2012 RI Prelim Biology H1 P2_answers

13 

Loading.... (view fulltext now)

Loading....

Loading....

Loading....

Loading....

Full text

(1)

pH pH Light Light

RAFFLES INSTITUTION

RAFFLES INSTITUTION

Higher 1 Biology Paper 1,

Higher 1 Biology Paper 1, !" An#$er#!" An#$er#

% % Paper 1 an#$er#& Paper 1 an#$er#& 1% 1% '' 1111%% BB 1%1% AA % % BB 1%1% BB %% BB "% "% BB 1"%1"% (( "%"% '' )% )% (( 1)%1)% AA )%)% AA *% *% '' 1*%1*% '' *%*% BB +% +% '' 1+%1+% (( +%+% '' % % BB 1%1% BB %% BB -% -% '' 1-%1-% (( -%-% '' .% .% AA 1.%1.% (( .%.% AA 1/% 1/% BB /%/% (( "/%"/% '' Paper  an#$er#& Paper  an#$er#& Se0ion A Se0ion A  Answer

 Answer allall the questions in this section. the questions in this section. 1

1

In an experiment to

In an experiment to study Astudy ATP synthesis in plants, chloroplasts are isolated, and TP synthesis in plants, chloroplasts are isolated, and the pH levelsthe pH levels in

in the the varvarioious us comcomparpartmetments nts are are monmonitoitoredred. . ThThe e gragraph ph belbelow ow shoshows ws the the resresultults s of of thethe experiment.

experiment.

2a3

2a3 xplain the changes in pH seen in !ig."." upon illumination. #$%xplain the changes in pH seen in !ig."." upon illumination. #$%

Illu4inaion o5 0hloropla## 0au#e# he e60iaion o5 he ele0ron# 5ro4 he

Illu4inaion o5 0hloropla## 0au#e# he e60iaion o5 he ele0ron# 5ro4 he

rea0ion 0enre%

rea0ion 0enre%

Thi# iniiae# he ele0ron# 5lo$ 7o$n he ET(, energy lo# i# u#e7 o pu4p H8

Thi# iniiae# he ele0ron# 5lo$ 7o$n he ET(, energy lo# i# u#e7 o pu4p H8

5ro4 he #ro4a ino he hyla9oi7%

5ro4 he #ro4a ino he hyla9oi7%

Hen0e he in0rea#e in pH in

Hen0e he in0rea#e in pH in he #ro4a an7 he 7e0rea#e in pH he #ro4a an7 he 7e0rea#e in pH 2in0rea#e in H832in0rea#e in H83

in he hyla9oi7 #pa0e

in he hyla9oi7 #pa0e

Fig%1%1 Fig%1%1

(2)

2:3

escribe a similarity and a difference in the production of ATP in chloroplasts and in mitochondria. #(%

/imilarity

1% Flo$ o5 ele0ron 7o$n he ele0ron ran#por 0hain o5 progre##ively in0rea#ing ele0ronegaiviy%

% ;eneraion o5 proon 4oive 5or0e < ele0ro0he4i0al < H8  gra7ien

"% 'i55u#ion o5 H8 5ro4 hrough ATP #ynha#e 0o4ple6, energy u#e7 5or he pho#phorylaion o5 A'P o ATP 2re5 o 0he4io#4o#i#, :u R&=u# 0he4io#4o#i# $ihou 7e#0ripion3

ifference

Phoopho#phorylaion O6i7aive pho#phorylaion

Ele0ron 7onor 

Rea0ion 0enre 0hlorophyll a  < $aer 

Re7u0e7 0oen>y4e, NA'H<FA'H

Final ele0ron a00epor 

NA'P ?ole0ular O6ygen

Sour0e o5  energy 5or

pho#phor  ylaion

Ligh O6i7aion o5 glu0o#e < NA'H < FA'H 2o :e 7i#0u##e73

@'ire0ion o5 H8

pu4pe7

Pu4pe7 5ro4 #ro4a o hyla9oi7 #pa0e

Pu4pe7 5ro4 4ari6 o iner4e4:ranal #pa0e

@'ire0ion o5 H8 7i55u#e

5ro4 hyla9oi7 #pa0e o #ro4a

5ro4 iner4e4:ranal #pa0e o 4ari6

203  According to the endosymbiotic theory, mitochondria and chloroplasts were originally pro0aryotic cells that were engulfed by an ancestral eu0aryotic cell.

/tate two structural features of the two organelles that provide evidence to support this theory. #(%

(ir0ular 'NA /S ri:o#o4e# 7ou:le 4e4:rane

& 'I ()"( Preliminary xamination **+-)(

(3)

Molecule X

For Examiner’s

Use

"

1olecule 2 forms a pore in the phospholipid bilayer of mitochondria as shown in the !ig.".(.

Fig%1% 273

xplain how the presence of molecule 2 might affect the synthesis of ATP in isolated mitochondria. #$%

no ATP #ynhe#i#

Allo$# H8 o 7i55u#e 7o$n a 0on0enraion gra7ien hrough he pore an7 preven# he generaion o5 H8 < ele0ro0he4i0al gra7ien

2e3 In plants, yeasts and bacteria, anaerobic respiration results in the production of alcohol and carbon dioxide, a process that is exploited by both the brewing and the ba0ing industries.

escribe how ATP is generated under anaerobic conditions in yeast. #$%

a3 pyruvae i# 7e0ar:o6ylae7 o ehanal $hi0h i# re7u0e7 o ehanol :y al0ohol 7ehy7rogena#e $hile re4oving H85ro4 NA'H

:3

NA'8 i# regenerae7

03

5or gly0oly#i# o pro0ee7<0oninue

d) Pro7u0ing  ne ATP per glu0o#e

3hen a red flowered, three4leaved clover plant was crossed with a white flowered,

five4leaved plant the following offspring were produced5 red4flowered, five leaved $6

red4flowered, three4leaved 7" white4flowered, five4leaved 7) white4flowered, three4leaved$*

(4)

Rl rl rL rl Rl rl Use 2a3

8i9 :sing the symbols R for red flowers, r   for white flowers, L for five leaves and l for  three leaves, draw a genetic diagram to explain these results.

#7%

8ii9 3hen these plants were self4pollinated, explain why only the white4flowered, three4 leaved plants bred true.

Parenal phenoype

'ed flowered, three4leaved

clover plant

3hite flowered, five4leaved plant

;enoype Rrll rrLl meiosis ;a4ee#  meiosis ;a4ee# RrLl

'ed flowered, five 4leaved rrLl

3hite flowered, five 4leaved Rrll

'ed flowered, three 4leaved

rrll

3hite flowered, three 4leaved F1 genoype 1 RrLl 1 Rrll 1 Rrll 1 rrLl  F1 phenoyp e " 'ed flowered, five 4leaved " 'ed flowered, three 4leaved " 3hite flowered, three 4leaved " 3hite flowered, five 4leaved  rL rl

(5)

For Examiner’s

Use

*

$hie5lo$ere7, hreeleave7 plan# $ere 7ou:le ho4o>ygou# re0e##ive All he oher plan# $oul7 have :een heero>ygoe#

(6)

Use

" ;ne way of investigating relationships between different primate groups is to study differences in the amino acid sequences of proteins such as haemoglobin.

2a3 xplain the origin of differences in the amino acid sequences in a protein. 0au#e7 :y poin 4uaion

0hange# he #eCuen0e o5 'NA :a#e# < 0hange# nu0leoi7e < 0o7on ne$ riple 0o7e# 5or a 7i55eren a4ino a0i7

• 0o7e# 5or ne$ polypepi7e #(%

The < chain of haemoglobin has been investigated and shown to have only four  points of difference in all primate groups. The amino acids found at these positions in certain primates or primate groups are shown in the table below.

Pri4ae or  pri4ae group

A4ino a0i7 a po#iion -/

A4ino a0i7 a po#iion -

A4ino a0i7 a po#iion 1/.

A4ino a0i7 a po#iion 1*

=himpan>ee s

 Aspartic acid Threonine Arginine Proline ?ibbons Asparagines @ysine Arginine ?lutamine ;ld 3orld

mon0eys

 Aspartic acid ?lutamine @ysine ?lutamine ew 3orld

mon0eys

 Aspartic acid ?lutamine Arginine ?lutamine @emurs Aspartic acid ?lutamine Threonine Alanine

Ta:le "%1

2:3 2i3 3ith reference to Table $.", state the two groups that seem to be closely related and give a reason for your answer.

Ol7 Dorl7 4on9ey# an7 Ne$ Dorl7 4on9ey#

• Only one 7i55eren0e < hree 0o44on a4ino a0i7#

#(% #" mar0 each%

(7)

For Examiner’s

Use

2ii3 ?ibbons are usually classified with the chimpan>ees as apes, in the Hominoidea.

xplain why the results shown do not support this classification. ;i::on 4ore li9e Ne$ Dorl7 4on9ey

;i::on  0hain ha# only one 0o44on a4ino a0i7 2arginine3 $ih 0hi4pan>ee

 0o44on a4ino a0i7# $ih Ne$ Dorl7 4on9ey#

• (hi4pan>ee ha# only 0o44on a4ino a0i7 $ih < " 7i55eren 5ro4

ea0h o5 he oher group# #$%

#Any $ 4 " mar0 each%

203 escribe two ways, other than differences in amino acid sequences, in which

evolutionary relationships between hominids can be i nvestigated. re5 o ho4ology < #9eleal < #9ull < 7eniion 7eail#

0ar:on 7aing o5 5o##il# allo$# u# o 7eer4ine he age o5 a 5or4erly living hing

anao4i0al 0o4pari#on# o5 5o##il pri4ae#

anao4i0al 0o4pari#on# o5 he #9eleon# o5 4o7ern #pe0ie#

#eCuen0ing < pro5iling 'NA < 'NA hy:ri7i>aion < re5% o P(R < 'NA 5ingerprining

ani:o7yanigen < i44unologi0al < #eru4 #u7ie#

u#e o5 ani:o7ie# < aggluinaion< i44unopre0ipiaion

0o4pari#on o5 early #age# o5 ani4al 7evelop4en reveal# a77iional anao4i0al ho4ologie# no vi#i:le in a7ul organi#4#

#Any 7 4 " mar0 each%

) 2a3  A particular region of a gene has the following nucleotide sequence in the template strand5

B C TA= TTA ?AA T=T =A? ==A ATT A=T =AT C $B 2i3 Transcribe the above sequence into m'A

* G AU; A;U AAU U;; (U; A;A UU( UAA ;UA G "

2ii3 How many amino acids does the protein encoded by this section of the gene haveD

 2UAA i# a #op 0o7on3

1utations in tumour suppressor genes can increase the chances of a person getting cancer.

2i3 xplain why mutations in tumour suppressor genes are considered to be recessive.

a3 even hough one allele 4ay pro7u0e a non5un0ional proein

:3 he oher allele 0an #ill pro7u0e a proein ha 0an 4a#9 he e55e0 o5  he non5un0ional proein

2ii3 /uggest why most s0in cancers are considered non4hereditaryD

a3 'ue o environ4enal e55e0#, e%g% e6po#ure o U ligh, re#uling in 4uaion

:3 4o# #9in 0an0er# are a##o0iae7 $ih #o4ai0 4uaion#  no

(8)

kanr ampr MCS kanr ampr marker gene marker gene Use

* In the process of cloning a eu0aryotic gene, bacterial cells that contain the gene of interest can be identified by a double selection process using two antibiotic resistance mar0ers. The cloning vector can be made from two plasmids 8pA1P and pEA9 shown below.

Foth pA1P and pEA contain one BamH" site, one Hind III site and one origin of replication each. pA1P contains the ampicillin resistance gene while pEA contains the 0anamycin resistance gene.

To form the desired cloning vector, both pA1P and pEA are treated BamHI and Hind III. The resulting four restriction fragments are allowed to ligate to form several possibilities of circular  plasmids, among which, only one of them is the desired outcome which consists of two antibiotic resistance genes.

2a3 raw and annotate the desired cloning vector formed from pA1P and pEA. Annotate with the origin of replication, both mar0er genes, and the BamHI and Hind III sites #$%

'ra$ing #ho$ing a 0loning ve0or $ih  re#i#an0e gene# an7 origin o5 repli0aion

La:elling origin o5 repli0aion, 9anr , a4p, Ba4HI #ie, Hin7III #ie 

  49 5or one 4i#a9e, 1 5or $o 4i#a9e#, 1 5or hree 4i#a9e#

2:3 iscuss the significance of the following in gene cloning 5 2i3 ( selectable mar0ers

A4pR 0o7e# 5or a4pi0illin re#i#an0e $hi0h allo$# 5or #ele0ion o5 ran#5or4an#, #in0e only 0ell# 0onaining pla#4i7 $ill gro$ in 4e7ia 0onaining a4pi0illin%

• JanR 0o7e# 5or 9ana4y0in re#i#an0e, $hi0h i# u#e7 o 7i#ingui#h

:e$een :a0erial 0ell# ha are no ran#5or4e7 an7 ho#e ha are ran#5or4e7 $ih re0o4:inan an7 nonre0o4:inan pla#4i7# $hen gro$n on a 4e7iu4 0onaining 9ana4y0in%

2ii3 origin of replication

• Origin of replication allowed the plasmid (and foreign gene

Legen7

a4pr & a4pi0illin re#i#an0e gene

(9)

For Examiner’s

Use

.

inserted) to be replicated independently / autonomously of bacterial chromosome to increases copy number / creates multiple copies of the plasmid and gene within one bacterium.

Thi# in0rea#e# 0opy nu4:er# en#ure# ha 7uring ea0h #u:#eCuen 7ivi#ion o5 E. coli , every :a0erial 0ell $ill 0onain he pla#4i7% [1K

2iii3 multiple cloning site

• allows the plasmid to be used to insert / contain  a wide

range of dierent foreign genes. #"%

203 escribe the steps involved in the formation of a recombinant plasmid.

(u he ve0or 'NA an7 gene o5 inere# $ih he #a4e re#ri0ion en>y4e%

;enerae 0o4ple4enary #i09y en7# on :oh 'NA 4ole0ule# $hi0h 0an anneal via hy7rogen :on7# :y 0o4ple4enary :a#e pairing $hen hey are 4i6e7%

Liga#e i# a77e7 o #eal ni09# :y 5or4ing 0ovalen pho#pho7ie#er  :on7# :e$een a7=a0en nu0leoi7e#%

Thu# a re0o4:inan 'NA 4ole0ule i# 5or4e7 $hi0h i# 4a7e up o5  'NA 5or4  7i55eren #our0e#%

 ["K

Se0ion B

An#$er EITHER - OR ..

3rite your answers on the separate answer paper provided.

Gour answers should be illustrated by large, clearly labeled diagrams, where appropriate. Gour answers must be in continuous prose, where appropriate.

Gour answers must be set out in sections 2a3, 2:3 etc., as indicated in the question. + 2a3 xplain how glucagon differs from glycogen.

Poin o5  (o4pari#on

glu0agon gly0ogen

(10)

Use

e

2R& #pheri0al<en>y4e3

4a7e o5 heli0al 0hain#% :3 Type o5

4ono4er 

?ono4er# are a4ino a0i7 re#i7ue# $ih 7i55eren R group#%

?ono4er# 0on#i## o5 alpha glu0o#e only% 03 Type o5

:on7# :e$een 4ono4er 

A4ino a0i7 re#i7ue#  =oine7 :y pepi7e

:on7#%

Alpha glu0o#e =oine7 :y alpha 1) gly0o#i7i0 lin9age# $ih :ran0he7 alpha 1+ gly0o#i7i0 lin9age#%

73 Nu4:er o5 4ono4er per 4ole0ule

Fi6e7 nu4:er o5 a4ino a0i7 per 4ole0ule%

aria:le nu4:er o5 glu0o#e per 4ole0ule%

e3 Solu:iliy in $aer 

Solu:le in $aer a# i i# glo:ular in #ru0ure%

In#olu:le in $aer a# i ha# a large 4ole0ular $eigh% 53 Synhe#i# ;lu0agon i# pro7u0e7

:y alpha 0ell# in he pan0rea# in he i#le# o5 Langerhan#%

;ly0ogen i# #ynhe#i>e7 in liver an7 4u#0le 0ell#

$hen :loo7 glu0o#e i# high%

g3 Fun0ion ;lu0agon i# a

hor4one<#ignal proein ha regulae# :loo7 glu0o#e%

;ly0ogen provi7e# an

energy #ore in 4u#0le an7 liver%

2:3 escribe the process of A replication.

". 'eplication begins at a specific site called origin o5 repli0aion. % Heli0a#e un>ip# an7 #eparae# he $o parenal #ran7# of 

A double helix :y 7i#ruping he hy7rogen :on7# between complementary base pairs.

$. Single#ran7 :in7ing proein# bind to single A strands  9eep he #ran7# apar, so that they can serve as templates for  the synthesis of new complementary A strands.

)% ;n each of the parental A strands, a short RNA pri4er is added by an en>yme called p ri4a#e%

. 'NA poly4era#e adds 'NA nu0leoi7e# 8in the form of 7NTP#9 to the growing new strand in the * o " 7ire0ion.

6. A polymerase uses the parental strand as a e4plae and aligns the free a0ivae7 7NTP#  8deoxyribonucleoside triphosphates9

+. Through 0o4ple4enary :a#epairing with bases on the parental strand.

a. A7enine base pairs with hy4ine, and vice versa b. ;uanine base pairs with 0yo#ine, and vice versa

*. A polymerase catalyses the formation of pho#pho7ie#er  :on7# :e$een a7=a0en 'NA nu0leoi7e# of the newly synthesised strand.

. A 7i55eren A polymerase then removes the 'A primer and repla0e# i $ih 'NA nu0leoi7e#% @

").one of the daughter strands 0nown as the leading strand will be synthesised continuously from the * o " 7ire0ionJ

"". the oher #ran7  0nown as the lagging strand is synthesi>ed discontinuously by 0o4:ining #hor 5rag4en#  called O9a>a9i 5rag4en#

(11)

For Examiner’s

Use

11

"(. 'NA liga#e catalyses the formation of pho#pho7ie#er :on7 between the O9a>a9i 5rag4en#, #ealing he ni09.

"$.replication of A is #e4i0on#ervaive where the original strands of the double helix separates and act as templates for the synthesis of two new strands and each daughter cell inherits a A molecule that is a hybrid consisting of one original and one newly synthesised strandJ

203 xplain how gel electrophoresis can be used to provide evidence of molecular homology.

1% 'NA poly4orphi#4 e6i## :e$een organi#4# 

% 'NA 5rag4en# 5ro4 he 7i55eren organi#4 $a# 0u $ih he #a4e re#ri0ion en>y4e 

"% 'NA #a4ple i# loa7e7 ino $ell# ogeher $ih loa7ing 7ye% The loa7ing 7ye i# 7en#e hu# i help# he 'NA #a4ple #in9 ino he $ell# OR

a. (Teacher may want to point out that the dyes will  travel along the gel with the DNA but does not bind to the DNA.)

:% 'NA #a4ple i# loa7e7 ino $ell# ogeher $ih loa7ing 7ye $hi0h 0onain#  loa7ing 7ye# o help 4onior he progre## o5 ele0rophore#i#, #in0e 'NA :an7# are no vi#i:le%

)% The 5rag4en# o5 'NA are pipee7 ino he $ell# a he op o5  he gel in a po#iion 5urhe# 5ro4 he po#iive ele0ro7e<ano7e OR nearer he negaive ele0ro7e < 0aho7e *% ;el ele0rophore#i# i# 0arrie7 ou in a :u55er #oluion $hi0h

allo$# 0on7u0ion o5 ele0ri0iy o generae an ele0ri0 5iel7% +% 'NA #u:=e0e7 o a ele0ri0 0urren<5iel7 $here negaively

0harge7 'NA 4igrae# ou o5 $ell o$ar7# 7ire0ion o5  po#iive ele0ro7e<ano7e

% Frag4en# o5 'NA 4igrae hrough agaro#e gel 4ari6, 4a7e up o5 a 4e#h$or9 o5 poly#a00hari7e# ?e#h$or9 i4pe7e# 4ove4en o5 longer 'NA 5rag4en# 4ore han #horer 'NA 5rag4en#

-% Longer 'NA 5rag4en# 4igrae #lo$er 0o4pare7 o #horer  5rag4en#

The :an7ing paern :e$een he organi#4# $ere 0o4pare7,

.% #i4ilar :an7ing paern# pre#en0e o5 4ole0ular ho4ology 1/%7i55eren :an7ing paern# G no evi7en0e 4ole0ular 

ho4ology in 'NA #eC Poin# "- 24a6 + 4ar9#3

#*%

 2a3 xplain, using two named examples, how environmental forces act as forces of  natural selection.

#*%

E6a4ple 1&

1. There are $o ype# o5 peppere7 4oh# 2Biston betularia3% The ligher 5or4 2$hie $ih :la09 #po#3 an7 he 4elani0 5or4

(12)

Use

a7vanage< $ere $ell0a4ou5lage7 5ro4 pre7aor on ligh 0oloure7, li0hen0overe7 ree :ar9# an7 $ere #ele0e7 5or an7 hen0e hey in0rea#e7 in 5reCuen0y%

"% Dih he in7u#rial revoluion li0hen# on :ar9 o5 ree# $ere 9ille7 an7 :ar9# $ere 0overe7 $ih #oo ! hu# appeare7 7ar9er%

)% The ligher 5or4# o5 4oh# $ere #ele0e7 again# < ligher 5or4 o5 4oh :e0a4e 4ore vi#i:le an7 ea#y prey o :ir7#% Thu#, heir  nu4:er# 7e0line7%

*% The 7ar9er 5or4# o5 4oh ho$ever, $ere $ell 0a4ou5lage7 an7 hu# proli5erae7%

+% Hen0e here $a# 7i55erenial repro7u0ive #u00e## i%e% in7ivi7ual# $ih he 5avoura:le 0hara0eri#i0 #urvive7%

24a6 )3 E6a4ple &

% Ani:ioi0 re#i#an an7 nonre#i#an taphylococcus aureus :a0erial #rain# i%e% variaion, e6i## naurally%

-% Re#i#an #rain# u#ually ari#e :y #ponaneou# 4uaion#%

.% an0o4y0in 9ill# 4o# nonre#i#an :a0eria% Thu# he non re#i#an :a0erial are #ele0e7 again# in he pre#en0e o5  ani:ioi0# in he environ4en%

1/%an0o4y0in re#i#an taphylococcus aureus :a0eria ho$ever  have a #ele0ive a7vanage in he pre#en0e o5 ani:ioi0#%

11% Thu# hey are #ele0e7 5or an7 pa## on he allele 5or ani:ioi0 re#i#an0e o #u:#eCuen generaion#% Hen0e he ani:ioi0 re#i#an allele 5reCuen0y in0rea#e# populaion%

1%Hen0e 7i55erenial repro7u0ive #u00e## o00ur# 7ue o a 0hange in he environ4en%

24a6 )3 AP&

1"%Na4e7 e6a4ple 2;alapago# 5in0he#3

1)%Original phenoype $ih #ele0ive a7vanage 24e7iu4 groun7 5in0h $hi0h 5e7 on #4all en7er #ee7#3

1*% (hange in environ4en 27rough, only large har7 #ee7# availa:le3

1+%Sele0ion pre##ure an7 0hoi0e o5 ne$ phenoype 25in0he# $ih large, 4ore po$er5ul :ea9# 5e7 on he large har7 #ee7# $ere #ele0e7 5or3

1%'i55erenial repro7u0ive #u00e##  0hange in allele 5reCuen0y

24a6 )3

2:3 escribe the structural features of an en>yme molecule. #6%

1% En>y4e# are glo:ular proein# in naure

% They are 4a0ro4ole0ule# $ih uniCue "' 0on5or4aion

"% They po##e## an a0ive #ie ha i# a groove on he #ur5a0e o5  proein, ha i# 0o4ple4enary in #hape an7 0harge o he #u:#rae

)% For4e7 :y 5e$ a4ino a0i7#, Re5 o 0aalyi0 an7 0ona0 re#i7ue# 

*% The #ru0ural re#i7ue# provi7e 5ra4e$or9 ha rein5or0e# 0on5or4aion o5 a0ive #ie

(13)

For Examiner’s

Use

1"

i# #hape #lighly o M$rap aroun7 #u:#rae < :eer 5i

% Bring 0he4i0al group# o5 a0ive #ie ino po#iion# ha enhan0e heir a:iliy o 0aaly>e he 0he4i0al rea0ion

So4e en>y4e# 0onain anoher #ie 2apar 5ro4 a0ive #ie3 5or  anoher 4ole0ule o :in7 o 20o5a0or#<allo#eri0 a0ivaor#<inhi:ior#3 G 4u# 4a9e re5 o he 0orre0 ype# o5  4ole0ule# 24a6 +3

203 iscuss the ethical and social implications of genetically modified organisms.

1% BENEFITS OF ;RODIN; ;? (ROPS C 1A2 (

2DE LOOJ AT THE BENEFITS FIRST SO DE (AN DEI;H THESE A;AINST THE PROBLE?S3

i% Bene5i# o :oh 5ar4er an7 0on#u4er  ii% In0rea#e7 7i#ea#e re#i#an0e

iii% In0rea#e7 oleran0e o un5avoura:le 0on7iion# % SAFET OF ;? (ROPS& THE ENIRON?ENT G ?A 

i% Pe# Re#i#an0e

ii% E55e0# on NonTarge Organi#4# iii% ;ene Flo$ an7 Super$ee7#

iv% Bio7iver#iy

III3 SAFET OF ;? FOO'S& HU?AN HEALTH G ?A  1% To6i0iy o5 5oo7#u55#

% Allergie# o ne$ proein# #ynhe#i>e7

"% Nuriional Cualiie# o5 genei0ally engineere7 5oo7 )% Ani:ioi0 Re#i#an0e ?ar9er#

I3 ETHI(AL I?PLI(ATIONS OF ;ENETI( EN;INEERIN; G ?A  1% E6ploiaion o5 ani4al# 5or genei0 engineering

• There i# 0on0ern over he $ay ani4al# are e6ploie7 5or 5oo7

an7 4e7i0al re#ear0h% % (loning

"% Religiou# i4pli0aion# in 5oo7 0hoi0e#

#6%

Figure

Updating...

References

Updating...

Related subjects :