• No results found

Analysis of the universal immunization programme and introduction of a rotavirus vaccine in India with IndiaSim

N/A
N/A
Protected

Academic year: 2021

Share "Analysis of the universal immunization programme and introduction of a rotavirus vaccine in India with IndiaSim"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

Strathprints Institutional Repository

Megiddo, Itamar and Colson, Abigail R. and Nandi, Arindam and

Chatterjee, Susmita and Prinja, Shankar and Khera, Ajay and

Laxminarayan, Ramanan (2014) Analysis of the universal immunization

programme and introduction of a rotavirus vaccine in India with

IndiaSim. Vaccine, 32 (Supple). A151-A161. ISSN 0264-410X ,

http://dx.doi.org/10.1016/j.vaccine.2014.04.080

This version is available at http://strathprints.strath.ac.uk/55452/

Strathprints

is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (

http://strathprints.strath.ac.uk/

) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

(2)

ContentslistsavailableatScienceDirect

Vaccine

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / v a c c i n e

Analysis

of

the

Universal

Immunization

Programme

and

introduction

of

a

rotavirus

vaccine

in

India

with

IndiaSim

Itamar

Megiddo

a

,

Abigail

R.

Colson

a,b

,

Arindam

Nandi

a

,

Susmita

Chatterjee

c

,

Shankar

Prinja

d

,

Ajay

Khera

e

,

Ramanan

Laxminarayan

a,b,c,∗

aCenterforDiseaseDynamics,Economics&Policy,Washington,DC,USA bPrincetonEnvironmentalInstitute,PrincetonUniversity,Princeton,NJ,USA cPublicHealthFoundationofIndia,NewDelhi,India

dSchoolofPublicHealth,PostgraduateInstituteofMedicalEducationandResearch,Chandigarh,India eMinistryofHealthandFamilyWelfare,GovernmentofIndia,NewDelhi,India

a

b

s

t

r

a

c

t

Backgroundandobjectives:Indiahasthehighestunder-fivedeathtollglobally,approximately20%ofwhichisattributedtovaccine-preventablediseases. India’sUniversalImmunizationProgramme(UIP)isworkingbothtoincreaseimmunizationcoverageandtointroducenewvaccines.Here,weanalyze thediseaseandfinancialburdenalleviatedacrossIndia’spopulation(bywealthquintile,ruralorurbanarea,andstate)throughincreasingvaccination ratesandintroducingarotavirusvaccine.

Methods:WeuseIndiaSim,asimulatedagent-basedmodel(ABM)oftheIndianpopulation(includingsocio-economiccharacteristicsandimmunization status)andthehealthsystemtomodelthreeinterventions.Inthefirstintervention,arotavirusvaccineisintroducedatthecurrentDPT3immunization coveragelevelinIndia.Inthesecondintervention,coverageofthreedosesofrotavirusandDPTandonedoseofthemeaslesvaccineareincreasedto 90%randomlyacrossthepopulation.Inthethird,weevaluateanincreaseinimmunizationcoverageto90%throughtargetedincreasesinruraland urbanregions(acrossallstates)thatarebelowthatlevelatbaseline.Foreachintervention,weevaluatethediseaseandfinancialburdenalleviated,costs incurred,andthecostperdisability-adjustedlife-year(DALY)averted.

Results:Baselineimmunizationcoverageislowandhasalargevarianceacrosspopulationsegmentsandregions.Targetingspecificregionscan approx-imatelyequatetheruralandurbanimmunizationrates.IntroducingarotavirusvaccineatthecurrentDPT3level(interventionone)averts34.7(95% uncertaintyrange[UR],31.7–37.7)deathsand$215,569(95%UR,$207,846–$223,292)out-of-pocket(OOP)expenditureper100,000under-fivechildren. Increasingallimmunizationratesto90%(interventiontwo)avertsanadditional22.1(95%UR,18.6–25.7)deathsand$45,914(95%UR,$37,909–$53,920) OOPexpenditure.Scalingupimmunizationbytargetingregionswithlowcoverage(interventionthree)avertsaslightlyhighernumberofdeathsandOOP expenditure.Thereducedburdenofrotavirusdiarrheaistheprimarydriveroftheestimatedhealthandeconomicbenefitsinallinterventionscenarios. Allthreeinterventionsarecostsaving.

Conclusion:ImprovingimmunizationcoverageandtheintroductionofarotavirusvaccinesignificantlyalleviatesdiseaseandfinancialburdeninIndian households.Populationsubgroupsorregionswithlowexistingimmunizationcoveragebenefitthemostfromtheintervention.Increasingcoverageby targetingthosesubgroupsalleviatestheburdenmorethansimplyincreasingcoverageinthepopulationatlarge.

©2014PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Indiahasthelargestnumberofunder-fivedeathsintheworld

[1].Vaccine-preventablediseasesareamajorcontributortothe burden,causingapproximately20%ofunder-fivedeathsin South-eastAsia[2].In1985IndialauncheditsUniversalImmunization Programme (UIP), which provides free vaccines for measles, poliomyelitis, tuberculosis (BCG), hepatitis B, and diphtheria,

Correspondingauthorat:CenterforDiseaseDynamics,Economics&Policy,

Washington,DC,USA.

E-mailaddress:ramanan@cddep.org(R.Laxminarayan).

pertussis,tetanus(DPT).Despitetheseefforts,eachyearmorethan 50,000childrenundertheageoffivediefrommeaslesinIndia(44% ofglobalunder-fivemeaslesdeaths)[3].Indiaaccountsfor56% (2525)ofglobaldiphtheriacases,18%(44,154)ofpertussiscases, and23%(2404)oftetanuscases[4].TheUIPhasyettoincorporate existing vaccines against mumps, pneumococcal disease and rotavirus.

In theGlobalImmunizationVisionand Strategy (GIVS)from 2005, the World Health Organization (WHO) and the United NationsChildren’s Fund(UNICEF)seta goalfor allcountriesto achieve 90%nationalvaccinationcoverage and80% coveragein everydistrictby2010[5].TheUIPhasfallenshortofthesetargets.In 2007only53.5%ofchildrenwerefullyvaccinated,andvaccination http://dx.doi.org/10.1016/j.vaccine.2014.04.080

(3)

coveragevariedconsiderablyacrossthecountry[6].Immunization coverageispredictedtohaveimprovedinrecent years,butfull coverageremainsbelow70%inurbanareasandbelow60%inrural areas[7].

Rotavirus vaccines were first introduced in national immu-nization programs in 2006 as a key intervention to address the burden of diarrheal disease. By January 2014, 53 coun-trieshadintroducedrotavirusvaccines[8].Thesevaccines have the potential to significantly alleviate the disease and finan-cial burden in India, where each year approximately 113,000 under-fives die from rotavirus (39% of diarrhea cases). Indi-ans spend between $37.4 million and $66.8 million annually on direct medical costs of rotavirus diarrhea hospitalizations in children under five (457,000–884,000) and outpatient treat-ment(2millionvisits)[9].In2014Indianregulatorslicensedthe Indian-madevaccine 116E following a successful Phase 3 trial

[10,11].

In this paper we evaluate the health and financial effects of interventions introducing a rotavirus vaccine to the immu-nizationprogram and increasingtheimmunization coverage of the DPT3 and measles vaccines. We build on IndiaSim [12], a simulated agent-based model (ABM) of the Indian population and health system, and use household-level data on immu-nizationdecisions.Wesimulatethreeinterventionscenarios:(i) the introduction of the rotavirus vaccine at the current DPT3 level; (ii) an increase in DPT3, measles, and rotavirus vac-cination coverage to 90% (the GIVS target) randomly across Indianhouseholds;and(iii),targetedstate-levelandrural–urban implementation that increases coverage in sub-regions that are below 90% immunization coverage in the baseline sce-nario.

Our analysis does not include the benefits of poliomyelitis immunization.Indiaispolio-freeandanychangesinthecoverage levelofthepoliomyelitisvaccinewillnotyieldadditionalhealthor economicbenefits.WealsoomittheBCGvaccinefromtheanalysis: theburdenofmiliarytuberculosisislow[13],andBCGcoverageis highinIndia[14].

2. Methods

2.1. Populationsample

IndiaSimispopulatedwithdatafromtheDistrictLevel House-hold Survey (DLHS-3, conducted during 2007–08) of India [6]. DLHS data are representative at the district level and cover morethan720,000households and3.8millionindividualsfrom 601 districts. The survey data include indicators on demo-graphics,householdsocioeconomicstatus,householdvaccination choices of UIP vaccines, and other indicators of health-seeking behavior.Thesimulationsarebasedonarandomlyselected sub-set of 128,000 households comprising approximately 750,000 individuals.

2.2. Disease,vaccination,andtreatmentdata

Table1presentstheinputdataontheepidemiology,treatment, andpreventionofDPT,measles,androtavirus.DPTandmeasles incidencesare calibratedusingthecase-fatalityrates (CFR)and theGBD2010mortalityrates[15].Rotavirusincidence[16]is dis-tributedacrosswealthquintilesaccordingtoRheingansetal.[17], andCFRiscalibratedtothatincidenceandthemortalityrate[18]. Wedonotincludecomorbidityofdiseasesbecauseofapaucityof data.

Intheabsenceofdatatoparameterizeademandfunctionfor treatmentofvaccine-preventablediseases,weassumethat every-onewhocontractsavaccine-preventablediseaseseekstreatment. Wedonotmodeltheeffectoftreatmentondiseasetransmission. Weassumethatthebaselineleveloftreatmentutilizationresults intherealizedbaselineincidenceandmortalityratesinthe pop-ulation.Inaddition,weassume thatthedemandandsupply of treatmentforindividualswithdiseaseisequivalentacrossall simu-lationscenarios.TreatmentcostsforDPTandmeaslesareestimated fromtheNationalSampleSurvey(NSS) 60throundschedule25

[19],andtreatmentcostsforrotavirusarefromTateetal.[9].All costsinthemodelarein2013USdollars.

Totalroutineimmunizationcostis thesumof costsfor vac-cines,personnel,vehiclesandtransportation,coldchainequipment andmaintenance,andprogramandotherrecurrentcosts, includ-ingplanning,supervision,monitoring,andsurveillance.Thedata werecollectedfromtheMinistryofHealthand FamilyWelfare (MoHFW) by personal communication. We usethe WHO com-prehensivemulti-yearplanning(cMYP)forimmunizationtoolto analyzethedataandassumethatinterventionsareintroducedin 2016.Costsincludeprogramaswellasvaccinecostsandarenot separablebyvaccinetype.

Baselinevaccinationcoveragerates arefrom2011estimates

[14].

2.3. Incomedata

Thegrossdomesticproduct(GDP)percapitaforIndiaisfromthe WorldBank[20].Thedistributionacrosswealthquintilesisfrom NSSexpendituredata.Thestate-levelGDPpercapitaisfromthe Indiangovernment’sPressInformationBureau[21].

2.4. Model

IndiaSimisaniterative,stochasticABM.Themodelcomprises67 regions,representingtheurbanandruralareasof34Indianstates anddistricts.Nagalandisnotincludedinthemodelbecauseitis omittedfromDLHS-3,andtheurbanareaofAndamanandNicobar isdroppedbecauseofalownumberofobservations.Eachregion comprisesasetofrepresentativehouseholds.Asetof character-isticsdescribeseachhousehold(socioeconomicindicators)andits individuals(ageandsex).Aniterationofasimulationrepresentsa day(thetimestepofthemodel).

Individualsinthemodelareinoneofseveraldiseasestates: theyarehealthyortheysufferfromdiphtheria,pertussis,tetanus, measles, and/or rotavirus. They contract diseases based on a stochasticfunctionoftheircharacteristics(age,sex,and wealth quintile)andtheirimmunizationhistory.Thosesufferingfrom dis-easeseek treatmentatpublicor privatefacilities basedonthe averagetreatment-seekingratesbyincomequintileinthe DLHS-3data.Birthsinthemodelarebasedonahousehold-levelprobit regressionmodelthatisboundedtothestate-levelfertilityrates

[12].Deathsnotrelatedtothefivediseasesinthemodelare deter-minedonthebasisofWHOlifetables[22].

Weassumethathouseholdsthatimmunizedpreviouslyborn childreninthebaselineDLHS-3datawillimmunizeanychildren bornduringthesimulationwiththosevaccines. Toincreasethe urbanandruralsub-regionrates to2011estimates,weselecta randomsetofhouseholdstoalsovaccinate.Intheintervention sce-narios,toscaleupthecoveragerates,themodelmakesadditional householdsvaccinationcompliant.Themethodofselectingthese extrahouseholdsvariesacrossscenarios(e.g.,randomortargeted bystateandregion).

(4)

Table1

Diseaseandinterventionparameters.

Variable Base-caseestimate Sensitivityrange Source

Diphtheria

Incidence(per100,000) Basedon[15]andCFR

<1year 42.2 29.5–54.8

1–5years 18.3 12.8–23.8

CFR 0.012 0.008–0.016 [37]

Costofseekingtreatment

Publicfacilities $0.35 $0.25–$0.46 [19]

Privatefacilities $0.37 $0.26–$0.49 Treatmentcost

Publicfacilities $3.51 $2.45–$4.56 [19]

Privatefacilities $4.59 $3.21–$5.97

DPT3vaccinationrelativeriskreduction 0.955 0.921–0.989 [38]

Pertussis

Incidence(per100,000) Basedon[15]andCFR <1year 2123.2 1486.3–2760.2

1–5years 313.4 219.4–407.5

CFR [39]

<1year 0.037 0.026–0.048

1–4.9years 0.010 0.007–0.013

Costofseekingtreatment [19]

Publicfacilities $0.72 $0.50–$0.93 Privatefacilities $0.77 $0.54–$1.00

Treatmentcost [19]

Publicfacilities $5.83 $4.08–$7.58 Privatefacilities $7.63 $5.34–$9.92

DPT3vaccinationrelativeriskreduction 0.840 0.680–1.00 [40]

Tetanus

Incidence(per100,000) Basedon[15]andCFR

<1year 637.1 446.0–828.2

1–5years 3.2 2.2–4.1

CFR [41]

<1months 0.864 0.648–1.000 1month–5years 0.328 0.230–0.427

Costofseekingtreatment [19]

Publicfacilities $0.55 $0.38–$0.71 Privatefacilities $0.58 $0.41–$0.76

Treatmentcost [19]

Publicfacilities $3.54 $2.48–$4.60 Privatefacilities $4.63 $3.24–$6.02

DPT3vaccinationrelativeriskreduction 1.000 .990–1.00 [42]

DPT3vaccinationbaselinecoverage 76.8% Basedon[6,14]

Measles

Incidence(per100,000) Basedon[15]andCFR <1year 4776.9 3343.9–6210.0

1–5years 2723.3 1906.3–3540.3

CFR 0.015 0.011–0.020 [45]

Costofseekingtreatment

Publicfacilities $1.24 $0.87–$1.61 [19]

Privatefacilities $1.32 $0.92–$1.72 Treatmentcost $5.92 $4.14–$7.69

Vaccinationrelativeriskreduction 0.840 0.83–0.87 [43]

Vaccinationbaselinecoverage 82.2% Basedon[6,14]

Rotavirus

Incidence(perchild-year) Basedon[9,16,17]

<6monthsquintileI 1.38 0.96–1.79

QuintileII 1.17 0.89–1.52

QuintileIII 0.97 0.68–1.25

QuintileIV 0.76 0.53–0.98

QuintileV 0.50 0.35–0.65

6months–1yearquintileI 2.08 1.46–2.70

QuintileII 1.81 1.27–2.35 QuintileIII 1.53 1.07–1.99 QuintileIV 1.15 0.80–1.49 QuintileV 0.76 0.53–0.98 1–2yearsquintileI 1.74 1.22–2.26 QuintileII 1.44 1.00–1.87 QuintileIII 1.24 0.87–1.61 QuintileIV 0.94 0.66–1.22 QuintileV 0.59 0.42–0.77 2–5yearsquintileI 1.11 0.78–1.44 QuintileII 0.94 0.66–1.23 QuintileIII 0.78 0.55–1.01 QuintileIV 0.59 0.42–0.77 QuintileV 0.38 0.27–0.50

(5)

Table1(Continued)

Variable Base-caseestimate Sensitivityrange Source

CFR 0.0009 0.00063–0.00117 Basedonincidenceand[18]

Outpatientcostofseekingtreatment $0.36 $0.25–$0.46

Outpatienttreatmentcost $3.12 $2.18–$4.05 [9]

Inpatientcostofseekingtreatment $3.70 $2.59–$4.81 Inpatienttreatmentcost $74.26 $51.99–$96.54

Vaccinationrelativeriskreduction 0.56 0.420–0.700 [44]

Vaccinationbaselinecoverage 0.00%

UIPcostperDPT3child BasedoncMYPandpersonal communicationwithMoFWH

Baseline $22.50 $15.75–$29.25

Interventionone $27.00 $18.90–$35.10 Interventiontwo/three $23.50 $16.45–$30.55

2.5. Analysis

2.5.1. SimulatedresultsfromoneyearareanalyzedinR

Analysisvariablesfallintofourcategories,whichconsiderthe intervention’sassociated effect ondisease burden, intervention costs,cost-effectiveness,andfinancialimpact.Theeffecton dis-easeburdenincludesbothdeathsanddisability-adjustedlifeyears (DALYs)averted(wediscountat3%anduseuniformage-weights thatvalueanyextrayearoflifeequally).Cost-effectivenessis mea-suredby dollars per DALY averted incremental tothe baseline scenario.ThefinancialimpactmeasuresfollowVerguetetal.[23]

andincludetheout-of-pocket(OOP)expenditureavertedfromthe baselinescenario,whichmeasuresthesavingsofthepopulation thatresultfromtheintervention,andthemoney-metricvalueof insurance,whichmeasuresthevalueofprotectionfrom expendi-tureondiseasetreatment(includingthecostsofseekingcare).The money-metricvalueofinsuranceherediffersslightlyfrom Ver-guetetal.’sanalysis.Ouranalysisperiodisoneyearaswestudya cross-sectionoftheunder-fivepopulation,whiletheystudyabirth cohort,whichissusceptibletodiseaseoverthefirstfiveyearsof life.Giventhis,weincludeonlyoneyearofdisposableincomein thecalculationasopposed tofiveyears.Additionally,we evalu-atethevalueofinsuranceofaninterventionwithrespecttothe baselinebysubtractingonefromtheother.Weanalyzehealthand financialburdenalleviatedacrossIndiabywealthquintile,state, andruralversusurbanareas.

2.6. Sensitivityanalysis

Toquantifytheuncertaintyofthemodel,weconducta 100-simulation Latin hypercube sampling (LHS) sensitivity analysis overaplausiblerangeoftheinputparameters(Table1).Foreach disease,theparametersanalyzedincludetheincidence,CFR, vac-cineefficacy,vaccinecost,andtreatmentcost.Ninety-fivepercent uncertaintyrangesforourmeanestimatedoutcomesarecalculated onthebasisofthissensitivityanalysisandreportedinparentheses.

3. Results

Inthebaseline, immunizationcoverageis77%forDPT3,82% formeasles,and thereisnocoverageforrotavirus.From DLHS-3 data,we find that baseline coverage increases bywealth for DPT3andmeasles.Therural-to-urbanimmunizationcoverageratio is 1.09 for DPT3 and 1.05 for measles(Fig.1,row 1).Baseline DPT3coverageislowestinArunachalPradeshandUttarPradesh where53%and55%ofunder-fivesarevaccinated(Fig.2,column 1). Another nine states vaccinate less than 80% of their chil-dren;allof them arerelatively poorstates,withthe exception ofGujarat(77%coverage).EightstateshaveDPT3coverageabove 90%.Measlesvaccinationcoverageinsixstatesislessthan80%;

aswithDPT3,coverageislowestinArunachalPradesh(58%)and UttarPradesh (60%). Twelve states areabove 90% coverage for measles,and HimachalPradeshand Maharashtraareabove95% coverage.

Our interventions decrease the coverage disparity between wealthquintiles,ruralandurbanpopulations,andstates. Interven-tiontworeducestheurban-to-ruralvaccinecoverageratioforall threevaccines to1.03 (Fig.1,row1),thoughatotalof 9states donotachieve90%coverageforallvaccines,andmeasles cover-ageremainsbelow80%inArunachalPradeshandUttarPradesh (Fig.2).Interventionthreeequatesurbanandruralcoverage(i.e., theurban-to-ruralvaccinecoverageratioisapproximately1)and makescoverageineach stateatorabove90% forallthree vac-cines.

Inthebaselinescenario,Indiaatlargehas88.7(95%uncertainty range[UR],85.1–92.4)rotavirusdeathsper100,000under-fives; therateismorethan60%higherinruralareasthaninurbanareas (96.6versus59.8).Interventiononeaverts34.7(95%UR,31.7–37.7) deathsand995(95%UR,910–1081)DALYsper100,000under-fives peryear,roughly44,500deathsand1.28millionDALYsthroughout thecountry.Thenumberofdeathsavertedper100,000under-fives is25.2(95%UR,19.9–30.5)inurbanpopulationsand 37.3(95% UR, 33.8–40.8)in ruralpopulations(Fig.1,row2).Intervention twoavertsanother22.1deaths(95%UR,18.6–25.7)per100,000 under-fivesand 630(95%UR, 522–737) DALYsper100,000 for alloftherelateddiseases.Interventionthreeavertsslightlymore deathsandDALYsthaninterventiontwo.Typically,thereduced burdenishighestforthepoorandinruralareas(Fig.1,row2);this trendismorepronouncedininterventionthreethanin interven-tiontwo.

Fig.3(totaldeathsavertedfromthebaselineacrossall under-fives)andthefirstrowofFig.4(DALYsavertedacrossallunder-fives inoneyear)mapthediseaseburdenalleviatedinallinterventions. Inallstateswithsufficientdata,introducingtherotavirusvaccine (interventionone)avertsmorethan15rotavirusdeathsand450 DALYsper100,000under-fives,thoughthestandarddeviationsare high.Theinterventionavertsmorethan45deathsper100,000in Karnataka,Uttarakhand,AndhraPradesh,HimachalPradesh,West Bengal,JammuandKashmirandBiharandmorethan1500DALYs per100,000inJammuandKashmir,KarnatakaandAndhraPradesh. Interventiononecostsalmost$93millionperyearforallofIndia. ThetotalinterventioncostsaremappedinFig.4,row2.In interven-tionone,thecostper100,000under-fivesrangesfrom$26,127(95% UR,$16,996–$35,257)inArunachalPradeshto$212,878(95%UR, $185,763–$239,994)inDelhi;thecostper100,000under-fivesin UttarPradeshislowrelativetootherstates(approximately48,500), butthestatehasthehighestoverallcosts(approximately$14.1 million),takingintoaccounttheentireunder-fivepopulation.The urban-to-ruralcostratiois1.17(95%UR,1.09–1.27)per100,000 underfives.

(6)

Fig.1. Analysisbyruralandurbanpopulationsper100,000under-fivesineach.

Resultsarefor100simulations.Confidenceintervalsaroundthemeanarefromthesensitivityanalysis.OOP=out-of-pocket.

Ininterventionstwo(randomlyincreasingallthreevaccinesto 90%coverage)andthree(increasingallthreevaccinestoatleast 90%coverageineach region),stateswithlow coverageratesin interventiononeachievethegreatestadditionalreductionsin bur-den (Figs. 3 and 4,row 1).For example,UttarPradeshhasthe secondlowestcoverageininterventionone,anditavertsan addi-tional427(95%UR,275–580)rotavirus-relatedDALYsper100,000 under-fivesperyearininterventiontwoand548(95%UR,372–724) per100,000ininterventionthree.Approximately665,000DALYs areavertedforallfivediseasesinUttarPradeshinintervention three.

The intervention costs incremental tothe baseline in inter-vention two for all five diseases are $137,926 (95% UR, $120,787–$155,065) per 100,000 under-fives in Uttar Pradesh ($41 million for its entire population) and above $30,000 in

all other states. In intervention three, the cost incremental to the baseline is above $100,000 in nine states, includ-ing Uttar Pradesh, where the cost is $186,454 (95% UR, $167,960–$204,948)per 100,000;thecost forallunder-fivesin UttarPradeshis approximately$53million (Fig. 4,row2).The urban-to-rural cost ratio is 0.88 (95% UR, 0.54–1.41) in inter-ventiontwoand 0.75(95%UR, 0.47–1.17)in interventionthree (Fig.2).

MostoftheOOPexpenditureavertedresultsfromthereduced rotavirus burden (Figs. 2 and 5, row 3): $232,354 (95% UR, $224,029–$240,678)avertedper100,000under-fivesin interven-tionone,withanadditional$49,489(95%UR,$40,861–$58,118) and$56,295(95%UR,$47,599–$64,991)avertedininterventions two and three, respectively.The OOPaverted for DPT (approx-imately 1800) and measles(approximately 5500) is highest in

(7)

Fig.2.Under-fiveimmunizationcoverage.

Resultsarefor100simulations.Rotavirusimmunizationisnotavailableinthebaselinescenario,andthereforethemapisgreyedout.Additionally,stateswithalowsample populationaregreyedout.

intervention three (Fig. 4, row 3?). The urban-to-rural ratio of OOPexpenditureaverteddecreasesfrominterventiononethrough interventionthree(Fig.1,row4;e.g.,therotavirusratiodecreases from0.70to0.48).

Theinterventionsarecostsavinginallstatesthathavesufficient data.IfweexcludeOOPexpenditureavertedand onlyconsider theinterventioncosts,theincrementaldollarsperDALYaverted inintervention one is $70.89 (95%UR, 95% UR, $61.51–$80.28) withrespect to the baseline. For interventions two and three, theincremental dollars per DALY averted are $30.47 (95%UR, −$4.36–$65.28)and$36.97(95%UR, $7.96–$65.97)withrespect tointerventionone.ExcludingOOPexpenditureaverted,the dol-larsperDALYavertedarebelow$110inallstates(withsufficient samplesize)inallinterventions.

The value of intervening is highest for rotavirus. In inter-ventionone,themoney-metric valueofinsurance forrotavirus rangesfrom$521(95%UR, $280–$761)per100,000under-fives inDelhi to$6756 (95%UR,$6318–$7196) inBihar (Fig.5).It is highestininterventionthreeinBihar(approximately$7500per 100,000under-fives)andUttarPradesh(approximately$5400per 100,000).ThevaluesforDPTandmeaslesareatorbelow$250per 100,000under-fivesinallstatesinallinterventions.Inall inter-ventions,themoney-metricvalueofinsurancedecreasesaswealth increases.

4. Discussion

In this paperwe present an ABM analysisfor introducing a rotavirusvaccinetotheUIPandincreasingUIPcoveragetothe90% goalsetintheGIVS.Weanalyzetheeffectsacrossthewealth dis-tribution,theruralandurbanpopulationdistribution,andstates. Theresultsdonotpresenttheexactbenefitsandcoststhatwould berealizedbyimplementingtheinterventionscenarios,butthey highlightthevariationacrosspopulationsegments.Themodelisa usefultooltounderstandwhichstrategyandpopulationstotarget whenallocatingscarceresources.

Immunizationisoneofthemostcost-effectiveinterventionsfor improvinghealthoutcomes[24].Eveninahigh-qualityhealth sys-tem,immunizationpolicyaddressesanimportantmarketfailure: individualstendtounder-vaccinate,andgovernmentintervention isneededtofixthatfailure.ThoughIndiahassucceededin elim-inatingpolio,ithasachievedlessthroughroutineimmunization. Targetedimmunizationcampaignsmaybesimplertoimplement thanroutineimmunization.Forexample,thepulsepoliocampaign involvedasingle-doseimmunization.Routinevaccinations, how-ever,mayrequireamorecompleximmunizationdeliveryschedule ifseveraldosesarerequired.

UIPcoverageremainslowinIndia,especiallyincertainsectors ofthepopulation.Targetingexpansioninthesesubpopulationsin

(8)

Fig.3. Totalunder-fivedeathsavertedfrombaseline.

Resultsarefor100simulations.DPT3andmeaslesvaccinationcoveragedoesnotchangeininterventionone,andthereforethemapisgreyedout.Statesinwhichimmunization coverageis90%oraboveinthebaselinearegreyedoutininterventionthree.Additionally,stateswithalowsamplepopulationorahighstandarddeviationaregreyedout.

interventionthreeavertsagreaterburdenthantherandom vac-cinationdistributionininterventiontwo.Thisispartiallybecause coverageisslightlyhigherthan90%ininterventionthree(afew stateshavehigher-than-90%coverageinthebaselineandmaintain thatcoveragerateininterventionthree).However,thesimulation resultsalsoshowthatoftentheareasthatsufferthehighest dis-easeburdenandthathavethegreatestpotentialmarginalgainsto vaccinationaretheareasthatcurrentlyunder-vaccinatethemost. Althoughruralareashave lowerrotavirusimmunization cover-agethanurbanareasininterventionone,ruralareasavertmore rotavirusdeathsinthatscenario.Moreover,interventionstendto haveagreaterfinancialbenefitforthosesegmentsofthe popula-tion.PoorandruralareasavertmoredeathsandOOPexpenditure thanurbanareas.

Demandandsupplybothcontributetolowimmunizationrates. Lackofeducationcontributestolowimmunizationdemand.Ina

UNICEFsurveyofvaccinationcoverageinIndia,themost-cited rea-sonsfornon-immunizationincluded“didnotfeeltheneed,”“not knowingaboutvaccines,”and“notknowingwheretogofor immu-nization”[7].Additionally,ruralareashavepooraccesstohealth carefacilities.Wherefacilitiesareavailable,theyoftensufferfrom staffingissuesandpoorqualityofservice,whichalsodecreases healthcaredemand[25].

TheIndianimmunizationdeliverysystemreliesheavilyon com-munity health workers (CHWs) to mobilize and vaccinate the ruralpopulation[26].StrengtheningCHWprogramscanincrease immunization coverage [26,27] and encourage age-appropriate immunization[28].Researchsuggeststhatprovidingincentivesto familiescanalsoimprovevaccinationrates[29].However,effects ofthesestrategieshavebeenlittlestudied.

AlthoughIndiaisnotcurrentlyreachingitstargetimmunization coveragewiththeUIP,itrecognizesthepotentialofnewvaccines.

(9)

Fig.4.Healthandfinancialimpact(totalsbystate).

Resultsarefor100simulations.Stateswithalowsamplepopulationorahighstandarddeviationaregreyedout.Valuesareinmillions.OOPexpenditureavertedassumes 100%demandfortreatment.Allinterventionsremaincost-effectiveifOOPexpenditureavertedisexcluded.DALYs=disability-adjustedlifeyears;OOP=out-of-pocket.

Ithasintroducedanewpentavalentvaccineinafewstates[30]and planstorollitoutacrossthecountryin2014–15.Giventheresource constraints,research into which vaccines alleviatethe greatest burdenisimportant.Arotavirusvaccineisacompellingchoice. RotavirusputsaheavyburdenontheIndianpopulation,especially onunder-twoyearolds,anddoesnotsignificantlydecreasewith improvementsinhygieneandsanitation[31].

Ouranalysisofarotavirusvaccineshowsthatitsintroduction cansignificantlyreducerotavirusburden.Wepredictthat introduc-ingthevaccineattheDPT3levelwillavertapproximately44,500 under-fiverotavirusdeathsperyearinIndia.Increasingrotavirus immunizationcoverageto90%inourmodelavertsapproximately another8500and 9500 deathsin interventions two and three, respectively;allthreeinterventionsarecost saving.Ourresults forinterventiononearesimilartoothercost-effectiveness mod-els[32,33]. Our DPT3coverage,which is estimatedfor 2011,is

higherthanthatofEspositoetal.[33].Thesimilarresultdespite thedisparityinvaccinationcoverageisbecauseofdifferentmodel assumptions.Ourdeathrateislowerandourvaccineefficacyis slightlyhigher.ArecentreportbytheInternationalVaccineAccess Center(IVAC)atJohnsHopkinsBloombergSchoolofPublicHealth

[34] usesa baselinedeathratemuch lowerthan ours (approx-imately 54,000 versus 113,000) and estimates approximately 22,000rotavirusdeathsavertedat72%vaccinationcoverage.Their costaverteddifferssignificantlyfromourOOPaverted,thoughin additiontodifferentmodelparameterstheyincludecomponents wedonot(e.g.lostproductivity).Verguetetal.[23]estimate(with DLH-3vaccinationrates)theOOPexpenditureavertedfora1 mil-lionbirthcohortandthemoney-metricvalueofinsurancefor1 millionhouseholds.Theircohortaverts$1.8millionOOP expendi-tureoverthefirstfiveyearsoflifeandthemoney-metricvalueof insuranceis$16,000for1millionhouseholds.Weestimatethat

(10)

Fig.5. Money-metricvalueofinsuranceper100,000under-fives.

Resultsarefor100simulations.DPT3andmeaslesvaccinationcoveragedoesnotchangeininterventionone,andthereforethemapisgreyedout.Statesinwhichimmunization coverageis90%oraboveinthebaselinearegreyedoutininterventionthree.Additionally,stateswithalowsamplepopulationorahighstandarddeviationaregreyed out.Money-metricvalueofinsurance=thevalueofprotectionfromtheriskofexpenditureondiseasetreatment(includingthecostsofseekingcare).Itistheamountthe populationiswillingtopaytoavoidthatrisk.

approximately$2.3millionOOPisaverted and amoney-metric valueofinsuranceof$23,500summedoverthewealthquintilesin across-section1millionpopulationofunder-fives.Wesumover wealthquintilesforcomparabilitywiththeirstudy,thoughwealth quintilesdonotincludeanequalnumberofunder-fiveyearolds. Ourresultsaresimilar,butthecomparisonisnotexactduetothe differingmodelpopulationsandassumptions.Themostsignificant differenceinmodelassumptions ofthetwo analysesis theage distributionoftheunder-fivepopulation.

Thecost-effectiveness results hereare moreoptimistic than otheranalyses[32,33]becauseofourassumptionof100% treat-mentdemand.IfwedonotconsiderOOPaverted,wehavealower boundestimateofcost-effectiveness,andtheinterventionsremain verycost-effectivebyWHO’scost-effectivenesscriteria[35]:the costperDALYavertedislessthanIndia’spercapitaGDP.

Theregionaldetailinthemodelisanadditionalreasonforthe differencesbetweenourfindingsandpastanalyses.Asdiscussed, themarginalgainsfromimmunizationareoftenhighestinareas thatcurrentlyvaccinatetheleast.Introducingrotavirusaccording toDPT3vaccinationcoverage(thesamehouseholds)maintainsthat trend.

Amajorchallengetorealizingthepotentialbenefitsdescribed here is the low investment in routine immunization [36]. In 2011–12theMoHFWspentapproximately$233milliononroutine immunization.ContinuingtheUIPatcurrentcoveragerateswould costapproximately$438millionintheinterventionyear(cMYP andpersonalcommunicationwithMoHFW).Theestimatedcostfor thepoliocampaignduringtheinterventionyearisapproximately $108million.Underthemodelassumptions,introducingarotavirus vaccineatDPT3levelscostsanotherapproximately$93million,or

(11)

roughlya17%increaseontopofthetotalcostsoftheexisting rou-tineimmunizationandthepoliocampaign.Interventionthreewill costapproximately$129millionmorethanwouldbespentinthe baseline($53millionofwhichwouldbespentforUttarPradesh). Asignificantincreaseinimmunizationprogramfundingisneeded bothtointroducethenewvaccinesandtoincreaseimmunization coverageinIndia.

Thestudyislimitedbytheparametersweuse.Thoughour anal-ysisfocusesonthedistributionacrosspopulationsubgroups,the parametersdonotcaptureallthecovariatesaffectingthesegroups. Forexample,wedonotcapturethestatefixedeffectsinmanyofour variables.Weusethepopulationdistributions(byage,wealth,and sex)toextrapolatethevaluesforspecificsubgroups.Additionally, weassumethattheper-childUIPcostsaredistributeduniformly acrossstates.Despitenotfullycapturingallthefactorsaffectingthe diseaseandexpendituredistributionsacrossthesubpopulations, wefeelthatthisresearchisastepintherightdirection. Addition-ally,wedonotmodeltheinfectiousdiseasedynamics,whichmeans wedonotconsideranyadditionalbenefitsfromherdimmunity.

5. Conclusion

IntroducingarotavirusvaccinetoUIPandincreasingUIP cov-eragearecost-effectiveinterventionsthatwouldgreatlyalleviate thediseaseandfinancialburdenofvaccine-preventablediseases inIndia.Theresultspresentedhereareusefulforpolicyanalysis, giventhepaucityofdataontheinterventions’effectsizeacross dif-ferentsubsetsofthepopulation:atthestatelevel,intheruraland urbanpopulations,andacrossthewealthdistribution.Additional researchisneededtointroduceaninfectiousdiseasemodelinto theABMusedhereandtotakeintoaccountthestatefixedeffects.

Acknowledgments

WethankAshvinAshokforhisresearchassistance.

Conflictsof interest: None declared. Funding: This work was fundedbytheBillandMelindaGatesFoundationthroughthe Dis-ease ControlPriorities projectat the University of Washington (grantno.720165),GrandChallengesCanadathroughtheSaving Brainsproject,andJohnsHopkinsUniversity(purchaseorderno. 2002067649)throughthecost-effectivenessofrotavirus vaccina-tioninIndiagrant.Thefundershadnoroleinstudydesign,writing thereport,thedecisiontosubmit,ordatacollection,analysis,and interpretation.

References

[1]WorldHealthOrganization,UnitedNationsChildren’sFund.Countdownto 2015,Maternal,NewbornandChildSurvival:BuildingaFutureforWomen andChildren;2012.Geneva.

[2]World Health Organization. WHO estimates of disease burden and cost-effectiveness; 2014. Available at: http://www.who.int/immunization/ monitoringsurveillance/burden/estimates/en/index.html[accessed22.01.14]. [3]LiuL,JohnsonHL,CousensS,PerinJ,ScottS,LawnJE,etal.Global,regional,and nationalcausesofchildmortality:anupdatedsystematicanalysisfor2010 withtimetrendssince2000.Lancet2012;6736:1–11.

[4]World HealthOrganization.WHOvaccine preventablediseases: monitor-ingsystem.2013globalsummary;2013.Availableat:http://apps.who.int/ immunizationmonitoring/globalsummary[accessed01.04.14].

[5]WorldHealthOrganization.UnitedNationsChildren’sFund.Geneva:Global ImmunizationVisionandStrategy:2006–2015;2005.

[6]InternationalInstituteforPopulationSciences(IIPS).DistrictLevelHousehold andFacilitySurvey(DLHS-3).2007–08.Mumbai:IIPS;2010.

[7]UnitedNationsChildren’sFund.CoverageEvaluationSurvey;2009.NewDelhi.

[8]Countryintroduction|Mapsandlist–RotavirusVaccineAccessandDelivery –PATH;2014.Availableat: http://sites.path.org/rotavirusvaccine/rotavirus-advocacy-and-communications-toolkit/country-introduction-maps-and-list/

[accessed26.02.14].

[9]TateJE,ChitambarS,EspositoDH,SarkarR,GladstoneB,RamaniS,etal.Disease andeconomicburdenofrotavirusdiarrhoeainIndia.Vaccine2009;27(Suppl. 5):F18–24.

[10]MadhiSA,ParasharUD.116Erotavirusvaccinedevelopment:asuccessful alliance.Lancet2014;6736:12–3.

[11]Bhandari N,Rongsen-ChandolaT,Bavdekar A,JohnJ,AntonyK,TanejaS, etal. Efficacyofamonovalenthuman-bovine(116E)rotavirusvaccinein Indianinfants:arandomised,double-blind,placebo-controlledtrial.Lancet 2014;6736:1–8.

[12]MegiddoI,NandiA,AshokA,PrabhakaranD,LaxminarayanR.Estimatingthe HealthandEconomicBenefitsofSecondaryPreventionofCornaryHeart Dis-easesinIndia;2014[submittedforpublication].

[13]SwaminathanS.ProtectiveefficacyofBCG.IndianJPediatr2004;71:1083–4.

[14]PramanikS,MuthusamyN,GeraR,LaxminarayanR.Smallareaestimationof vaccinationcoverageratesbycombiningtimeseriesandcrosssectionaldata; 2014[submittedforpublication].

[15]GlobalBurdenofDiseaseStudy2010.GlobalBurdenofDiseaseStudy2010 (GBD2010)Results1990–2010;2013.Seattle.

[16]FischerWalkerCL,PerinJ,AryeeMJ,Boschi-PintoC,BlackRE.Diarrhea inci-denceinlow-andmiddle-incomecountriesin1990and2010:asystematic review.BMCPublicHealth2012;12:220.

[17]Rheingans R, Atherly D, Anderson J. Distributional impact of rotavirus vaccinationin25GAVIcountries:estimatingdisparitiesinbenefitsand cost-effectiveness.Vaccine2012;30(Suppl.):A15–23.

[18]MorrisSK, Awasthi S,KheraA,Bassani DG, KangG, ParasharUD,et al. Rotavirus mortality in India: estimates based ona nationally represen-tative survey of diarrhoeal deaths. Bull World Health Organ 2012;90: 720–7.

[19]NationalSampleSurveyOrganisation.NationalSampleSurvey2004(60th Round)–Schedule25–MorbidityandHealthcare.NewDelhi:Ministryof StatisticsandProgrammeImplementation(MOSPI);2004.

[20]GDPpercapita(currentUS$)|Data|Table;2014.Availableat:http://data. worldbank.org/indicator/NY.GDP.PCAP.CD[accessed05.02.14].

[21]PressInformationBureau.StatewisePerCapitaIncomeandGross Domes-ticProductatcurrentprices;2013.Availableat:http://pib.nic.in/archieve/ others/2013/dec/d2013121703.pdf[accessed14.04.14].

[22]WorldHealthOrganizationLifeexpectancy:LifetablesIndia;2013.Available at:http://apps.who.int/gho/data/view.main.60740[accessed26.02.14]. [23]VerguetS,MurphyS,AndersonB,JohanssonKA,GlassR,RheingansR.Public

finance ofrotavirus vaccinationinIndia andEthiopia:an extended cost-effectivenessanalysis.Vaccine2013;31:4902–10.

[24]WorldHealthOrganization.UnitedNationChildren’sFund.TheWorldBank. StateoftheWorld’svaccinesandimmuniztion.3rded.Geneva:WorldHealth Organization;2009.

[25]StreeflandPH,ChowdhuryaM,Ramos-JimenezP.Qualityofvaccination ser-vicesandsocialdemandforvaccinationsinAfricaandAsia.BullWorldHealth Organ1999;77:722–30.

[26]Patel AR, Nowalk MP. Expandingimmunization coverage inrural India: a reviewofevidencefortheroleofcommunityhealth workers.Vaccine 2010;28:604–13.

[27]PrinjaS,JeetG,VermaR,KumarD,BahugunaP,KaurM,etal.Economicanalysis ofdeliveringprimaryhealthcareservicesthroughcommunityhealthworkers in3NorthIndianStates.PLoSONE2014;9:e91781.

[28]Awofeso N, Rammohan A, Iqbal K. Age-appropriate vaccination against measlesandDPT-3inIndia–closingthegaps.BMCPublicHealth2013;13: 358.

[29]BanerjeeAV,DufloE,GlennersterR,KothariD.Improvingimmunisation cover-ageinruralIndia:clusteredrandomisedcontrolledevaluationofimmunisation campaignswithandwithoutincentives.BMJ2010;340:c2220.

[30]GuptaSK,SoslerS,LahriyaC.IntroductionofHaemophilusinfluenzaetype b(Hib)aspentavalent(DPT-HepB-Hib)vaccineintwostatesofIndia.Indian Pediatr2012;49:707–9.

[31]WorldHealthOrganization.Reportofthemeetingonfuturedirectionsfor rotavirusvaccineresearchindevelopingcountries;2000.Geneva.

[32]RoseJ,HawthornR.Publichealthimpactandcosteffectivenessofmass vacci-nationwithliveattenuatedhumanrotavirusvaccine(RIX4414)inIndia:model basedanalysis.BMJ2009;339:b3653.

[33]Esposito DH, TateJE, Kang G, Parashar UD. Projected impact and cost-effectivenessofarotavirusvaccinationprograminIndia,2008.ClinInfectDis 2011;52:171–7.

[34]ConstenlaD.EstimatingtheeconomicimpactofHib,PCVandRVvaccinesin India:astate-andnationallevelanalysis.InternationalVaccineAccessCenter (IVAC),JohnsHopkinsBloomberSchoolofPublicHealth;2014.

[35]WorldHealthOrganization(WHO).WHOGuidetoCost-EffectivenessAnalysis; 2003.Geneva.

[36]LaxminarayanR,GangulyNK.India’svaccinedeficit:whymorethanhalfof Indianchildrenarenotfullyimmunized,andwhatcan—andshould—bedone. HealthAff2011;6:1096–103.

[37]Bitragunta S, Murhekar MV, Hutin YJ, Penumur PP, Gupte MD. Persis-tenceofdiphtheria,Hyderabad,India,2003–2006.EmergInfectDis2008;14: 1144–6.

[38]World Health Organization. Diphtheria vaccine. Wkly Epidemiol Rec 2006;81:24–31.

[39]CrowcroftN,SteinC.Howbesttoestimatetheglobalburdenofpertussis? LancetInfectDis2003;3:413–8.

[40]HeiningerU,CherryJD,StehrK,Schmitt-GroheS,UberallM,LaussucqS,etal. ComparativeefficacyoftheLederle/TakedaacellularpertussiscomponentDTP (DTaP)vaccineandLederlewhole-cellcomponentDTPvaccineinGerman chil-drenafterhouseholdexposure.Pediatrics1998;102:546–53.

(12)

[41]Patel JC, Mehta BC. Tetanus: study of 8,697 cases. Indian J Med Sci 1999;53:393–401.

[42]Center for Disease Control Prevention. Epidemiology and Prevention of Vaccine-PreventableDiseases.12thed.Washington,DC:PublicHealth Foun-dation;2012.

[43]SudfeldCR,NavarAM,HalseyNa.Effectivenessofmeaslesvaccinationand vitaminAtreatment.IntJEpidemiol2010;39(Suppl.1):i48–55.

[44]ModiB.Rotavirusdiarrhoea–currentscenarioandpreventivestrategies.Natl JMedRes2013;3:104–5.

[45]SimonsE,FerrariM,FricksJ,WannemuehlerK,AnanadA,BurtonA,etal. Assess-mentofthe2010globalmeaslesmortalityreductiongoal:resultsfromamodel ofsurveillancedata.Lancet2012;379:2173–8.

(http://strathprints.strath.ac.uk/ ScienceDirect w w w . e l s e v i e r . c o m / l o c a t e / v a c c i n e (http://creativecommons.org/licenses/by-nc-nd/3.0/ 2012. http://www.who.int/immunization/monitoring 2012;6736:1–11. http://apps.who.int/immunization 2005. 2010. 2009. http://sites.path.org/rotavirusvaccine/rotavirus-advocacy-and-communications-toolkit/country-introduction-maps-and-list/ 2009;27(Suppl.5):F18–24. 2014;6736:12–3. Bhandari 2014 2004;71:1083–4. Pramanik 2013. 2012;12:220. 2012;30(Suppl.):A15–23. 2012;90:720–7. 2004. http://data.worldbank.org/indicator/NY.GDP.PCAP.CD http://pib.nic.in/archieve/others/2013/dec/d2013121703.pdf http://apps.who.int/gho/data/view.main.60740 2013;31:4902–10. 2009. 1999;77:722–30. Patel 2014;9:e91781. 2013;13:358. 2010;340:c2220. 2012;49:707–9. 2000. 2009;339:b3653. 2008. 2014. World 2011;6:1096–103. 2008;14:1144–6. World 2003;3:413–8. 1998;102:546–53. 8,697 2012. 2010;39(Suppl. 2013;3:104–5. 2012;379:2173–8.

References

Related documents

Ž LWLVUHYHDOHGWKDWWKHVWDWLVWLFDOPRPHQWVRI WKH D]LPXWKV DQG HOOLSWLFLWLHV RI WKLUG DQG IRXUWK RUGHUV DUH WKH PRVW VHQVLWLYH WR WKH RULHQWDWLRQ VWUXFWXUH RI %7

Green Building Index (GBI) is the green rating tool recognized by the Malaysian construction industry to promote sustainability in the built environment.. It is developed

Gestational diabetes mellitus diagnosed with a 2-h 75-g oral glucose tolerance test and adverse pregnancy outcomes. Validation of normative data for 75 g oral

Methods: Asian patients (aged $ 20 years) diagnosed with schizophrenia (Diagnostic and Sta- tistical Manual of Mental Disorders, Fourth Edition-Text Revision criteria), and having

The primary objective was to compare the clinical and functional profiles of patients undergoing treatment switching or augmentation by examining (A) scores at

Development of an immunochromatographic strip test for rapid detection of melamine in raw milk, milk products and animal feed. A novel colloidal gold-based lateral

To solve these problems, an amphiphilic polymer-drug conjugate was prepared by attachment of low molecular weight (ie, 2 kDa) methoxy poly(ethylene glycol) methyl ether (mPEG)

Phenotypic assays can be used in primary human lung cells to measure changes in cell behavior that are associated with particular disease pathology.. This is becom- ing