• No results found

Cosmology and quantum gravities: Where are we?

N/A
N/A
Protected

Academic year: 2021

Share "Cosmology and quantum gravities: Where are we?"

Copied!
78
0
0

Loading.... (view fulltext now)

Full text

(1)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Cosmology and quantum gravities:

Where are we?

Gianluca Calcagni

(2)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Outline

1 Quantum gravity?

2 Cosmological problems

3 Quantum and emergent gravities

(3)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Outline

1 Quantum gravity?

2 Cosmological problems

3 Quantum and emergent gravities

(4)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Outline

1 Quantum gravity?

2 Cosmological problems

3 Quantum and emergent gravities

(5)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Outline

1 Quantum gravity?

2 Cosmological problems

3 Quantum and emergent gravities

(6)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

01/27–

Goal

Systematic introduction and comparison of the status of the

most prominent theories ofquantumandemergent gravityin

(7)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Outline

1 Quantum gravity?

2 Cosmological problems

3 Quantum and emergent gravities

(8)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

(9)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

03/27–

Unification and open problems

Theoreticalnecessity, not experimental.

Non-predictivegravity if quantized perturbatively [Goroff & Sagnotti 1985,1986].

Models oftheories of everythingandquantum gravityare

very formaland withlittle contactwith observations. Cosmological problems must be addressed.

(10)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

03/27–

Unification and open problems

Theoreticalnecessity, not experimental.

Non-predictivegravity if quantized perturbatively [Goroff & Sagnotti 1985,1986].

Models oftheories of everythingandquantum gravityare

very formaland withlittle contactwith observations. Cosmological problems must be addressed.

(11)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

03/27–

Unification and open problems

Theoreticalnecessity, not experimental.

Non-predictivegravity if quantized perturbatively [Goroff & Sagnotti 1985,1986].

Models oftheories of everythingandquantum gravityare

very formaland withlittle contactwith observations.

(12)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

03/27–

Unification and open problems

Theoreticalnecessity, not experimental.

Non-predictivegravity if quantized perturbatively [Goroff & Sagnotti 1985,1986].

Models oftheories of everythingandquantum gravityare

very formaland withlittle contactwith observations. Cosmological problems must be addressed.

(13)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

(14)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Outline

1 Quantum gravity?

2 Cosmological problems

3 Quantum and emergent gravities

(15)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

05/27–

Big bang problem

•Singularities typical of classical gravity (black holes,big bang).

•Borde–Guth–Vilenkin theorem(2003):Let(M,g)be a

spacetime with a congruenceuµcontinuously defined along any past-directed timelike or null geodesicvµ(the observer). Letuµ obey the averaged expansion conditionHav>0for almost any vµ. Then(M,g)is geodesically past-incomplete(finite

(16)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

06/27–

Inflation

Graceful exit.

Trans-Planckian problem. Model building.

(17)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

07/27–

Cosmological constant problems

•Oldproblem: zero-point energy (dim. reg. [Koksma & Prokopec 2011])ρvac∼10−68m4Pl∼1056ρΛwrong magnitude. E.g., ρeq ≈2.4×10−113m4Pl is calculable.

•New: WhyρΛ=O(ρm)?Coincidence: Why doesΛdominate

atz1?

•Shift symmetry:Lm → Lm+ρ0 ⇒ Tµν →Tµν+ρ0δµν.

E.o.m.s∇νTµν =0invariant, Einstein eqs. are not:Why?

•4π puzzle: For the observed value ofρΛ, the duration of the

matter-radiation era (# modes reentered) is4π±10−3e-folds

(18)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

07/27–

Cosmological constant problems

•Oldproblem: zero-point energy (dim. reg. [Koksma & Prokopec 2011])ρvac∼10−68m4Pl∼1056ρΛwrong magnitude. E.g., ρeq ≈2.4×10−113m4Pl is calculable.

•New: WhyρΛ=O(ρm)? Coincidence: Why doesΛdominate

atz1?

•Shift symmetry:Lm → Lm+ρ0 ⇒ Tµν →Tµν+ρ0δµν.

E.o.m.s∇νTµν =0invariant, Einstein eqs. are not:Why?

•4π puzzle: For the observed value ofρΛ, the duration of the

matter-radiation era (# modes reentered) is4π±10−3e-folds

(19)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

07/27–

Cosmological constant problems

•Oldproblem: zero-point energy (dim. reg. [Koksma & Prokopec 2011])ρvac∼10−68m4Pl∼1056ρΛwrong magnitude. E.g., ρeq ≈2.4×10−113m4Pl is calculable.

•New: WhyρΛ=O(ρm)? Coincidence: Why doesΛdominate

atz1?

•Shift symmetry:Lm → Lm+ρ0 ⇒ Tµν →Tµν+ρ0δνµ.

E.o.m.s∇νTµν =0invariant, Einstein eqs. are not:Why?

•4π puzzle: For the observed value ofρΛ, the duration of the

matter-radiation era (# modes reentered) is4π±10−3e-folds

(20)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

07/27–

Cosmological constant problems

•Oldproblem: zero-point energy (dim. reg. [Koksma & Prokopec 2011])ρvac∼10−68m4Pl∼1056ρΛwrong magnitude. E.g., ρeq ≈2.4×10−113m4Pl is calculable.

•New: WhyρΛ=O(ρm)? Coincidence: Why doesΛdominate

atz1?

•Shift symmetry:Lm → Lm+ρ0 ⇒ Tµν →Tµν+ρ0δνµ.

E.o.m.s∇νTµν =0invariant, Einstein eqs. are not:Why?

•4π puzzle: For the observed value ofρΛ, the duration of the

matter-radiation era (# modes reentered) is4π±10−3e-folds

(21)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Outline

1 Quantum gravity?

2 Cosmological problems

3 Quantum and emergent gravities

(22)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

08/27–

Asymptotic safety: setting

Weinberg, Reuter, Bonanno, Lauscher, Litim, Saueressig, . . .

•All dimensionless couplings approach a UV NGFP

limk→∞¯λi(k) = ¯λ∗i 6=0(existence checked a posteriori).

•Gravity: effective action

Γk = 1 16πGk Z dDx√−g(R−2Λk), δΓk δgµν [hgµνik] =0

•Λand average metric are scale-dependent:

hgµνik =k−2hgµνik0,Λk =k

2Λk

(23)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

09/27–

Asymptotic safety: cosmology

Cutoff identificationk=k(t)∝H(t) ⇒ Λ,G→Λ(t),G(t). RG-improved dynamics: H2= 8πG(t) 3 ρ+ Λ(t) 3 , ρ˙+3H(ρ+P) =− ˙ Λ +8πρG˙ 8πG

•Near the NGFP:G(p˜ 2)' −1/p4forp2 m2Pl,

hh(t,x)h(t,0)i ∼ln|x|2,hδR(t,x)δR(t,0)i ∼ |x|−4forδR2h.

Scale-invariant power spectrum. Buthigher-order curvature termsare required, sinceGH2∝G∗Λ∗∼10−3∼107Aobst .

•f(R)actionsfrom scale identificationk2∝R, Starobinsky

dynamics:R/Gk ∼R/R−1∼R2near the NGFP.

•OldΛproblem: Why is the perturbative semiclassical regime

of the RG trajectory fine tuned so much? [Reuter & Weyer 2004].

(24)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

09/27–

Asymptotic safety: cosmology

Cutoff identificationk=k(t)∝H(t) ⇒ Λ,G→Λ(t),G(t). RG-improved dynamics: H2= 8πG(t) 3 ρ+ Λ(t) 3 , ρ˙+3H(ρ+P) =− ˙ Λ +8πρG˙ 8πG •Near the NGFP:G(p˜ 2)' −1/p4forp2 m2Pl,

hh(t,x)h(t,0)i ∼ln|x|2,hδR(t,x)δR(t,0)i ∼ |x|−4forδR2h.

Scale-invariant power spectrum.

Buthigher-order curvature termsare required, sinceGH2∝G∗Λ∗∼10−3∼107Aobst .

•f(R)actionsfrom scale identificationk2∝R, Starobinsky

dynamics:R/Gk ∼R/R−1∼R2near the NGFP.

•OldΛproblem: Why is the perturbative semiclassical regime

of the RG trajectory fine tuned so much? [Reuter & Weyer 2004].

(25)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

09/27–

Asymptotic safety: cosmology

Cutoff identificationk=k(t)∝H(t) ⇒ Λ,G→Λ(t),G(t). RG-improved dynamics: H2= 8πG(t) 3 ρ+ Λ(t) 3 , ρ˙+3H(ρ+P) =− ˙ Λ +8πρG˙ 8πG •Near the NGFP:G(p˜ 2)' −1/p4forp2 m2Pl,

hh(t,x)h(t,0)i ∼ln|x|2,hδR(t,x)δR(t,0)i ∼ |x|−4forδR2h.

Scale-invariant power spectrum. Buthigher-order curvature termsare required, sinceGH2∝G∗Λ∗∼10−3∼107Aobst .

•f(R)actionsfrom scale identificationk2∝R, Starobinsky

dynamics:R/Gk ∼R/R−1∼R2near the NGFP.

•OldΛproblem: Why is the perturbative semiclassical regime

of the RG trajectory fine tuned so much? [Reuter & Weyer 2004].

(26)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

09/27–

Asymptotic safety: cosmology

Cutoff identificationk=k(t)∝H(t) ⇒ Λ,G→Λ(t),G(t). RG-improved dynamics: H2= 8πG(t) 3 ρ+ Λ(t) 3 , ρ˙+3H(ρ+P) =− ˙ Λ +8πρG˙ 8πG •Near the NGFP:G(p˜ 2)' −1/p4forp2 m2Pl,

hh(t,x)h(t,0)i ∼ln|x|2,hδR(t,x)δR(t,0)i ∼ |x|−4forδR2h.

Scale-invariant power spectrum. Buthigher-order curvature termsare required, sinceGH2∝G∗Λ∗∼10−3∼107Aobst .

•f(R)actionsfrom scale identificationk2∝R, Starobinsky

dynamics:R/Gk ∼R/R−1∼R2 near the NGFP.

•OldΛproblem: Why is the perturbative semiclassical regime

of the RG trajectory fine tuned so much? [Reuter & Weyer 2004].

(27)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

09/27–

Asymptotic safety: cosmology

Cutoff identificationk=k(t)∝H(t) ⇒ Λ,G→Λ(t),G(t). RG-improved dynamics: H2= 8πG(t) 3 ρ+ Λ(t) 3 , ρ˙+3H(ρ+P) =− ˙ Λ +8πρG˙ 8πG •Near the NGFP:G(p˜ 2)' −1/p4forp2 m2Pl,

hh(t,x)h(t,0)i ∼ln|x|2,hδR(t,x)δR(t,0)i ∼ |x|−4forδR2h.

Scale-invariant power spectrum. Buthigher-order curvature termsare required, sinceGH2∝G∗Λ∗∼10−3∼107Aobst .

•f(R)actionsfrom scale identificationk2∝R, Starobinsky

dynamics:R/Gk ∼R/R−1∼R2 near the NGFP.

(28)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

09/27–

Asymptotic safety: cosmology

Cutoff identificationk=k(t)∝H(t) ⇒ Λ,G→Λ(t),G(t). RG-improved dynamics: H2= 8πG(t) 3 ρ+ Λ(t) 3 , ρ˙+3H(ρ+P) =− ˙ Λ +8πρG˙ 8πG •Near the NGFP:G(p˜ 2)' −1/p4forp2 m2Pl,

hh(t,x)h(t,0)i ∼ln|x|2,hδR(t,x)δR(t,0)i ∼ |x|−4forδR2h.

Scale-invariant power spectrum. Buthigher-order curvature termsare required, sinceGH2∝G∗Λ∗∼10−3∼107Aobst .

•f(R)actionsfrom scale identificationk2∝R, Starobinsky

(29)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

10/27–

Causal dynamical triangulations: setting

Ambjørn, Loll, Jurkiewicz, . . .

Z = Z [Dg]eiS[g] → X T 1 Aut(T)e −SReggeE (T).

(30)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

11/27–

Causal dynamical triangulations: cosmology

A:branched-polymer phase, disconnected “lumps” of space, non-Riemannian geometry.

(31)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

12/27–

Non-local gravity: setting

Krasnikov, Tomboulis, Mazumdar, Modesto, G.C., . . .

Minimal requirements:(i)continuous spacetime with Lorentz

invariance;(ii)classical local (super)gravity good approximation

at low energy;(iii)perturbative super-renormalizability or

finiteness;(iv)unitary and ghost free;(v)typical classical solutions singularity-free.

Example [G.C. & Modesto 2014]:

Sg = 1 2κ2 Z dDx√−g " R−2Λ−Gµν e−f(/M2) −1 R µν # .

Reproduces the linearized effective action ofstring field theory

whenf =/M2. Exponential operators havegoodproperties

(32)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

12/27–

Non-local gravity: setting

Krasnikov, Tomboulis, Mazumdar, Modesto, G.C., . . .

Minimal requirements:(i)continuous spacetime with Lorentz

invariance;(ii)classical local (super)gravity good approximation

at low energy;(iii)perturbative super-renormalizability or

finiteness;(iv)unitary and ghost free;(v)typical classical solutions singularity-free.

Example [G.C. & Modesto 2014]:

Sg = 1 2κ2 Z dDx√−g " R−2Λ−Gµν e−f(/M2) −1 R µν # .

Reproduces the linearized effective action ofstring field theory

whenf =/M2. Exponential operators havegoodproperties

(33)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

12/27–

Non-local gravity: setting

Krasnikov, Tomboulis, Mazumdar, Modesto, G.C., . . .

Minimal requirements:(i)continuous spacetime with Lorentz

invariance;(ii)classical local (super)gravity good approximation

at low energy;(iii)perturbative super-renormalizability or

finiteness;(iv)unitary and ghost free;(v)typical classical solutions singularity-free.

Example [G.C. & Modesto 2014]:

Sg = 1 2κ2 Z dDx√−g " R−2Λ−Gµν e−f(/M2) −1 R µν # .

(34)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

13/27–

Non-local gravity: cosmology

G.C., Modesto, Nicolini 2014

Typical classicalbouncingprofiles inD=4:

a(t) = a∗ cosh r

ω

2 t

, a(t) = a∗ exp

H1 2 t 2 .

Difficult dynamics, e.o.m.s still under study [G.C., Modesto & Nardelli in progress].

(35)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

13/27–

Non-local gravity: cosmology

G.C., Modesto, Nicolini 2014

Typical classicalbouncingprofiles inD=4:

a(t) = a∗ cosh r

ω

2 t

, a(t) = a∗ exp

H1 2 t 2 .

Difficult dynamics, e.o.m.s still under study [G.C., Modesto & Nardelli

(36)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

14/27–

Canonical quantum cosmology

DeWitt, Hawking, Vilenkin, Ashtekar, Bojowald, . . .

Hamiltonian formalism (unconstrained):

S=

Z

dt L[q,q]˙ → H[q,p] =pq−L[q,˙ q]˙ → H[ˆˆ q,ˆp=i~q]|ψi=E|ψi

Gravity+matter dynamics (constrained): Wheeler–DeWitt

equationHˆ(g, φ)Ψ[g, φ] =0. Symmetry reduction. FLRW:gµν = (−1,a2(t),a2(t),a2(t)), p(a)=−6aa˙,Πφ=a3φ˙: H= 1 2a3 " −a 2p2 (a) 6κ2 + Π 2 φ # +· · ·=0 → Hˆ= 1 2a3 κ2 6 ∂2 (∂lna)2 − ∂2 ∂φ2 +. . .

(37)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

14/27–

Canonical quantum cosmology

DeWitt, Hawking, Vilenkin, Ashtekar, Bojowald, . . .

Hamiltonian formalism (unconstrained):

S=

Z

dt L[q,q]˙ → H[q,p] =pq−L[q,˙ q]˙ → H[ˆˆ q,ˆp=i~q]|ψi=E|ψi

Gravity+matter dynamics (constrained): Wheeler–DeWitt

equationHˆ(g, φ)Ψ[g, φ] =0. Symmetry reduction. FLRW:gµν = (−1,a2(t),a2(t),a2(t)), p(a)=−6aa˙,Πφ=a3φ˙: H= 1 2a3 " −a 2p2 (a) 6κ2 + Π 2 φ # +· · ·=0 → Hˆ= 1 2a3 κ2 6 ∂2 (∂lna)2 − ∂2 ∂φ2 +. . .

(38)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

14/27–

Canonical quantum cosmology

DeWitt, Hawking, Vilenkin, Ashtekar, Bojowald, . . .

Hamiltonian formalism (unconstrained):

S=

Z

dt L[q,q]˙ → H[q,p] =pq−L[q,˙ q]˙ → H[ˆˆ q,ˆp=i~q]|ψi=E|ψi

Gravity+matter dynamics (constrained): Wheeler–DeWitt

equationHˆ(g, φ)Ψ[g, φ] =0. Symmetry reduction. FLRW:gµν = (−1,a2(t),a2(t),a2(t)), p(a)=−6aa˙,Πφ=a3φ˙: H= 1 2a3 " −a 2p2 (a) 6κ2 + Π 2 φ # +· · ·=0 → Hˆ= 1 2a3 κ2 6 ∂2 (∂lna)2 − ∂2 ∂φ2 +. . .

(39)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

15/27–

WDW quantum cosmology

PDF (nucleation probability) of the initial state of the Universe: ratio of the squared wave-function at the classical turning point

(40)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

16/27–

WDW quantum cosmology and

Λ

Probabilisticinterpretation [Baum 1983; Hawking 1984; Wu 2008]:

PV(Λ) =exp −3m 2 Pl 2πΛ , PHH(Λ) =exp 12 κ2Λ =exp 3m2Pl 2πΛ .

Hartle–Hawking wave-function:small-ΛUniverses favored.

Problem: aΛ-dependent normalization ofΨmay erase the

(41)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

16/27–

WDW quantum cosmology and

Λ

Probabilisticinterpretation [Baum 1983; Hawking 1984; Wu 2008]:

PV(Λ) =exp −3m 2 Pl 2πΛ , PHH(Λ) =exp 12 κ2Λ =exp 3m2Pl 2πΛ .

Hartle–Hawking wave-function:small-ΛUniverses favored.

Problem: aΛ-dependent normalization ofΨmay erase the

(42)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

17/27–

Loop quantum cosmology

Other canonical variables,p=a2→ˆp,c∼a˙ →ˆh=e\iµ(p)c.

Quantum bounce (a=0never):

1 Boundedspectrum of inverse-volume operator:

[

|v|l−1|vi= 1

2l |v+1|

l− |v1|l

|vi.

2 State|v=0idisappears from dynamics:

cv+2Ψv+4−(cv+2+cv−2)Ψv+cv−2Ψv−4+hv|Hˆφ|viΨv =0.

3 Volume expectation value (massless field):

h|ˆv|i=V∗cosh(κ0φ).

4 Effective dynamics:sin2µc) = ρ

ρ∗ ↔H 2= κ2 3 ρ α−ρρ ∗ , α=1+δPl=1+Ca−σ.

(43)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

17/27–

Loop quantum cosmology

Other canonical variables,p=a2→ˆp,c∼a˙ →ˆh=e\iµ(p)c.

1 Boundedspectrum of inverse-volume operator:

[

|v|l−1|vi= 1

2l |v+1|

l− |v1|l

|vi.

2 State|v=0idisappears from dynamics:

cv+2Ψv+4−(cv+2+cv−2)Ψv+cv−2Ψv−4+hv|Hˆφ|viΨv =0.

3 Volume expectation value (massless field):

h|ˆv|i=V∗cosh(κ0φ).

4 Effective dynamics:sin2µc) = ρ

ρ∗ ↔H 2= κ2 3 ρ α−ρρ ∗ , α= +δ = + −σ.

(44)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

18/27–

Quantum gravity and superconductivity

S. Alexander & G.C. PLB 672 (2009) 386; Found. Phys. 38 (2008) 1148

LQGwithΛin vacuum,Chern–Simonsstate annihilates

the constraints.

Different gravity vacua connected vialarge gauge

transformations.

Gravityin a degenerate sectordescribed withfermionic

variables, behaves as aFermi liquid(BCS):

Λ = Λ0exp(−jz5) = Λ0exp(−ψγ¯ 5γzψ), exponentially

(45)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

19/27–

Group field theory: setting

Freidel, Oriti, Rovelli, . . .

SGFT= Z G d4g Z G d4g0ϕ∗(g)K(g,g0)ϕ(g0) +V .

•Fock quantization: [ ˆϕ(g),ϕˆ†(g0)] =1G(g,g0), vacuum|∅i

“no-spacetime” configuration, one-particle state|gi:= ˆϕ†(g)|∅i

4-valent spin-network vertex or dual tetrahedron, . . .

• ∞many particles,continuity!All GFT quanta in the same

state,homogeneity! Condensate (coherent state):

|ξi:=Aeξˆ|∅i, ξˆ:=

Z

(46)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

19/27–

Group field theory: setting

Freidel, Oriti, Rovelli, . . .

SGFT= Z G d4g Z G d4g0ϕ∗(g)K(g,g0)ϕ(g0) +V . •Fock quantization: [ ˆϕ(g),ϕˆ†(g0)] =1G(g,g0), vacuum|∅i

“no-spacetime” configuration, one-particle state|gi:= ˆϕ†(g)|∅i

4-valent spin-network vertex or dual tetrahedron, . . .

• ∞many particles,continuity!All GFT quanta in the same

state,homogeneity! Condensate (coherent state):

|ξi:=Aeξˆ|∅i, ξˆ:=

Z

(47)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

19/27–

Group field theory: setting

Freidel, Oriti, Rovelli, . . .

SGFT= Z G d4g Z G d4g0ϕ∗(g)K(g,g0)ϕ(g0) +V . •Fock quantization: [ ˆϕ(g),ϕˆ†(g0)] =1G(g,g0), vacuum|∅i

“no-spacetime” configuration, one-particle state|gi:= ˆϕ†(g)|∅i

4-valent spin-network vertex or dual tetrahedron, . . .

• ∞many particles,continuity!All GFT quanta in the same

state,homogeneity!

Condensate (coherent state):

|ξi:=Aeξˆ|∅i, ξˆ:=

Z

(48)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

19/27–

Group field theory: setting

Freidel, Oriti, Rovelli, . . .

SGFT= Z G d4g Z G d4g0ϕ∗(g)K(g,g0)ϕ(g0) +V . •Fock quantization: [ ˆϕ(g),ϕˆ†(g0)] =1G(g,g0), vacuum|∅i

“no-spacetime” configuration, one-particle state|gi:= ˆϕ†(g)|∅i

4-valent spin-network vertex or dual tetrahedron, . . .

• ∞many particles,continuity!All GFT quanta in the same

state,homogeneity! Condensate (coherent state):

(49)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

20/27–

Group field theory: cosmology

Gielen, Oriti & Sindoni 2014; G.C. Phys. Rev. D 90 (2014) 064047

Gross–Pitaevskii equation: 0=hξ|1C|ξiˆ =R d4g0K(g,g0)ξ(g0) + δϕδV∗(g) ϕ=ξ. G=SU(2),isotropy: 2χ(1−χ)ξ00(χ) + (3−4χ)ξ0(χ) +mξ(χ) =0, χ=sin2 µc¯ 2 WKB approx.ξWKB(χ, φ) =A(χ, φ)eiS(χ,φ)/` 2 Pl: 2χ(1−χ)(S,χ)2 =−E2(S ,φ)2+m4. Classically,

pχ ∼a/(¯µ2H), pφ∼a3φ ,˙ (a¯µ)−2∝ −E2φ˙2.

E2<0, l.h.s. isH2 ifaeHt (de Sitter) in theLQC improved

quantization schemen=1/2.

LQC dynamics? 4χ(1−χ) =sin2(¯µc), l.h.s. of LQC Friedmann

(50)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

20/27–

Group field theory: cosmology

Gielen, Oriti & Sindoni 2014; G.C. Phys. Rev. D 90 (2014) 064047

Gross–Pitaevskii equation: 0=hξ|1C|ξiˆ =R d4g0K(g,g0)ξ(g0) + δϕδV∗(g) ϕ=ξ. G=SU(2),isotropy: 2χ(1−χ)ξ00(χ) + (3−4χ)ξ0(χ) +mξ(χ) =0, χ=sin2 µc¯ 2 WKB approx.ξWKB(χ, φ) =A(χ, φ)eiS(χ,φ)/` 2 Pl: 2χ(1−χ)(S,χ)2 =−E2(S ,φ)2+m4. Classically,

pχ ∼a/(¯µ2H), pφ∼a3φ ,˙ (a¯µ)−2∝ −E2φ˙2.

E2<0, l.h.s. isH2 ifaeHt (de Sitter) in theLQC improved

quantization schemen=1/2.

LQC dynamics? 4χ(1−χ) =sin2(¯µc), l.h.s. of LQC Friedmann

(51)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

20/27–

Group field theory: cosmology

Gielen, Oriti & Sindoni 2014; G.C. Phys. Rev. D 90 (2014) 064047

Gross–Pitaevskii equation: 0=hξ|1C|ξiˆ =R d4g0K(g,g0)ξ(g0) + δϕδV∗(g) ϕ=ξ. G=SU(2),isotropy: 2χ(1−χ)ξ00(χ) + (3−4χ)ξ0(χ) +mξ(χ) =0, χ=sin2 µc¯ 2 WKB approx.ξWKB(χ, φ) =A(χ, φ)eiS(χ,φ)/` 2 Pl:2χ(1−χ)(S,χ)2 =−E2(S ,φ)2+m4. Classically,

pχ ∼a/(¯µ2H), pφ∼a3φ ,˙ (a¯µ)−2∝ −E2φ˙2.

E2<0, l.h.s. isH2ifaeHt (de Sitter) in theLQC improved

LQC dynamics? 4χ(1−χ) =sin2(¯µc), l.h.s. of LQC Friedmann

(52)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

20/27–

Group field theory: cosmology

Gielen, Oriti & Sindoni 2014; G.C. Phys. Rev. D 90 (2014) 064047

Gross–Pitaevskii equation: 0=hξ|1C|ξiˆ =R d4g0K(g,g0)ξ(g0) + δϕδV∗(g) ϕ=ξ. G=SU(2),isotropy: 2χ(1−χ)ξ00(χ) + (3−4χ)ξ0(χ) +mξ(χ) =0, χ=sin2 µc¯ 2 WKB approx.ξWKB(χ, φ) =A(χ, φ)eiS(χ,φ)/` 2 Pl:2χ(1−χ)(S,χ)2 =−E2(S ,φ)2+m4. Classically,

pχ ∼a/(¯µ2H), pφ∼a3φ ,˙ (a¯µ)−2∝ −E2φ˙2.

(53)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

21/27–

Causal sets: setting

Bombelli, Dowker, Sorkin, . . .

•“Order and number”: discrete structure of partially ordered

points (xy) reproducing the causal structure of continuous

Lorentzian geometries.

•Volume measurement=point counting: N≈α2mDPlV.

•Sprinkling: random generation of points on a Lorentzian

manifoldMrespecting light-cone structure. Discreteness and

Lorentz invariance require a Poisson distribution(i):

P(N=n) = n1!(ρV)ne−ρV. Standard deviation, kinematical

fluctuations: ∆N :=σN = √ N, ∆V = (αmD/Pl2)−1 √ V. Regular lattices/graphsdo not satisfy this property.

(54)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

21/27–

Causal sets: setting

Bombelli, Dowker, Sorkin, . . .

•“Order and number”: discrete structure of partially ordered

points (xy) reproducing the causal structure of continuous

Lorentzian geometries.

•Volume measurement=point counting: N≈α2mD

PlV.

•Sprinkling: random generation of points on a Lorentzian

manifoldMrespecting light-cone structure. Discreteness and

Lorentz invariance require a Poisson distribution(i):

P(N=n) = n1!(ρV)ne−ρV. Standard deviation, kinematical

fluctuations: ∆N :=σN = √ N, ∆V = (αmD/Pl2)−1 √ V. Regular lattices/graphsdo not satisfy this property.

(55)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

21/27–

Causal sets: setting

Bombelli, Dowker, Sorkin, . . .

•“Order and number”: discrete structure of partially ordered

points (xy) reproducing the causal structure of continuous

Lorentzian geometries.

•Volume measurement=point counting: N≈α2mD

PlV. •Sprinkling: random generation of points on a Lorentzian

manifoldMrespecting light-cone structure.

Discreteness and

Lorentz invariance require a Poisson distribution(i):

P(N=n) = n1!(ρV)ne−ρV. Standard deviation, kinematical

fluctuations: ∆N :=σN = √ N, ∆V = (αmD/Pl2)−1 √ V. Regular lattices/graphsdo not satisfy this property.

(56)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

21/27–

Causal sets: setting

Bombelli, Dowker, Sorkin, . . .

•“Order and number”: discrete structure of partially ordered

points (xy) reproducing the causal structure of continuous

Lorentzian geometries.

•Volume measurement=point counting: N≈α2mD

PlV. •Sprinkling: random generation of points on a Lorentzian

manifoldMrespecting light-cone structure. Discreteness and

Lorentz invariance require a Poisson distribution(i):

P(N=n) = n1!(ρV)ne−ρV. Standard deviation, kinematical

fluctuations:

∆N :=σ =√N, ∆V = (αmD/2)−1 √

V.

Regular lattices/graphsdo not satisfy this property.

(57)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

21/27–

Causal sets: setting

Bombelli, Dowker, Sorkin, . . .

•“Order and number”: discrete structure of partially ordered

points (xy) reproducing the causal structure of continuous

Lorentzian geometries.

•Volume measurement=point counting: N≈α2mD

PlV. •Sprinkling: random generation of points on a Lorentzian

manifoldMrespecting light-cone structure. Discreteness and

Lorentz invariance require a Poisson distribution(i):

P(N=n) = n1!(ρV)ne−ρV. Standard deviation, kinematical

fluctuations: ∆N :=σN = √ N, ∆V = (αmD/Pl2)−1 √ V.

(58)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

21/27–

Causal sets: setting

Bombelli, Dowker, Sorkin, . . .

•“Order and number”: discrete structure of partially ordered

points (xy) reproducing the causal structure of continuous

Lorentzian geometries.

•Volume measurement=point counting: N≈α2mD

PlV. •Sprinkling: random generation of points on a Lorentzian

manifoldMrespecting light-cone structure. Discreteness and

Lorentz invariance require a Poisson distribution(i):

P(N=n) = n1!(ρV)ne−ρV. Standard deviation, kinematical

fluctuations:

∆N :=σ =√N, ∆V = (αmD/2)−1 √

(59)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

22/27–

Causal sets: cosmology

(ii) Statistical uncertainty and volume fixing imply

∆V∆Λ&κ2.

(iii) Λ =action ofα2fundamental elements; if each contribution is independent and fluctuates in sign by±α2, thenhΛi=0.

(iv) (i)–(iii) imply aneverpresentΛ(only inD=4):

ρΛ= ∆Λ κ2 ∼ 1 ∆V = αm2Pl √ V ∼αm 2 PlH2.

(v) To explain dark energy,α=O(10−2)÷O(1). Forα=O(1),

N0≈m4PlV0∼10244andρΛ ∼10−122m4Pl.

(vi) Fine tuning problem!

∆T/T ∼∆Φ/Φ∼δρΛ/ρtot∼α∼10−5.

(60)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

22/27–

Causal sets: cosmology

(ii) Statistical uncertainty and volume fixing imply

∆V∆Λ&κ2.

(iii) Λ =action ofα2fundamental elements; if each contribution is independent and fluctuates in sign by±α2, thenhΛi=0.

(iv) (i)–(iii) imply aneverpresentΛ(only inD=4):

ρΛ= ∆Λ κ2 ∼ 1 ∆V = αm2Pl √ V ∼αm 2 PlH2.

(v) To explain dark energy,α=O(10−2)÷O(1). Forα=O(1),

N0≈m4PlV0∼10244andρΛ ∼10−122m4Pl.

(vi) Fine tuning problem!

∆T/T ∼∆Φ/Φ∼δρΛ/ρtot∼α∼10−5.

(61)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

22/27–

Causal sets: cosmology

(ii) Statistical uncertainty and volume fixing imply

∆V∆Λ&κ2.

(iii) Λ =action ofα2fundamental elements; if each contribution is independent and fluctuates in sign by±α2, thenhΛi=0.

(iv) (i)–(iii) imply aneverpresentΛ(only inD=4):

ρΛ= ∆Λ κ2 ∼ 1 ∆V = αm2Pl √ V ∼αm 2 PlH2.

(v) To explain dark energy,α=O(10−2)÷O(1). Forα=O(1),

N0≈m4PlV0∼10244andρΛ ∼10−122m4Pl.

(vi) Fine tuning problem!

∆T/T ∼∆Φ/Φ∼δρΛ/ρtot∼α∼10−5.

(62)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

22/27–

Causal sets: cosmology

(ii) Statistical uncertainty and volume fixing imply

∆V∆Λ&κ2.

(iii) Λ =action ofα2fundamental elements; if each contribution is independent and fluctuates in sign by±α2, thenhΛi=0.

(iv) (i)–(iii) imply aneverpresentΛ(only inD=4):

ρΛ= ∆Λ κ2 ∼ 1 ∆V = αm2Pl √ V ∼αm 2 PlH2.

(v) To explain dark energy,α=O(10−2)÷O(1). Forα=O(1),

N0≈m4PlV0∼10244andρΛ ∼10−122m4Pl.

(vi) Fine tuning problem!

∆T/T ∼∆Φ/Φ∼δρΛ/ρtot∼α∼10−5.

(63)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

22/27–

Causal sets: cosmology

(ii) Statistical uncertainty and volume fixing imply

∆V∆Λ&κ2.

(iii) Λ =action ofα2fundamental elements; if each contribution is independent and fluctuates in sign by±α2, thenhΛi=0.

(iv) (i)–(iii) imply aneverpresentΛ(only inD=4):

ρΛ= ∆Λ κ2 ∼ 1 ∆V = αm2Pl √ V ∼αm 2 PlH2.

(v) To explain dark energy,α=O(10−2)÷O(1). Forα=O(1),

N0≈m4PlV0∼10244andρΛ ∼10−122m4Pl.

(vi) Fine tuning problem!

(64)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

22/27–

Causal sets: cosmology

(ii) Statistical uncertainty and volume fixing imply

∆V∆Λ&κ2.

(iii) Λ =action ofα2fundamental elements; if each contribution is independent and fluctuates in sign by±α2, thenhΛi=0.

(iv) (i)–(iii) imply aneverpresentΛ(only inD=4):

ρΛ= ∆Λ κ2 ∼ 1 ∆V = αm2Pl √ V ∼αm 2 PlH2.

(v) To explain dark energy,α=O(10−2)÷O(1). Forα=O(1),

(65)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

23/27–

Emergent gravity: setting

Padmanabhan

LocalRindler observer(constant proper acceleration)

Total heat withinV:

Q[n] := 1 8π Z σ2 σ1 dσ Z ∂V d2y√γ Q+κ2Tµνnµnν , Q:=∇µnν∇νnµ−(∇µnµ)2

Dynamics (forallRindler observers):

δQ δnµ =0 ⇒ Gµν+ Λgµν−κ 2T µν nµnν =0

(66)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

23/27–

Emergent gravity: setting

Padmanabhan

Total heat withinV:

Q[n] := 1 8π Z σ2 σ1 dσ Z ∂V d2y√γ Q+κ2Tµνnµnν , Q:=∇µnν∇νnµ−(∇µnµ)2

Dynamics (forallRindler observers):

δQ δnµ =0 ⇒ Gµν+ Λgµν−κ 2T µν nµnν =0

(67)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

23/27–

Emergent gravity: setting

Padmanabhan

Total heat withinV:

Q[n] := 1 8π Z σ2 σ1 dσ Z ∂V d2y√γ Q+κ2Tµνnµnν , Q:=∇µnν∇νnµ−(∇µnµ)2

Dynamics (forallRindler observers):

δQ δnµ =0 ⇒ Gµν+ Λgµν−κ 2T µν nµnν =0

(68)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

24/27–

Emergent gravity: cosmology

•Metric not fundamental,other quantum d.o.f.

•Example ofunimodular gravity, e.o.m.s invariant undershift

symmetry:Λis anarbitrary constant.

•If afundamental principlefixed the value ofΛ, the shift symmetry would not change it.

•Holography and statistical mechanics?Nc=# modes

accessible to our causal patchVHduring radiation-dust era.

Emergent gravity:Nc =# d.o.f. populating the Hubble sphere

∂VH. Expansion rate of radiation-dust era is the same as of the

inflationary era and4πis precisely the number of d.o.f. of the boundary of an elementary Planck ball,

NVPl = (4π`

2

Pl)/`2Pl=4π.

Nc =? N∂VPl, Λ∝e

(69)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

24/27–

Emergent gravity: cosmology

•Metric not fundamental,other quantum d.o.f.

•Example ofunimodular gravity, e.o.m.s invariant undershift

symmetry:Λis anarbitrary constant.

•If afundamental principlefixed the value ofΛ, the shift symmetry would not change it.

•Holography and statistical mechanics?Nc=# modes

accessible to our causal patchVHduring radiation-dust era.

Emergent gravity:Nc =# d.o.f. populating the Hubble sphere

∂VH. Expansion rate of radiation-dust era is the same as of the

inflationary era and4πis precisely the number of d.o.f. of the boundary of an elementary Planck ball,

NVPl = (4π`

2

Pl)/`2Pl=4π.

Nc =? N∂VPl, Λ∝e

(70)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

24/27–

Emergent gravity: cosmology

•Metric not fundamental,other quantum d.o.f.

•Example ofunimodular gravity, e.o.m.s invariant undershift

symmetry:Λis anarbitrary constant.

•If afundamental principlefixed the value ofΛ, the shift symmetry would not change it.

•Holography and statistical mechanics?Nc=# modes

accessible to our causal patchVHduring radiation-dust era.

Emergent gravity:Nc =# d.o.f. populating the Hubble sphere

∂VH. Expansion rate of radiation-dust era is the same as of the

inflationary era and4πis precisely the number of d.o.f. of the boundary of an elementary Planck ball,

NVPl = (4π`

2

Pl)/`2Pl=4π.

Nc =? N∂VPl, Λ∝e

(71)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

24/27–

Emergent gravity: cosmology

•Metric not fundamental,other quantum d.o.f.

•Example ofunimodular gravity, e.o.m.s invariant undershift

symmetry:Λis anarbitrary constant.

•If afundamental principlefixed the value ofΛ, the shift symmetry would not change it.

•Holography and statistical mechanics?

Nc=# modes

accessible to our causal patchVHduring radiation-dust era.

Emergent gravity:Nc =# d.o.f. populating the Hubble sphere

∂VH. Expansion rate of radiation-dust era is the same as of the

inflationary era and4πis precisely the number of d.o.f. of the boundary of an elementary Planck ball,

NVPl = (4π`

2

Pl)/`2Pl=4π.

Nc =? N∂VPl, Λ∝e

(72)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

24/27–

Emergent gravity: cosmology

•Metric not fundamental,other quantum d.o.f.

•Example ofunimodular gravity, e.o.m.s invariant undershift

symmetry:Λis anarbitrary constant.

•If afundamental principlefixed the value ofΛ, the shift symmetry would not change it.

•Holography and statistical mechanics?Nc=# modes

accessible to our causal patchVHduring radiation-dust era.

Emergent gravity:Nc =# d.o.f. populating the Hubble sphere

∂VH. Expansion rate of radiation-dust era is the same as of the

inflationary era and4πis precisely the number of d.o.f. of the boundary of an elementary Planck ball,

NVPl = (4π`

2

Pl)/`2Pl=4π.

Nc =? N∂VPl, Λ∝e

(73)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

24/27–

Emergent gravity: cosmology

•Metric not fundamental,other quantum d.o.f.

•Example ofunimodular gravity, e.o.m.s invariant undershift

symmetry:Λis anarbitrary constant.

•If afundamental principlefixed the value ofΛ, the shift symmetry would not change it.

•Holography and statistical mechanics?Nc=# modes

accessible to our causal patchVHduring radiation-dust era.

Emergent gravity:Nc =# d.o.f. populating the Hubble sphere

∂VH.

Expansion rate of radiation-dust era is the same as of the inflationary era and4πis precisely the number of d.o.f. of the boundary of an elementary Planck ball,

NVPl = (4π`

2

Pl)/`2Pl=4π.

Nc =? N∂VPl, Λ∝e

(74)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

24/27–

Emergent gravity: cosmology

•Metric not fundamental,other quantum d.o.f.

•Example ofunimodular gravity, e.o.m.s invariant undershift

symmetry:Λis anarbitrary constant.

•If afundamental principlefixed the value ofΛ, the shift symmetry would not change it.

•Holography and statistical mechanics?Nc=# modes

accessible to our causal patchVHduring radiation-dust era.

Emergent gravity:Nc =# d.o.f. populating the Hubble sphere

∂VH. Expansion rate of radiation-dust era is the same as of the

inflationary era and4πis precisely the number of d.o.f. of the boundary of an elementary Planck ball,

(75)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Outline

1 Quantum gravity?

2 Cosmological problems

3 Quantum and emergent gravities

(76)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

25/27–

Comparison

: How far from realistic cosmology?

Asymptotic safety: types off(R)actions naturally

produced. Λproblem reformulated.

Multi-scale spacetimes:Λproblem reformulated.

WDW QC: probabilistic interpretation forΛproblem.

Causal dynamical triangulations: de Sitter universe emerges from full quantum gravity.

Group field theory: cosmology from full theory, LQC dynamics possibly obtained.

Non-local gravity: big bang removed.

(77)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

26/27–

More can be found in . . .

Classical and Quantum

Cosmology

(Gradu-ate Texts in Physics,

(78)

Quantum gravity? Cosmological problems Quantum and emergent gravities Final remarks

Discussion

Thank you! ¡Muchas gracias! Grazie! Danke schön!

References

Related documents

Between September 2010 and December 2011, we carried out a cross-sectional KAB sur- vey regarding HPV infection, HPV vaccination, and sexual health, of

The aims of this study were (i) to assess the association of two SNPs, rs430397 in GRP78 and rs738409 in PNPLA3 with the risk of developing HCC in a Sicilian association

William Shaw is nie alleen ’n besonder interessante uitgaw e nie m aar dit is terselfdertyd ’n bruikbare uitbreiding van die gegew ens oor die beginjare van die

8. In particular, the model certificate referred to in paragraph 7 above shall specify the following data: the importer’s or consignee’s name, the foreign exporter’s name,

The above analysis indicates that of the fourteen body parts studied for relative growth, the following : head length, eye diameter, snout length,

The effect of temperature on inhibition efficiency of the inhibitors on carbon steel (CS) alloy can be studied depending on two principles, the first principle includes increasing

The mod- els trained on Filter dataset significantly outper- form the models trained on Pseudo-Filter dataset on both En2Zh and Zh2En tasks, which indicates that the back

adults who have at least one lesbian, gay, bisexual, or queer (LGBQ) parent, we examine how this group negotiates the courtesy stigma of a parent’s sexual identity over the