.

Jacquemoud,S.,Ustin,S.L.,Verdebout,J.,Schmuck,G.,Andreoli,G.,etal.,1996.

EstimatingleafbiochemistryusingthePROSPECTleafopticalproperties model.RemoteSens.Environ.56(3),194–202.

Jacquemoud,S.,Verhoef,W.,Baret,F.,Bacour,C.,Zarco-Tejada,P.J.,etal.,2009.

PROSPECTplusSAILmodels:areviewofuseforvegetationcharacterization. RemoteSens.Environ.113,S56–S66.

Kattge,J.,Díaz,S.,Lavorel,S.,Prentice,I.C.,Leadley,P.,etal.,2011.TRY—aglobal databaseofplanttraits.GlobalChangeBiol.17(9),2905–2935.

(11)

Kleyer,M.,Bekker,R.M.,Knevel,I.C.,Bakker,J.P.,Thompson,K.,etal.,2008.The LEDATraitbase:adatabaseoflife-historytraitsoftheNorthwestEuropean flora.J.Ecol.96(6),1266–1274.

Knox,N.M.,Skidmore,A.K.,Schlerf,M.,deBoer,W.F.,vanWieren,S.E.,etal.,2010.

Nitrogenpredictioningrasses:effectofbandwidthandplantmaterialstateon absorptionfeatureselection.Int.J.RemoteSens.31(3),691–704.

Laurent,V.C.E.,Verhoef,W.,Clevers,J.G.P.W.,Schaepman,M.E.,2011.Estimating forestvariablesfromtop-of-atmosphereradiancesatellitemeasurements usingcoupledradiativetransfermodels.RemoteSens.Environ.115(4), 1043–1052.

Lauver,C.L.,1997.MappingspeciesdiversitypatternsintheKansasshortgrass regionbyintegratingremotesensingandvegetationanalysis.J.Veg.Sci.8(3), 387–394.

Lauvernet,C.,Baret,F.,Hascoet,L.,Buis,S.,LeDimet,F.X.,2008.

Multitemporal-patchensembleinversionofcoupledsurface-atmosphere radiativetransfermodelsforlandsurfacecharacterization.RemoteSens. Environ.112(3),851–861.

Lavorel,S.,Grigulis,K.,Lamarque,P.,Colace,M.,Garden,D.,etal.,2011.Usingplant functionaltraitstounderstandthelandscapedistributionofmultiple ecosystemservices.J.Ecol.99(1),135–147.

leMaire,G.,Francois,C.,Soudani,K.,Berveiller,D.,Pontailler,J.Y.,etal.,2008.

Calibrationandvalidationofhyperspectralindicesfortheestimationof broadleavedforestleafchlorophyllcontent,leafmassperarea,leafareaindex andleafcanopybiomass.RemoteSens.Environ.112(10),3846–3864.

Lymburner,L.,Beggs,P.J.,Jacobson,C.R.,2000.Estimationofcanopy-average surface-specificleafareausingLandsatTMdata.Photogramm.Eng.Remote Sens.66(2),183–191.

Ma,Z.G.,Chen,X.,Wang,Q.,Li,P.H.,Jiapaerl,G.,2012.Retrievalofleafbiochemical propertiesbyinversedPROSPECTmodelandhyperspectralindices:an applicationtoPopuluseuphraticapolymorphicleaves.J.AridLand4(1),52–62.

Malenovsky,Z.,Albrechtova,J.,Lhotakova,Z.,Zurita-Milla,R.,Clevers,J.G.P.W., etal.,2006.ApplicabilityofthePROSPECTmodelforNorwayspruceneedles. Int.J.RemoteSens.27(23–24),5315–5340.

Malenovsk ´y,Z.,Martin,E.,Homolová,L.,Gastellu-Etchegorry,J.-P.,Zurita-Milla,R., etal.,2008.InfluenceofwoodyelementsofaNorwaysprucecanopyonnadir reflectancesimulatedbytheDARTmodelatveryhighspatialresolution. RemoteSens.Environ.112(1),1–18.

Mesarch,M.A.,Walter-Shea,E.A.,Asner,G.P.,Middleton,E.M.,Chan,S.S.,1999.A revisedmeasurementmethodologyforconiferneedlesspectraloptical properties:evaluatingtheinfluenceofgapsbetweenelements.RemoteSens. Environ.68(2),177–192.

Morsdorf,F.,Nichol,C.,Malthus,T.,Woodhouse,I.H.,2009.Assessingforest structuralandphysiologicalinformationcontentofmulti-spectralLiDAR waveformsbyradiativetransfermodelling.RemoteSens.Environ.113(10), 2152–2163.

Ollinger,S.V.,Richardson,A.D.,Martin,M.E.,Hollinger,D.Y.,Frolking,S.E.,etal, 2008.Canopynitrogen,carbonassimilation,andalbedointemperateand borealforests:functionalrelationsandpotentialclimatefeedbacks.Proc.Natl. Acad.Sci.U.S.A.105(49),19336–19341.

Papes¸,M.,Tupayachi,R.,Martínez,P.,Peterson,A.T.,Powell,G.V.N.,2010.Using hyperspectralsatelliteimageryforregionalinventories:atestwithtropical emergenttreesintheAmazonBasin.J.Veg.Sci.21(2),342–354.

Petchey,O.L.,Gaston,K.J.,2006.Functionaldiversity:backtobasicsandlooking forward.Ecol.Lett.9(6),741–758.

Pierce,L.L.,Running,S.W.,Walker,J.,1994.Regional-scalerelationshipsofleaf-area indextospecificleaf-areaandleafnitrogen-content.Ecol.Appl.4(2),313–321.

Ramoelo,A.,Skidmore,A.K.,Cho,M.A.,Schlerf,M.,Mathieu,R.,etal.,2012.

Regionalestimationofsavannagrassnitrogenusingthered-edgebandofthe spaceborneRapidEyesensor.Int.J.Appl.EarthObs.Geoinf.19,151–162.

Ramoelo,A.,Skidmore,A.K.,Schlerf,M.,Mathieu,R.,Heitkonig,I.M.A.,2011.

Water-removedspectraincreasetheretrievalaccuracywhenestimating savannagrassnitrogenandphosphorusconcentrations.ISPRSJ.Photogramm. RemoteSens.66(4),408–417.

Rivera,J.P.,Verrelst,J.,Leonenko,G.,Moreno,J.,2013.Multiplecostfunctionsand regularizationoptionsforimprovedretrievalofleafchlorophyllcontentand laithroughinversionofthePROSAILmodel.RemoteSens.5(7),3280–3304.

Roberts,D.A.,Ustin,S.L.,Ogunjemiyo,S.,Greenberg,J.,Dobrowski,S.Z.,etal.,2004.

Spectralandstructuralmeasuresofnorthwestforestvegetationatleafto landscapescales.Ecosystems7(5),545–562.

Romero,A.,Aguado,I.,Yebra,M.,2012.Estimationofdrymattercontentinleaves usingnormalizedindexesandPROSPECTmodelinversion.Int.J.RemoteSens. 33(2),396–414.

Ruiliang,P.,2011.Detectingandmappinginvasiveplantspeciesbyusing hyperspectraldata.In:HyperspectralRemoteSensingofVegetation.CRCPress, pp.447–466.

Saatchi,S.,Buermann,W.,TerSteege,H.,Mori,S.,Smith,T.B.,2008.Modeling distributionofAmazoniantreespeciesanddiversityusingremotesensing measurements.RemoteSens.Environ.112(5),2000–2017.

Skidmore,A.K.,Ferwerda,J.G.,Mutanga,O.,VanWieren,S.E.,Peel,M.,etal.,2010.

Foragequalityofsavannas—simultaneouslymappingfoliarproteinand polyphenolsfortreesandgrassusinghyperspectralimagery.RemoteSens. Environ.114(1),64–72.

Smith,T.M.,Shugart,H.H.,Woodward,F.I.,1997.PlantFunctionalTypes:Their RelevancetoEcosystemPropertiesandGlobalChange.CambridgeUniversity Press,Cambridge,NewYork.

Tilman,D.,2001.FunctionalDiversity.EncyclopediaofBiodiversity.In:Simon,A.L. (Ed.).Elsevier,NewYork,pp.109–120,Editor-in-Chief.

Tilman,D.,Knops,J.,Wedin,D.,Reich,P.,Ritchie,M.,etal.,1997.Theinfluenceof functionaldiversityandcompositiononecosystemprocesses.Science277 (5330),1300–1302.

Ustin,S.L.,Gitelson,A.A.,Jacquemoud,S.,Schaepman,M.,Asner,G.P.,etal.,2009.

Retrievaloffoliarinformationaboutplantpigmentsystemsfromhigh resolutionspectroscopy.RemoteSens.Environ.113,S67–S77.

Vile,D.,Garnier,É.,Shipley,B.,Laurent,G.,Navas,M.-L.,etal.,2005.Specificleaf areaanddrymattercontentestimatethicknessinlaminarleaves.Ann.Bot.96 (6),1129–1136.

Violle,C.,Navas,M.L.,Vile,D.,Kazakou,E.,Fortunel,C.,etal.,2007.Lettheconcept oftraitbefunctional!Oikos116(5),882–892.

Vohland,M.,Jarmer,T.,2008.Estimatingstructuralandbiochemicalparameters forgrasslandfromspectroradiometerdatabyradiativetransfermodelling (PROSPECTplusSAIL).Int.J.RemoteSens.29(1),191–209.

Waring,R.H.,1983.Estimatingforestgrowthandefficiencyinrelationtocanopy leaf-area.Adv.Ecol.Res.13,327–354.

Wilson,P.J.,Thompson,K.E.N.,Hodgson,J.G.,1999.Specificleafareaandleafdry mattercontentasalternativepredictorsofplantstrategies.NewPhytol.143 (1),155–162.

Wright,I.J.,Reich,P.B.,Westoby,M.,Ackerly,D.D.,Baruch,Z.,etal.,2004.The worldwideleafeconomicsspectrum.Nature428(6985),821–827.

Yanez-Rausell,L.,Malenovsky,Z.,Clevers,J.G.P.W.,Schaepman,M.E.,2014.

Minimizingmeasurementuncertaintiesofconiferousneedle-leafoptical properties.PartII:Experimentalsetupanderroranalysis.IEEEJ.Sel.Top.Appl. EarthObs.RemoteSens.7(2),406–420.

Zhang,J.T.,Fan,L.,Li,M.,2012.Functionaldiversityinplantcommunities:theory andanalysismethods.Afr.J.Biotechnol.11(5),1014–1022.

Zhang,Y.Q.,Chen,J.M.,Miller,J.R.,Noland,T.L.,2008.Retrievingchlorophyll contentinconiferneedlesfromhyperspectralmeasurements.Can.J.Remote Sens.34(3),296–310.

References

Related documents

A set of current and planned retention patches in the study area (68 out of a total of 169) was field surveyed by recording tree species and DBH for all trees in the retention

However, this type of transfer is referred to as negative transfer since the structure is considered faulty in L2 (Saville-Troike, 2012). One may wonder why such discrepancy occurs;

Nitrile group containing piperidone derivative 5d showed better antibacterial activity on Streptococcus pyogenes , Bacillus subtilis, Staphylococcus aureus,

The 26 patients with hypothalamic amenorrhea, as a group, were better estrogenized, had more nor­ mal gonadotropins, and responded more normally or excessively to

Feminist issue-based arts education constitutes an important discourse of social organisation by drawing attention to an imaginative form of community educative- leadership by

We rectify these problems by examining the independent impact of risk-taking, innovativeness, proactiveness, competitive aggressiveness, and autonomy on performance of

The book talks about thinking about a problem in three ways: verbally (by restating it, perhaps), graphically (by drawing a picture or graph), and by example (by

yield curve data to present both in-sample fit and out-of-sample forecast results to compare our approach with other approaches and models, including Diebold and