Targeting
VEGF
signalling
via
the
neuropilin
co-receptor
Snezana
Djordjevic
1and
Paul
C.
Driscoll
21DepartmentofStructuralandMolecularBiology,InstituteofStructuralandMolecularBiology,UniversityCollegeLondon,GowerStreet,LondonWC1E6BT,UK 2DivisionofMolecularStructure,MRCNationalInstituteforMedicalResearch,TheRidgeway,MillHill,LondonNW71AA,UK
The
blockade
of
tumour
vascularisation
and
angiogenesis
continues
to
be
a
focus
for
drug
development
in
oncology
and
other
pathologies.
Historically,
targeting
vascular
endothelial
growth
factor
(VEGF)
activity
and
its
association
with
VEGF
receptors
(VEGFRs)
has
represented
the
most
promising
line
of
attack.
More
recently,
the
recognition
that
VEGFR
co-receptors,
neuropilin-1
and
-2
(NRP1
and
NRP2),
are
also
engaged
by
specific
VEGF
isoforms
in
tandem
with
the
VEGFRs
has
expanded
the
landscape
for
the
development
of
modulators
of
VEGF-dependent
signalling.
Here,
we
review
the
recent
structural
characterisation
of
VEGF
interactions
with
NRP
subdomains
and
the
impact
this
has
had
on
drug
development
activity
in
this
area.
Introduction
Angiogenesis,thephysiologicalprocessofnewbloodvessel
for-mation,isanessentialcomponentoftumourprogression.Tumour
growthreliesonthedevelopmentofnewvasculaturetoprovide
oxygen and nutrients to the proliferating cellswhile removing
carbondioxideandmetabolicwaste.Targetingangiogenesishas
emergedasaprominentstrategytocomplement
chemotherapeu-tic approaches to treat cancer [1–3]. A pivotal pro-angiogenic
signalling molecule is vascular endothelial growth factor A
(VEGF-A)whichpromotesproliferation, survival,migrationand
permeabilityofendothelialcellslining theinnerlayerofblood
vessels[4].Thecreationandmaintenanceofthevasculaturenot
only supports rapid growth of malignant tumours but also
increasesmetastaticpotentialofcancerbyprovidingaroutefor
theescapeandtravelofmalignantcellstoremotesitesinthebody.
Anincreased levelofcirculating VEGFisdirectlycorrelatedtoa
poorpatientoutcome.Inothercontextsangiogenesisisan
instru-mental physiological response to inflammation, and it has a
centralroleineyediseasessuchasage-relatedmacular
degenera-tionanddiabeticretinopathy.Hereagain,bloodvesselformation,
maintenanceandpermeabilityareregulatedviaVEGFsignalling,
providingapotentialtargetfortherapeuticintervention.
VEGFs
and
VEGFRs
TheVEGFfamilyof secretedglycoproteins comprisesVEGF-A,
VEGF-B,VEGF-C,VEGF-D,VEGF-Eandplacentalgrowthfactor
(PGF)(Fig.1).Thebest-characterisedvariant,VEGF-Aislinkedto
importantphysiologicalprocessessuchaswoundhealing,
preg-nancy and maintenance of blood pressure, as well as various
pathologiesdependentuponangiogenesisincludingcancer[4–
6].AlternativesplicingoftheVEGF-Ageneproducesseveral
iso-formsof themature protein containingbetween121 and206
aminoacidresidues,withVEGF-A165beingthedominantisoform
responsibleforpathologicalangiogenesis[7,8].VEGFsexerttheir
activity through interactionwith a familyof three
transmem-brane tyrosine kinase receptors,the VEGF receptors (VEGFRs)
[9,10].TheindividualVEGF isoformsbindtotheVEGFRswith
differing affinityandthe combinatorial nature ofthe
growth-factor-receptorsignallingcomplexesmediatesarangeofcellular
responses(Fig.1).Intheendothelium,thepro-angiogenic
func-tion of VEGF-A is mediated primarily via interaction with
VEGFR2,alsoknownaskinaseinsertdomain-containingreceptor
(KDR)[11].VEGFbindingtoVEGFR2isassociatedwithreceptor
dimerisationandactivationthattriggersdownstreamsignalling
pathways including phosphatidylinositol 3-kinase (PI3-K)/Akt
and phospholipase C gamma/extracellular signal-regulated
kinase(PLCg/ERK)cascadesthat,together,supportcellsurvival
Reviews GENE T O SC REEN
and the stimulation of proliferation. Other manifestations of
VEGFsignalling such ascell migration, bloodvesselguidance
andbranchinginvolvetheformationofamorecomplexreceptor
assemblycontainingtheVEGFR2co-receptorneuropilin(NRP)
[12,13].
Inprinciple,interferenceofVEGFsignalling,arguablythemost
directandpracticalwaytoinhibitangiogenesis,canbecarriedout
eitherthroughsuppressionoftheactivityofVEGFitselforthrough
theblockadeofVEGFRfunction.Bothofthesestrategieshavebeen
exploredexperimentally.Forexample,removalofVEGFfromthe
circulationisthemechanismofactionofthefirstcommercially
available angiogenesis inhibitor bevacizumab, a specific
huma-nised monoclonal antibody [14,15]. Bevacizumab(Avastin1
) is
approved for the treatment of certain metastatic cancers and,
despite some reservations regarding safety and effectiveness
[16,17],further clinicaltrials areunderwayto investigateother
potentialusesofthisantibodyincancerandineyedisease.
RemovalofVEGFsfromthecirculationhasalsobeenachieved
withso-called‘VEGFtraps’comprisingengineeredsolubleVEGFR
fragments.Oneofthese,aflibercept,recentlygainedFDAapproval
for the treatment of age-related macular degeneration [18,19].
Similarly,itwasreportedthatamutatedsolubleNRP2canreduce
VEGFbioactivity[20].Inaddition,sometherapeuticsuccesshas
beenachievedbytargetingVEGFreceptorfunctionthroughthe
developmentofantibodiesthatblock ligandbindingorVEGFR
dimerisation,andwithsmallmoleculeinhibitorsofthe
intracel-lularreceptortyrosinekinase activity[21–27].Forexample,
sor-afenib[23,24]andsunitinib[25–27]havebeenapprovedforuse
againstadvancedstagerenalcellcarcinoma.However,these
mole-cules exhibit limited specificity: they not only interact with
VEGFR2butalsowiththeplatelet-derivedgrowthfactor(PDGF)
receptorkinaseandRafkinase[28].
EversinceFolkman’shypothesisthatinhibitionofangiogenesis
insolidtumourscouldbeusedtotreatcancer[2],manypotential
inhibitors have been tested and currently there are numerous
antiangiogenictherapeuticsindevelopmentorundergoing
clin-ical trials [1,15,29]. Unfortunately, many of the VEGF and/or
VEGFR inhibitors tested so far have been reported to exhibit
limitedefficacyandhightoxicitywithproblemsincluding
hyper-tension,proteininurineandarterialbloodclotsthatcanleadto
strokeorheartattack,andresultinonlyamildimprovementin
patient survival [3,16,17,30–32]. New approaches to confront
cancer-associatedangiogenesisarebeingexplored[33,34].In
par-ticular,itwouldbedesirabletoachievehigherselectivityof
VEGF-signallinginhibitorsto eliminateoff-targetactivityandthereby
reducetoxicity.Inthesearchforrelevantnewapproaches,NRP1
hasemergedasanattractivetargetowingtoitsroleasaco-receptor
forVEGF-AalongsideVEGFR2. Here,we describethemolecular
D1 Exons: (a) (b) (c) 2-5 6a 6b 7a 7b 8a 8b VEGF-A206 VEGF-A189 VEGF-A183 VEGF-A165 VEGF-A148 VEGF-A145 VEGF-A121 VEGF-A165b VEGFR1 (Flt-1) VEGFR2 (KDR) VEGFR3 (Flt-4) a1 a2 b1 b2 c/MAM NRP-1 NRP-2 Tyrosine kinase D2 D3 D4 D5 D6 D7
Drug Discovery Today
FIGURE1
(a)SchematicrepresentationofthefamilyofVEGF-Aspliceisoformsindicatingtheexon-basedoriginofthedomainorganisation.TheVEGFRbindingdomain derivesfromexons2–5,thetwo-moduleheparinbindingdomainfromexons6and7andtheextremeC-terminaltailregion(sixaminoacidresidues)fromexon 8.(b)VEGFproteinsaredisulphide-crosslinked(red)antiparallelhomodimers,indicatedhereforVEGF-A165.(c)OutlinedomainstructureofVEGFRand NRPisoforms,drawnastransmembranemonomers(left).Cartoonrepresentation(right)illustratinghowVEGF-A165mightcrosslinkVEGFR2andNRP1toeffect signalling,principallythroughtrans-autophosphorylationoftheVEGFR2cytoplasmicdomain.Thepositionofglycosaminoglycans,implicatedincomplex formation,isnotshown,asistheengagementoftheNRP1C-terminalregionwithputativebindingpartners,orthepotentialfordirectcontactsbetweenthe ectodomainsofVEGFR2andNRP1.
Reviews GENE T O SCREEN
biology ofNRP1, its3D structureand potential fortherapeutic exploitation.
NRP:
history
and
target
validation
TheNRPs,single-passtransmembranereceptors,originally
discov-eredin the Xenopusnervous system[35],arehighly conserved
amongvertebrates.Inhumans,thetworelatedproteinsNRP1and
NRP2 exhibit 44% sequence identity. NRPs are differentially
expressedwithNRP1foundprimarilyinarterialendothelialcells,
whereasNRP2 expressionis localised to venous and lymphatic
endothelium.Inaddition,thetwoproteinsexhibitdifferencesin
thesubsetofligandsthattheyrecognise;forexample,asidefrom
VEGFs,NRP1isareceptorforsemaphorin-3A,-3Cand-3F,whereas
NRP2preferentiallybindssemaphorin-3B,-3C,-3Dand-3F[36–
39].Class3semaphorinsaremembersofafamilyofaxonguidance
moleculesthatsignalbyinteractionwithtransmembranereceptor
complexes that incorporate NRPs as co-receptors to plexins –
major receptorsfor all semaphorin familymembers. NRPs also
recognisevariousVEGFsthat,comparedtosemaphorins,represent
a rather distinct set of ligands. Similar to the situation with
semaphorins,thereis distinctpreference betweenthe NRPsfor
differentsubsetsofVEGFs.NRP1interactswithheparin-binding
isoformsofVEGF-A,-B,-EandPGF,whereasNRP2interactswith
VEGF-A, -C and -D [40–42]. VEGF–NRP binding is manifested
primarily in the context of the NRP having a co-receptor role
alongsidetheVEGFreceptor.
Thedifference inexpressionpatterns along withthe distinct
agonistspecificityarereflectedintheseparatephysiologicalroles
thatNRP1andNRP2haveindevelopmentanddisease.NRP1gene
deletion in mice results in embryonic lethality with embryos
exhibitingabnormalitiesinheart,vasculatureandneuronal
gui-dance [43–45]. By contrast, NRP2-deficient mice are viable,
althoughsmallerinsizethanwild-type,andtheydisplayminor
abnormalities in the lymphatic system [46]. Double knockout
miceshow aneven more severe phenotype and diein uteroat
dayE8.5[47].Mostoftheeffectsfromthemutantmousemodels
pointtowardinteractionoftheVEGF-A165isoformwithNRP1in
endothelialcellsandsemaphorin-3Aand/orsemaphorin-3Fwith
NRP1and/orNRP2inthenervoussystem[43–48].
ThepresenceofNRPshasalsobeendemonstratedincancercell
linesaswellasinvariousprimarytumours.NRP1participatesinan
autocrine VEGF165-dependent signalling mechanism that
pro-motesbreastcancer[49,50].Preclinicalstudiessupportarolefor
tumourcellNRP1in lungandrenalcancer cell migration,
pro-liferationandinvasion[51,52].Recently,itwasshownthatNRP1
isessentialinskintumourigenesis,becauseNRP1deletion
abro-gatedthe responseofcancer stemcellstoautocrine VEGF[53].
NRP1alsoappearstosupportproliferationofhumanglioma
stem-likecellsinglioblastomamultiforme[54].
Manyresearchgroups haveinvestigated NRPexpression
pat-ternsandgeneratedevidenceforNRPsinendothelialandtumour
cells[39,49,55–60].Recently,acomprehensiveevaluationofNRP1
expressionwascarriedoutforbreast,colorectalandlungcancer
[61].Inthisstudy,avalidated,highlyspecificmonoclonal
anti-bodywasusedforinsituanalysisofNRP1expressionincancerous
tissueandduringnormaldevelopmentalangiogenesis.NRP1was
detected in more than 98% of blood vessels associated with
primaryand metastaticlung,colorectaland breasttumours.By
contrast,thepatternofNRP1expressionontumourcells
them-selvesismuchmorevaried:NRP1wasdetectedon6%ofprimary
breastcarcinomas,14%ofsecondarybreastcarcinomas,36%of
primary non-small-celllung cancers(NSCLCs) and 50% of
sec-ondary NSCLCs; there was no NRP1 detectable on colorectal
cancer cells.Whenthesameantibodywasusedforthe analysis
ofNRP1expressionduringmousedevelopment,NRP1wasfound
throughouttheendocardialendothelium,whereasexpressionin
thevasculatureofothertissueswasonlydetectedinlocalisedareas
[61]. In addition, NRP1 was detected in the nervous system,
smooth muscle cells and pericytes. Furthermore, blockade of
NRP1signallingresultedindefectiveVEGF-dependent
angiogen-esisinthepostnatalmousetracheaprovidingfurthersupportfor
the hypothesis that NRP1 is a valid antiangiogenic target and
potentialantitumourtargetinatleastasubsetofcancers.
Additional
NRP1
functions
ThereisagrowingamountofevidenceavailablethatsuggestsNRP1
mightdisplayseparatefunctionsthroughmechanismsthatmight
notinvolveVEGFR2.Forexample, suppressionofNRP1 protein
levels via siRNA resultsin changes in endothelial cell adhesion
properties, whereas the sameeffect isnot reproduced by siRNA
knockdownofVEGFR2.ItappearsthatNRP1supportsendothelial
cellmatrixadhesionthroughinteractionwithintegrinsina
VEGF-dependent manner [62–64]. Additionally, several studies have
shown that NRP1 might signal through otherreceptor tyrosine
kinases inresponseto ligandssuch ashepatocytegrowthfactor
(HGF)andPDGF.ItwasreportedthatNRP1andNRP2mediate
HGF-activatedendothelialcellmigrationandproliferation[65]andthat
NRP1 interaction with PDGF-BB (the dimeric B-form of PDGF)
stimulatesmigrationofsmoothmusclecells[66].Anincreasein
tyrosinephosphorylationofascaffoldingproteinp130Cas,
down-streamofthekinasePyk2,appearstobethemajoroutputofNRP1
signallinginresponsetoHGFandPDGFinU87gliomacells[67,68]
andinhumancoronaryarteryvascularsmoothmusclecells[69].
p130Castyrosinephosphorylationislinkedtocontrolofcell
migra-tionandisreduceduponNRP1knockdownbysiRNA.The
activa-tionofp130Casseemstobedependentuponthecytoplasmicregion
of NRP1 because inhibition of VEGF-inducedp130Cas tyrosine
phosphorylationwasalsoobservedinexperimentsinvolving
over-expressionofNRP1lackingitsentirecytoplasmicregion[67].In
addition,thecytoplasmicdomainwasimplicatedina
VEGF-depen-dentregulationofspatialseparationofarteriesandveins[70].A
knockin mouse modelexpressing NRP1 lackingthe cytoplasmic
domainshowedatypicallyfrequentoccurrenceofcrossoverofveins
andarterieswithnoabnormalitiesinvasculogenesisand
angiogen-esis,suggestingthatthecytoplasmicdomainofNRP1isrequiredfor
normal arteriovenous patterning [70]. Furthermore, it was
sug-gestedthattheNRP1hasVEGF165-and/or
semaphorin-3A-indepen-dentactivityinregulatinga5b1-integrintrafficand downstream
signalling[63].NRP1hasalsobeen implicatedinsignallingthat
leadstoPyk2-dependentphosphorylationattheTyr407siteoffocal
adhesionkinase(FAK)[67]andactivationofp38mitogen-activated
proteinkinase(MAPK)whichisinvolvedinformationof
pericyte-associatedvessels[71].Thesestudiesarehoweveratanearlystage;
furtherinvestigationofthesignallingpathwaysthatoperate
down-streamofNRP1andthepreciseco-receptorcontextfortheseevents
isrequiredtoresolvetheapparentcomplexity.
Reviews GENE T O SC REEN
NRP
structure
NRPsaretype1,single-pass,transmembraneproteinswithalarge
(>920 aminoacid residues)extracellular regioncomprisingfive
modulardomainsnameda1,a2,b1,b2and c,joinedtoa
trans-membranehelicalregionand ashort(44residue)cytoplasmic
domain [37] (Fig. 1). The different extracellular domains each
share similaritytofunctionallydiverse structuralmodules
com-monly foundin cell-surface receptorsand proteinsinvolved in
mediating cellular interactions (Figs 1 and 2a). The tandem a
domains(a1a2)belongtothestructuralfamilyof
C1r/C1s-Uegf-BMp1(CUB)domainshomologoustocomplementbindingfactors
C1randC1s.Theb1andb2domainsarehomologoustotheC1
andC2(discoidin)domainsofcoagulationfactorsFVandFVIII.
Themembrane-proximalcdomainofNRPbelongstothefamilyof
MAMdomains(meprin,A-5proteinandreceptorproteintyrosine
phosphatasem)thathavebeenimplicatedinprotein
homodimer-isation.Asingletransmembranehelixthatisreportedtomediate
NRP1 dimerisation [72] links the modular ectodomain to the
intracellular region, the structure ofwhich is unknown. It has
beenshownthattheextremeC-terminaltripeptide
(-Ser-Glu-Ala-COOH)isrequiredforNRP1interactionwiththePDZdomainof
synectin(alsoknownasNIPorGIPC),aproteinthatisreportedto
playapartintheregulationofarterialbranching[73–75].Several
reportsconfirmtheimportantcontributionoftheNRP1
cytoplas-micregioninvariouscontexts,althoughitisnotclearwhether
synectinisalwaysinvolved.
ThereareseveralX-raycrystalstructuresavailablethatdescribe
eithertheisolatedNRP1b1domainor variouscombinationsof
tandemNRP1(andNRP2)domains(i.e.b1b2,a1a2anda1a2b1)
[76–78](Fig.2a).Thesestructureshaveprovidedvaluable
informa-tionthathasdirectedthedevelopmentofNRP-targeted
therapeu-tics.SeveralstructuresdescribecomplexesofNRPdomainswith
anti-NRPFabfragmentsthatinterferewitheithersemaphorinor
VEGFbinding.Althoughbiochemicalevidencehadalready
indi-cated that VEGF165 bindsto the b1 domain ofNRP1via its
C-terminaltailregion,thefirstatomicmodelforthisligand–receptor
interactionwasderived fromthecrystal structureofa complex
betweenNRP1tandemb1b2domainsandTuftsin–an
immunor-eactivetetrapeptidethatisproducedbyproteolysisofIgGheavy
chainFcfragments[77,79].TheTuftsinaminoacidsequence,
Thr-Lys-Pro-Arg,issimilartotheC-terminaltailofVEGF165,
Lys-Pro-Arg-Arg.TheNRP1–Tuftsinstructureenablesthepredictionofthe
modeofVEGFbindingvia the conservedcarboxy-terminalArg
residuewhich,withspecificelectrostatic,H-bondingandvander
Waalscontacts,nestlesinashallowbindingsiteontheb1domain
surface(Fig. 3a).The restofthepeptide extendsawayfromthe
grooveformedbytheb-strand-connectingloopsoftheb1domain
b-sandwichfold.Thelocationoftheinteractionsiteisanalogous
to the ligand-binding region for other examples of discoidin
domains including those found in coagulation factors
[77,80,81].Aninteresting featureofthe NRP1–Tuftsinstructure
is an extensiveinterface between the b1 and b2 domains that
suggestsa‘stable’relativeorientationofthesemodulesintheNRP
extracellularregion.Inallsubsequentlydeterminedcrystal
struc-turesofNRP1andNRP2constructstheorganizationofthis
inter-face isconserved(Figs2aand 3). The presenceof anextensive
a1 a2 (a) (b) VEGF165-HBD b1 b2 c
Drug Discovery Today
FIGURE2
TopologyanddomainorganisationoftheNRPectodomain.(a)Aribbondiagramofdomainsa1a2b1b2isshownwitheachdomaincolouredseparately.Thefigure isbasedontheNRP2chainfromthecrystalstructureofNRP2incomplexwithasemaphorin-blockingFab(notshown;PDB2QQL).AsimilarstructureforNRP1has notyetbeenobtained.Nocrystalstructureofthecdomainisavailableandaputativetopologyofthisdomainisshowninparenthesesbasedonthecrystal structureoftheMAMdomainfromproteinphosphatasem(PDB2C9A).(b)VEGF165-HBD(magenta)andtheb1domainfromthefusionproteinstructureare superimposedovertheb1domainfromthea1a2b1b2structureshownin(a).
Reviews GENE T O SCREEN
interdomain interface was also observed for the tandem a2b1
domaincombination[76].Ingeneral,thepackingofalldomains
within the context of longer polypeptide NRP constructs (i.e.
a1a2b1ora2b1b2)isconservedirrespectiveofcrystalsymmetry,
implyingthateventhoughtheNRPspossess,insequenceterms,a
modular organisation the tertiary domain architecture is well
definedandprobablypresentsdefinedorientationsofouterfaces
forinteractionwithproteinpartners(Fig.3).Withexceptionofthe
relativelysmall domain interface betweendomains a1 and a2,
everyconformational changeinvolvingdisruption ofthe other
interdomain contacts would probably incur a large energetic
penalty.
BindingofVEGF165toNRPsisdependentuponthepresenceof
theVEGFheparin-bindingdomain(HBD)encodedbyexons7and
8 ofthe VEGF gene [77,82,83]. Bycontrast, the VEGFR2 binds
VEGF165atasitethatspansaregionencodedbyexons2to5[84–
86].Aprevalentmodelforthetertiarycomplexformedbetween
VEGF165, VEGFR2 and NRP1 unites the two binding modesby
suggestingthatVEGF165actsasabridgebetweenthetworeceptor
ectodomains(Fig.1).However,themodeldoesnotdifferentiate
betweenscenarioswhereNRPandVEGFR2arepresentonthesame
or on neighbouring cells (Fig. 1). Furthermore, it appearsthat
binding of VEGF165 to NRP1 is required for the formation of
detectablelevelsofcomplexesbetweenVEGFR2and NRP1[87–
90]andthatthePDZ-bindingdomainofNRP1isindispensablefor
NRP1–VEGFR2complexformation[74].
Recently,inanattempttogainaninsightintotheNRP–VEGF
interaction the crystal structure of a fusion protein was
deter-mined, where the polypeptide sequence corresponding to
VEGF165–HBD was appended to the C-terminus of the NRP1
b1domain[91].Thefusionproteinformsahomodimersuchthat
the C-terminus of VEGF165–HBD, comprising two Cys-bridged
modules, bindstothe ligand-binding grooveof the b1domain
oftheneighbouringmoleculeintheasymmetricunit.The
struc-tureofthischimericproteinprovidessomeadditionalinformation
with respectto themodeofVEGF165–HBDbindingtoNRP1b1
domain.However,itispossiblethattheorientationoftheHBD
withrespecttotheb1domainmightberestrictedbythecovalent
linkofHBDtotheC-terminusoftheneighbouringb1domain,and
influencedbycrystalpackingconstraints(Fig.2b).Basedonthis
structure,andintheabsenceofdefinitiveinformationaboutthe
segmentalflexibilityofVEGF165,itisdifficulttoextrapolatefrom
thisresultexactlyhowthefull-lengthVEGF165homodimer
inter-actswithintactNRP1.
So far, verylittle is knownabout the structureof the NRP c
(MAM)and intracellulardomains.Presently,thereareonlytwo
MAMdomainstructuresdepositedintheProteinDataBank(PDB),
both of which are common to the receptor protein tyrosine
phosphatasem[92].Althoughinthelattercasetheall-bdomain
isheavilyglycosylated,therearenorecognisablesequencemotifs
withintheNRP1andNRP2MAMdomainsthatsuggestthe
pre-sence ofglycosylationsites.However,ithasbeendemonstrated
thatNRP1hasanappendedglycosaminoglycan–dominatedby
either heparan sulphate or chondroitin sulphate – attached at
Ser612 which resides between the b2 and c domains [68,93].
Interestingly,this NRP1glycosylation, that asmuchasdoubles
themolecularmassofthepolypeptide,hasaprofoundeffecton
signalling.Althoughtheeffectofglycosylationon
VEGF-depen-dent signalling remains to be investigated in vivo, it has
beenshownthatthepresenceofchondroitinsulphateonNRP1
b1 b2 a1 a2 (a) (b) (c)
Drug Discovery Today
FIGURE3
(a)BindingofTuftsintoNRP1b1b2domains(PDB2ORZ).Thepeptide(ball-and-stickrepresentation)sitsinagrooveonthetopoftheb1domain.Theribbon diagramofNRP1iscolouredasrainbowfromtheN(blue)totheC(red)terminusofthepolypeptide.(b)SurfacerepresentationoftheNRP2a1a2b1b2monomer. (c)PutativedimeroftheNRP2a1a2b1b2structurebasedonthecrystallographicsymmetrycontacts.Thecrystallographicinterfacethatresultsinadimer formationwasobservedintwodifferentcrystalformsofNRP2suggestingthatthistypeofinteractionmightexistinasolutionbeforecrystallisation;however, thereisnodirectconfirmationthatthisdimerisation,mediatedbyreciprocalcontactsbetweena1domains,isthebiologicallyrelevantformofNRP.Greycircles indicateareasengagedinbindingtotheC-terminusoftheVEGF165-HBD.
Reviews GENE T O SC REEN
modulatesp130CastyrosinephosphorylationinU87MGhuman
gliomacells[68]andthatthedifferentcompositionoftheNRP1
glycosaminoglycaninendothelialandsmoothmusclecellsleads
toopposingresponsestoVEGF[93].Furthermore,ithasalsobeen
observed that the presence of heparin in NRP1 binding assays
resultsinincreasedaffinityforVEGF165[94,95].Themechanistic
basis for this enhancement and, in particular, whether this is
differentforcovalentlyversusexogenousnon-covalentlyattached
GAGsiscurrentlyunclear.
AsimilarlyunresolvedissueisthestructuralnatureoftheNRP
cytoplasmic domain. Standard secondary structure prediction
algorithmssuggestanabsenceofasignificantquotientofregular
structure. It is therefore tempting to assign this region as an
intrinsicallydisorderedpolypeptidethatperhapsadoptsaspecific
conformationonlyinacontextofacomplexwithaninteraction
partner.Todate,theonlyproteinidentifiedtointeractwiththe
cytoplasmicNRPdomainissynectinwhich,asdescribedabove,
binds to the NRP C-terminal Ser-Glu-Ala tail through its PDZ
domain[73,74].AlthoughthestructureoftheNRPintracellular
domainisnotknown,theC-terminalSer-Glu-Alasequencedoes
havethetypicalsequencecharacteristicsofaPDZdomain-binding
motif. In other cases PDZ domains bind to their partners by
extensionofab-sheetthroughtheadditionofanantiparallel
b-strandconstitutingtheC-terminaltailoftheproteinligand[96].
WhethersynectinisconstitutivelyboundtoNRPsinthe cellor
whetheradditionalproteinscontributetoNRP-dependent
mem-brane-associatedsignallingcomplexesisnotcurrentlyknown.
NRP-targeting
strategies
The demonstrated involvement of NRP in the pathogenesis of
cancerhascatalysedinterestintargetingthismoleculetocombat
thedisease.Themodularorganisationoftheproteinoffersseveral
avenuesforattack,suchastheblockingofagonist–NRP
interac-tion,interferenceofNRPassociationwithpartnerreceptors(e.g.
VEGFR2) independent of ligand binding and inhibition of the
functionoftheintracellularNRP-signallingdomain.Inadditionto
experimental approaches basedupon theseconcepts, computer
simulationshavealsobeenemployedtopredictthemostefficient
methodfortargetingVEGF–receptorinteractions[97,98].Usingan
insilicomodelofVEGFinteractionswithendothelialcellreceptors
thatincludesexperimentalestimatesoftherateofVEGFR2–NRP
couplingbyVEGF165theauthorsconcludedthatblockadeofNRP–
VEGFRinteractionmightprovidethemosteffectivedecreasein
VEGF–VEGFR2signalling[98].
Current efforts to target NRPs,and NRP1in particular,have
focused on the specific interactionwith the exon 7-8-encoded
regionofVEGF165.ResearchersatGenentech (http://www.gene.
com/gene/index.jsp) have developed a range of anti-NRP1 and
anti-NRP2 monoclonal antibodies that block interaction with
VEGF165andsemaphorins[12,76,99],andareundertakingclinical
trialstotesttheeffectivenessofthesemonoclonalantibodiesin
cancertreatmenteitherassingleagentsorcombinationtherapies.
AnantibodytoNRP2thatblocksVEGF-Cbindinghasalsobeen
reported[100].Othershaveidentifiedspecificpeptidesand
pepti-domimeticinhibitors of VEGF165–NRP binding with
antiangio-genicactivity[101–105].Allofthesemolecules arecompetitive
inhibitorsofVEGF165bindingandwereabletoreducedownstream
VEGF signalling as demonstrated by reduced VEGFR2 tyrosine
phosphorylation. Although peptides are not considered to be
viable drug candidates they provide a starting point for
struc-ture-baseddesignofpeptidomimeticsandsmallmolecule
inhibi-tors. Giordano et al. employed a method of amino acid
retroinversionthatinvolves substitutionofD-forL-aminoacids
andsequencereversal,togeneratethepotentpeptidomimeticD
-(Leu-Pro-Arg)[105].IninitialstudiesthisD-tripeptidewasresistant
to proteolysis and exhibited antiangiogenic activity mediated
through NRP1 (and VEGFR1) based on in vivo assays in three
animalmodelsofcancerandretinopathy.Inaddition,asynthetic
peptide targeting the transmembrane domainof NRP1showed
antitumouractivity[106].Asyntheticoligonucleotide(G18) has
alsobeenreportedtobindNRP1resultinginreceptor
internalisa-tionandinhibitionofangiogenesis[107].
Thefirstnon-peptidicsmallmoleculeantagonistofNRP1
func-tionhasrecentlybeenreportedbyresearchersatArkTherapeutics
(http://www.arktherapeutics.com/main/index.php)[108](Fig.4).
StartingfromthepreviouslycharacterisedbicyclicpeptideEG3287
EG00229
Y297
Y353
D320
(a) (b)
Drug Discovery Today
FIGURE4
Ligand-bindingpocketoftheNRP1b1domain.(a)StickrepresentationofsmallmoleculeVEGFantagonistEG00229(grey).Keyresiduesinthebindingpocketare labelled.(b)SuperpositionofTuftsinmolecule(sticks,green)andVEGF165-HBD(magenta)onthestructureoftheNRP1b1/EG00229(PDB3I97)complex.Theb1 domainsfromthecorrespondingstructureswerenotincludedinthefigureforclarity.Thedifferencesintheside-chainconformationsoftheb1domainresidues amongthreestructuresarenegligible.
Reviews GENE T O SCREEN
[103]that corresponds tothe C-terminal28-residue segmentof
VEGF-A165,thesmallmoleculeinhibitorEG00229wasdeveloped.
Mutagenesis,X-raycrystallographyand NMRspectroscopywere
usedtoshowthatEG00229bindstothetargetedpocketontheb1
domainofNRP1(Fig.4).Thecompoundexhibitsactivity
consis-tentwithinhibitionofVEGF-A165bindingtoNRP1anddecreases
VEGFR2phosphorylationandcellmigrationinvitro.EG00229is
also reported to demonstrate activity against tumour cells by
enhancing the cytotoxic effect of the chemotherapeutic drugs
paclitaxel and 5-fluorouracil. Currently, EG00229 is a valuable
toolforprobingthe molecularbiologyofNRP1function;other
morepotentcompoundswithasuperiorpharmacokineticprofile
arebeingdevelopedbythesameteam.
Althoughco-immunoprecipitationexperimentshave
demon-stratedassociationbetweenNRPandVEGFRs[87,88],thelackof
biophysicalandstructuraldatadescribingthemolecularbasisof
putativeprotein–proteininteractionsurfacesbetweenNRPand
VEGFR2,orotherreceptortyrosinekinases,createsanobstacleto
theformulationofstrategiestotargetNRPfunction.Forexample,
itwouldbehelpfultounderstandbettertheroleoftheNRPMAM
domainanditsputativeinteractionwiththemembrane-proximal
regionoftheVEGFR2ectodomain.Analysisofthedimeric
struc-ture of the membrane-proximal domain D7 of VEGFR2 [109]
suggests that this domainis crucial for receptor signalling. It
would be reasonable to suppose that the (agonist-dependent)
proximallocationoftheMAM domainofassociated NRP–in
additiontothepotentialroleofthelatterinNRPdimerisationon
thecellsurface[83,110]–couldpromoteinteractionwithVEGFR2
D7 or other domains and thereby bring the NRPcytoplasmic
regionwithintheorbitoftheVEGFRkinasedomain.Finally,a
betterunderstandingofthecontributionofNRPtointracellular
signaltransduction, throughcomplexformationwithproteins
thatassociatewiththeintracellulardomain,couldprovide
addi-tionalscopeforthedevelopmentoftherapeuticapproachesto
address the angiogenesis-related and -independent functions
ofNRPs.
Additional
application
of
NRP1-targeting
peptides
AnimportantpropertyofNRP1-bindingpeptideshasemergedthat
couldhavesignificant implicationsforcancerdrug targeting.A
series of investigations using phage particle libraries that were
initiatedtosearchfortissue-penetratingpeptidesledtothe
obser-vationthatshortpeptideswithbasic(ArgorLys)residuesatthe
C-terminusarereadilyinternalised.Toemphasisetherequirement
forthebasicresiduesbeinglocatedattheC-terminusthisactivity
wasnamedthe‘C-endrule’[111,112].Itwasshown that
inter-nalisation ofthese peptidesis mediated by NRP1and, because
NRP1isupregulatedinmanycancercelllines,thisactivityisbeing
exploredasamechanismforthetargeteddeliveryoftherapeutic
anddiagnosticagentstotumours[113,114].Forexample,when
pro-apoptopicaminoacidsequenceswerefusedtoNRP1-binding
peptides they were not only internalised but also exhibited a
potentantileukaemiacelleffect[114].Furthermore,arecentreport
showed that gold nanoparticles could be functionalised with
NRP1-targeting peptidesto effect internalisation [115].
Double-decoratedgoldnanoparticles,carryingatherapeutic
p53-stabilis-ingpeptidealongsidetheNRP-targetingpeptide,showed
promis-inginvitroanticanceractivity.Althoughthedevelopmentofthis
NRP1-dependent drug deliverysystem is at anearly stage, this
offerssignificant promisefor the targetedapplication of
multi-functionalagents withpotentialin areasasdiverse asimaging,
diagnosisandcombinationtherapy.
Concluding
remarks
Thisaccount introducedtheroleofVEGFsinsignallingvia the
principalclassofreceptor(theVEGFRs)–signallingeventsthat
providethemostdirectopportunityforthetherapeuticblockade
ofangiogenesis.Duringrecentyears,drugdiscoveryeffortsinthis
area have been substantial, with marketed drugs available for
oncology and ophthalmology indications, and are continuing
asevidencedbya numberofongoingclinicaltrials.Experience
hasshownthattheseagentsareassociatedwithvariableefficacy
andvariousside-effects.Wehavedescribedtheemergenceofthe
co-receptor role of the NRPs that also bind a subset of VEGF
isoforms. Thecontribution thatNRPsmaketoVEGFsignalling,
whether synergisticor otherwise,addscomplexity tothe VEGF
interactomeyet,atthesametime,providesasecondarymeansto
targetVEGFsignallingindisease.TheacknowledgedroleofNRPs
incellmigration,alongwiththeroleinVEGFsignalling,suggests
thatadifferentspectrumofresponsescouldemergebytargeting
thisaxis.Earlyeffortshavedemonstratedthe potentialfordrug
developmenttargetedtoVEGF–NRPinteractions,andthisislikely
toexpandasfurtherunderstandingofthestructuraland
biochem-icalaspectsoftheseinteractionsbecomesavailable.Moreover,new
discoveriesconcerningthefunctionofVEGFsandNRPs,suchas
thedeterminationofthe‘stemness’ofskincancercells[53]and
endotheliallipid transport[40,116] relevant totypeIIdiabetes,
willprobablyprovideadditionalavenuestoexploitdrugdiscovery
effortsinthisniche.
Disclosure
statement
S.D. hasbeen involved asconsultant to Ark Therapeuticson a
projectinvolvingsmallmoleculeinhibitorsofNRP1.Theworkwas
describedinpartinJarvisetal.[108].
Acknowledgements
S.D.acknowledgesthesupportoftheBritishHeartFoundation.
P.C.D.issupportedbytheMRC(filereferenceU117574559).
References
1Cook,K.M.andFigg,W.D.(2010)Angiogenesisinhibitors:currentstrategiesand futureprospects.CACancerJ.Clin.60,222–243
2Folkman,J.(1971)Tumorangiogenesis:therapeuticimplications.N.Engl.J.Med. 285,1182–1186
3Samant,R.S.andShevde,L.A.(2011)Recentadvancesinanti-angiogenictherapy ofcancer.Oncotarget2,122–134
4Ferrara,N.(2003)ThebiologyofVEGFanditsreceptors.Nat.Med.9,669– 676
5Ferrara,N.(2009)Vascularendothelialgrowthfactor.Arterioscler.Thromb.Vasc. Biol.29,789–791
6Roskoski,R.,Jr(2008)VEGFreceptorprotein-tyrosinekinases:structureand regulation.Biochem.Biophys.Res.Commun.375,287–291
Reviews GENE T O SC REEN
7Tischer,E.etal.(1991)Thehumangeneforvascularendothelialgrowthfactor multipleproteinformsareencodedthroughalternativeexonsplicing.J.Biol. Chem.266,11947–11954
8Ferrara,N.(2010)Bindingtotheextracellularmatrixandproteolyticprocessing: twokeymechanismsregulatingvascularendothelialgrowthfactoraction.Mol. Biol.Cell21,687–690
9Koch,S.(2012)Neuropilinsignallinginangiogenesis.Biochem.Soc.Trans.40, 20–25
10Lemmon,M.A.andSchlessinger,J.(2010)Cellsignalingbyreceptortyrosine kinases.Cell141,1117–1134
11Terman,B.I.etal.(1992)IdentificationoftheKDRtyrosinekinaseasareceptor forvascularendothelialcellgrowthfactor.Biochem.Biophys.Res.Commun.187, 1579–1586
12Pan,Q.etal.(2007)Blockingneuropilin-1functionhasanadditiveeffectwith anti-VEGFtoinhibittumorgrowth.CancerCell11,53–67
13Becker,P.M.etal.(2005)Neuropilin-1regulatesvascularendothelialgrowth factor-mediatedendothelialpermeability.Circ.Res.96,1257–1265 14Muhsin,M.etal.(2004)Bevacizumab.Nat.Rev.DrugDiscov.3,995–996 15Ferrara,N.(2004)Vascularendothelialgrowthfactorasatargetforanticancer
therapy.Oncologist9(Suppl.1),2–10
16Mulder,K.etal.(2011)Theroleofbevacizumabincolorectalcancer: understandingitsbenefitsandlimitations.ExpertOpin.Biol.Ther.11,405–413 17Blanchet,B.etal.(2010)Toxicityofsorafenib:clinicalandmolecularaspects.
ExpertOpin.DrugSaf.9,275–287
18Stewart,M.W.etal.(2012)Afilbercept.Nat.Rev.DrugDiscov.11,269–270 19Holash,J.etal.(2002)VEGF-trap:aVEGFblockerwithpotentantitumoreffects.
Proc.Natl.Acad.Sci.U.S.A.99,11393–11398
20Geretti,E.(2010)Amutatedsolubleneuropilin-2Bdomainantagonizesvascular endothelialgrowthfactorbioactivityandinhibitstumorprogression.Mol.Cancer Res.8,1063–1073
21Tvorogov,D.etal.(2010)Effectivesuppressionofvascularnetworkformationby combinationofantibodiesblockingVEGFRligandbindingandreceptor dimerization.CancerCell18,630–640
22Kendrew,J.(2011)AnantibodytargetedtoVEGFR-2Igdomains4–7inhibits VEGFR-2activationandVEGFR-2-dependentangiogenesiswithoutaffecting ligandbinding.Mol.CancerTher.10,770–783
23Wilhelm,S.etal.(2006)Discoveryanddevelopmentofsorafenib:amultikinase inhibitorfortreatingcancer.Nat.Rev.DrugDiscov.5,835–844
24Mangana,J.etal.(2012)Sorafenibinmelanoma.ExpertOpin.Investig.Drugs21, 557–568
25Rock,E.P.etal.(2007)FoodandDrugAdministrationdrugapprovalsummary: sunitinibmalateforthetreatmentofgastrointestinalstromaltumorandadvanced renalcellcarcinoma.Oncologist12,107–113
26Izzedine,H.etal.(2007)Sunitinibmalate.CancerChemother.Pharmacol.60,357–364 27Aparicio-Gallego,G.etal.(2011)Newinsightsintomolecularmechanismsof
sunitinib-associatedsideeffects.Mol.CancerTher.10,2215–2223
28Gridelli,C.etal.(2007)Sorafenibandsunitinibinthetreatmentofadvanced non-smallcelllungcancer.Oncologist12,191–200
29Ellis,L.M.andHicklin,D.J.(2008)VEGF-targetedtherapy:mechanismsof anti-tumouractivity.Nat.Rev.Cancer8,579–591
30Chen,H.X.andCleck,J.N.(2009)Adverseeffectsofanticanceragentsthattarget theVEGFpathway.Nat.Rev.Clin.Oncol.6,465–477
31Hayman,S.R.etal.(2012)VEGFinhibition,hypertension,andrenaltoxicity.Curr. Oncol.Rep.14,285–294
32Coppin,C.(2008)Sunitinibforadvancedrenalcellcancer.Biologics2,97–105 33Deep,G.etal.(2012)Angiopreventiveefficacyofpureflavonolignansfrommilk
thistleextractagainstprostatecancer:targetingVEGF–VEGFRsignaling.PLoSOne 7,e34630
34Nosov,D.A.etal.(2012)Antitumoractivityandsafetyoftivozanib(AV-951)ina phaseIIrandomizeddiscontinuationtrialinpatientswithrenalcellcarcinoma.J. Clin.Oncol.30,1678–1685
35Takagi,S.etal.(1991)TheA5antigen,acandidatefortheneuronalrecognition molecule,hashomologiestocomplementcomponentsandcoagulationfactors. Neuron7,295–307
36He,Z.andTessier-Lavigne,M.(1997)Neuropilinisareceptorfortheaxonal chemorepellentSemaphorinIII.Cell90,739–751
37Kolodkin,A.L.etal.(1997)NeuropilinisasemaphorinIIIreceptor.Cell90, 753–762
38Gu,C.etal.(2002)Characterizationofneuropilin-1structuralfeaturesthatconfer bindingtosemaphorin3Aandvascularendothelialgrowthfactor165.J.Biol. Chem.277,18069–18076
39Grandclement,C.andBorg,C.(2011)Neuropilins:anewtargetforcancertherapy. Cancer3,29
40Hagberg,C.E.etal.(2010)VascularendothelialgrowthfactorBcontrols endothelialfattyaciduptake.Nature464,917–921
41Karpanen,T.etal.(2006)FunctionalinteractionofVEGF-CandVEGF-Dwith neuropilinreceptors.FASEBJ.20,1462–1472
42Takahashi,H.andShibuya,M.(2005)Thevascularendothelialgrowthfactor (VEGF)/VEGFreceptorsystemanditsroleunderphysiologicalandpathological conditions.Clin.Sci.109,227–241
43Kitsukawa,T.etal.(1997)Neuropilin-semaphorinIII/D-mediatedchemorepulsive signalsplayacrucialroleinperipheralnerveprojectioninmice.Neuron19, 995–1005
44Kawasaki,T.etal.(1999)Arequirementforneuropilin-1inembryonicvessel formation.Development126,4895–4902
45Gu,C.etal.(2003)Neuropilin-1conveyssemaphorinandVEGFsignalingduring neuralandcardiovasculardevelopment.Dev.Cell5,45–57
46Yuan,L.etal.(2002)Abnormallymphaticvesseldevelopmentinneuropilin2 mutantmice.Development129,4797–4806
47Takashima,S.etal.(2002)Targetingofbothmouseneuropilin-1andneuropilin-2 genesseverelyimpairsdevelopmentalyolksacandembryonicangiogenesis.Proc. Natl.Acad.Sci.U.S.A.99,3657–3662
48Maden,C.H.etal.(2012)NRP1andNRP2cooperatetoregulategangliogenesis, axonguidanceandtargetinnervationinthesympatheticnervoussystem.Dev. Biol.369,277–285
49Bachelder,R.E.etal.(2001)Vascularendothelialgrowthfactorisanautocrine survivalfactorforneuropilin-expressingbreastcarcinomacells.CancerRes.61, 5736–5740
50Castro-Rivera,E.etal.(2004)Semaphorin3B(SEMA3B)inducesapoptosisinlung andbreastcancer,whereasVEGF165antagonizesthiseffect.Proc.Natl.Acad.Sci.U. S.A.101,11432–11437
51Cao,Y.etal.(2008)Neuropilin-1upholdsdedifferentiationandpropagation phenotypesofrenalcellcarcinomacellsbyactivatingAktandsonichedgehog axes.CancerRes.68,8667–8672
52Hong,T.M.etal.(2007)Targetingneuropilin1asanantitumorstrategyinlung cancer.Clin.CancerRes.13,4759–4768
53Beck,B.etal.(2011)AvascularnicheandaVEGF-Nrp1loopregulatetheinitiation andstemnessofskintumours.Nature478,399–403
54Hamerlik,P.etal.(2012)AutocrineVEGF–VEGFR2–Neuropilin-1signalingpromotes gliomastem-likecellviabilityandtumorgrowth.J.Exp.Med.209,507–520 55Fukahi,K.etal.(2004)Aberrantexpressionofneuropilin-1and-2inhuman
pancreaticcancercells.Clin.CancerRes.10,581–590
56Li,M.etal.(2004)Pancreaticcarcinomacellsexpressneuropilinsandvascular endothelialgrowthfactor,butnotvascularendothelialgrowthfactorreceptors. Cancer101,2341–2350
57Meyerson,H.J.etal.(2012)NRP-1/CD304expressioninacuteleukemia:a potentialmarkerforminimalresidualdiseasedetectioninprecursorB-cellacute lymphoblasticleukemia.Am.J.Clin.Pathol.137,39–50
58Berge,M.etal.(2011)Neuropilin-1isupregulatedinhepatocellularcarcinomaand contributestotumourgrowthandvascularremodelling.J.Hepatol.55,866–875 59Grandclement,C.etal.(2011)Neuropilin-2expressionpromotes
TGF-beta1-mediatedepithelialtomesenchymaltransitionincolorectalcancercells.PLoSOne 6,e20444
60Wild,J.R.etal.(2012)Neuropilins:expressionandrolesintheepithelium.Int.J. Exp.Pathol.93,81–103
61Jubb,A.M.etal.(2012)Neuropilin-1expressionincanceranddevelopment.J. Pathol.226,50–60
62Robinson,S.D.etal.(2009)Alphavbeta3integrinlimitsthecontributionof neuropilin-1tovascularendothelialgrowthfactor-inducedangiogenesis.J.Biol. Chem.284,33966–33981
63Valdembri,D.etal.(2009)Neuropilin-1/GIPC1signalingregulatesalpha5beta1 integrintrafficandfunctioninendothelialcells.PLoSBiol.7,e25
64Fukasawa,M.etal.(2007)Neuropilin-1interactswithintegrinbeta1and modulatespancreaticcancercellgrowth,survivalandinvasion.CancerBiol.Ther. 6,1173–1180
65Sulpice,E.etal.(2008)Neuropilin-1andneuropilin-2actascoreceptors, potentiatingproangiogenicactivity.Blood111,2036–2045
66Banerjee,S.etal.(2006)Breastcancercellssecretedplatelet-derivedgrowth factor-inducedmotilityofvascularsmoothmusclecellsismediatedthrough neuropilin-1.Mol.Carcinog.45,871–880
67Evans,I.M.etal.(2011)Neuropilin-1signalingthroughp130Castyrosine phosphorylationisessentialforgrowthfactor-dependentmigrationofgliomaand endothelialcells.Mol.Cell.Biol.31,1174–1185
68Frankel,P.etal.(2008)Chondroitinsulphate-modifiedneuropilin1isexpressedin humantumourcellsandmodulates3DinvasionintheU87MGhumanglioblastoma celllinethroughap130Cas-mediatedpathway.EMBORep.9,983–989
Reviews GENE T O SCREEN
69Pellet-Many,C.etal.(2011)Neuropilin-1mediatesPDGFstimulationofvascular smoothmusclecellmigrationandsignallingviap130Cas.Biochem.J.435,609–618 70Fantin,A.etal.(2011)Thecytoplasmicdomainofneuropilin1isdispensablefor angiogenesis,butpromotesthespatialseparationofretinalarteriesandveins. Development138,4185–4191
71Kawamura,H.etal.(2008)Neuropilin-1inregulationofVEGF-inducedactivation ofp38MAPKandendothelialcellorganization.Blood112,3638–3649 72Roth,L.etal.(2008)Transmembranedomaininteractionscontrolbiological
functionsofneuropilin-1.Mol.Biol.Cell19,646–654
73Cai,H.andReed,R.R.(1999)Cloningandcharacterizationof neuropilin-1-interactingprotein:aPSD-95/Dlg/ZO-1domain-containingproteinthatinteracts withthecytoplasmicdomainofneuropilin-1.J.Neurosci.19,6519–6527 74Prahst,C.etal.(2008)Neuropilin-1-VEGFR-2complexingrequiresthe
PDZ-bindingdomainofneuropilin-1.J.Biol.Chem.283,25110–25114
75Eichmann,A.andSimons,M.(2012)VEGFsignalinginsidevascularendothelial cellsandbeyond.Curr.Opin.CellBiol.24,188–193
76Appleton,B.A.etal.(2007)Structuralstudiesofneuropilin/antibodycomplexes provideinsightsintosemaphorinandVEGFbinding.EMBOJ.26,4902–4912 77VanderKooi,C.W.etal.(2007)Structuralbasisforligandandheparinbindingto
neuropilinBdomains.Proc.Natl.Acad.Sci.U.S.A.104,6152–6157
78Lee,C.C.etal.(2003)Crystalstructureofthehumanneuropilin-1b1domain. Structure11,99–108
79vonWronski,M.A.etal.(2006)Tuftsinbindsneuropilin-1throughasequence similartothatencodedbyexon8ofvascularendothelialgrowthfactor.J.Biol. Chem.281,5702–5710
80Fuentes-Prior,P.etal.(2002)Newinsightsintobindinginterfacesofcoagulation factorsVandVIIIandtheirhomologueslessonsfromhighresolutioncrystal structures.Curr.Prot.Pep.Sci.3,313–339
81Gaskell,A.etal.(1995)Thethreedomainsofabacterialsialidase:abeta-propeller,an immunoglobulinmoduleandagalactose-bindingjelly-roll.Structure3,1197–1205 82Soker,S.etal.(1998)Neuropilin-1isexpressedbyendothelialandtumorcellsasan isoform-specificreceptorforvascularendothelialgrowthfactor.Cell92,735–745 83Giger,R.J.etal.(1998)Neuropilin-2isareceptorforsemaphorinIV:insightinto thestructuralbasisofreceptorfunctionandspecificity.Neuron21,1079–1092 84Brozzo,M.S.etal.(2012)Thermodynamicandstructuraldescriptionof
allostericallyregulatedVEGFR-2dimerization.Blood119,1781–1788
85Leppanen,V.M.etal.(2010)Structuraldeterminantsofgrowthfactorbindingand specificitybyVEGFreceptor2.Proc.Natl.Acad.Sci.U.S.A.107,2425–2430 86Ruch,C.etal.(2007)StructureofaVEGF–VEGFreceptorcomplexdeterminedby
electronmicroscopy.Nat.Struct.Mol.Biol.14,249–250
87Soker,S.etal.(2002)VEGF165mediatesformationofcomplexescontaining VEGFR-2andneuropilin-1thatenhanceVEGF165-receptorbinding.J.Cell. Biochem.85,357–368
88Whitaker,G.B.etal.(2001)Vascularendothelialgrowthfactorreceptor-2and neuropilin-1formareceptorcomplexthatisresponsibleforthedifferential signalingpotencyofVEGF(165)andVEGF(121).J.Biol.Chem.276,25520–25531 89Herzog,B.etal.(2011)VEGFbindingtoNRP1isessentialforVEGFstimulationof endothelialcellmigration,complexformationbetweenNRP1andVEGFR2,and signalingviaFAKTyr407phosphorylation.Mol.Biol.Cell22,2766–2776 90Zachary,I.C.(2011)Howneuropilin-1regulatesreceptortyrosinekinase
signalling:theknownsandknownunknowns.Biochem.Soc.Trans.39,1583–1591 91Parker,M.W.etal.(2012)Structuralbasisforselectivevascularendothelialgrowth
factor-A(VEGF-A)bindingtoneuropilin-1.J.Biol.Chem.287,11082–11089 92Aricescu,A.R.etal.(2006)Molecularanalysisofreceptorproteintyrosine
phosphatasemu-mediatedcelladhesion.EMBOJ.25,701–712
93Shintani,Y.etal.(2006)Glycosaminoglycanmodificationofneuropilin-1 modulatesVEGFR2signaling.EMBOJ.25,3045–3055
94Fuh,G.etal.(2000)Theinteractionofneuropilin-1withvascularendothelial growthfactoranditsreceptorflt-1.J.Biol.Chem.275,26690–26695 95Mamluk,R.etal.(2002)Neuropilin-1bindsvascularendothelialgrowthfactor
165,placentagrowthfactor-2,andheparinviaitsb1b2domain.J.Biol.Chem.277, 24818–24825
96Lee,H.J.andZheng,J.J.(2010)PDZdomainsandtheirbindingpartners:structure, specificity,andmodification.CellCommun.Signal.CCS8,8
97MacGabhann,F.andPopel,A.S.(2006)Targetingneuropilin-1toinhibit VEGFsignalingincancer:Comparisonoftherapeuticapproaches.PLoSComput. Biol.2,e180
98Finley,S.D.etal.(2011)Pharmacokineticsandpharmacodynamicsof VEGF-neutralizingantibodies.BMCSyst.Biol.5,193
99Bumbaca,D.etal.(2012)Maximizingtumourexposuretoanti-neuropilin-1 antibodyrequiressaturationofnon-tumourtissueantigenicsinksinmice.Br.J. Pharmacol.166,368–377
100Caunt,M.etal.(2008)Blockingneuropilin-2functioninhibitstumorcell metastasis.CancerCell13,331–342
101Soker,S.etal.(1997)Inhibitionofvascularendothelialgrowthfactor (VEGF)-inducedendothelialcellproliferationbyapeptidecorrespondingtotheexon 7-encodeddomainofVEGF165.J.Biol.Chem.272,31582–31588
102Barr,M.P.etal.(2005)Apeptidecorrespondingtotheneuropilin-1-bindingsiteon VEGF(165)inducesapoptosisofneuropilin-1-expressingbreasttumourcells.Br.J. Cancer92,328–333
103Jia,H.etal.(2006)Characterizationofabicyclicpeptideneuropilin-1(NP-1) antagonist(EG3287)revealsimportanceofvascularendothelialgrowthfactor exon8forNP-1bindingandroleofNP-1inKDRsignaling.J.Biol.Chem.281, 13493–13502
104Starzec,A.etal.(2006)Antiangiogenicandantitumoractivitiesofpeptide inhibitingthevascularendothelialgrowthfactorbindingtoneuropilin-1.LifeSci. 79,2370–2381
105Giordano,R.J.etal.(2010)Fromcombinatorialpeptideselectiontodrugprototype (I):targetingthevascularendothelialgrowthfactorreceptorpathway.Proc.Natl. Acad.Sci.U.S.A.107,5112–5117
106Nasarre,C.etal.(2010)Peptide-basedinterferenceofthetransmembranedomain ofneuropilin-1inhibitsgliomagrowthinvivo.Oncogene29,2381–2392 107Narazaki,M.etal.(2010)Oligo-guanosinenucleotideinducesneuropilin-1
internalizationinendothelialcellsandinhibitsangiogenesis.Blood116, 3099–3107
108Jarvis,A.etal.(2010)Smallmoleculeinhibitorsoftheneuropilin-1vascular endothelialgrowthfactorA(VEGF-A)interaction.J.Med.Chem.53,2215–2226 109Yang,Y.etal.(2010)Directcontactsbetweenextracellularmembrane-proximal domainsarerequiredforVEGFreceptoractivationandcellsignaling.Proc.Natl. Acad.Sci.U.S.A.107,1906–1911
110Nakamura,F.etal.(1998)Neuropilin-1extracellulardomainsmediatesemaphorin D/III-inducedgrowthconecollapse.Neuron21,1093–1100
111Teesalu,T.etal.(2009)C-endrulepeptidesmediateneuropilin-1-dependentcell, vascular,andtissuepenetration.Proc.Natl.Acad.Sci.U.S.A.106,16157–16162 112Sugahara,K.N.etal.(2009)Tissue-penetratingdeliveryofcompoundsand
nanoparticlesintotumors.CancerCell16,510–520
113Roth,L.etal.(2012)Transtumoraltargetingenabledbyanovelneuropilin-binding peptide.Oncogene31,3754–3763
114Karjalainen,K.etal.(2011)Targetingneuropilin-1inhumanleukemiaand lymphoma.Blood117,920–927
115Kumar,A.etal.(2012)Goldnanoparticlesfunctionalizedwiththerapeuticand targetedpeptidesforcancertreatment.Biomaterials33,1180–1189
116Hagberg,C.E.etal.(2012)TargetingVEGF-Basanoveltreatmentforinsulin resistanceandtype2diabetes.Nature490,426–430
Reviews GENE T O SC REEN