• No results found

(E) 1 Eth­oxy­carbonyl 2 [(2 hy­droxy 1 naphthyl)(phenyl)methyliminio]propan 1 ide

N/A
N/A
Protected

Academic year: 2020

Share "(E) 1 Eth­oxy­carbonyl 2 [(2 hy­droxy 1 naphthyl)(phenyl)methyliminio]propan 1 ide"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o942

Li and Lin C

23H23NO3 doi:10.1107/S1600536806003771 Acta Cryst.(2006). E62, o942–o944

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(

E

)-1-Ethoxycarbonyl-2-[(2-hydroxy-1-naphthyl)-(phenyl)methyliminio]propan-1-ide

Jing-Hua Li* and Chui-Pan Lin

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, People’s Republic of China

Correspondence e-mail: lijh@zjut.edu.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.049

wRfactor = 0.166

Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 16 January 2006 Accepted 31 January 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, C23H23NO3, the amino, hydroxy and carbonyl groups are involved in hydrogen bonding, forming a dimer. The crystal packing is further stabilized by inter-molecular –stacking.

Comment

As early as the mid-20th century, Mario Betti reported the synthesis of the so-called Betti base by the reaction of benz-aldehyde with 2-naphthol and ammonia followed by hydro-lysis with hydrochloric acid (Betti, 1941). However, only in recent decades has its usefulness in asymmetric synthesis been recognized (Istvan et al., 2004). As cheap resolving agents, chiral catalysts and optically active ligands, the Betti base and its derivatives are now widely used in organic synthesis (Istvan et al., 2004). Chiral aminoalcohols are of importance in cata-lytic asymmetric synthesis (Pu et al., 2001). Compound (I), prepared readily from the Betti base by treatment with ethyl acetoacetate, is one of the auxiliary-induced prochiral imino compounds which yields the corresponding chiral amino-alcohol after asymmetric hydrogenation.

In the structure of (I), atoms N2, C18, C19 and C20 are coplanar; this is illustrated clearly by the torsion angle N2— C18—C19—C20 of 2.20 (2) (Fig. 1). Moreover, the mean

plane through these four atoms is perpendicular to the phenyl ring plane, forming a dihedral angle of 89.89 (9). The dihedral

angle between the naphthalene ring system and phenyl ring plane is 78.71 (6).

In the crystal structure, the amino, hydroxy and carbonyl groups are involved in hydrogen bonding. Amino atom N2 acts as hydrogen-bond donor,viaatom H201, to atom O31 and O32, forming intramolecular hydrogen bonds. A centrosym-metric hydrogen-bond dimer centred at (0,12,

1

2) is formed by the intermolecular hydrogen bond O31–H301 O32i [symmetry code: (i)x, 1y, 1z] (Table 2 and Fig. 2). The crystal packing is further stabilized by intermolecular –

(2)

another, the distance between the centroids of the rings being 3.898 A˚ .

Experimental

To Betti base {or 1-[amino(phenyl)methyl]naphthalen-2-ol} (1.0 g, 2.8 mmol), methanol (20 ml) and ethyl acetoacetate (1.5 ml) were added with stirring at room temperature. Stirring was continued for 3 h at the same temperature to complete the reaction. The resulting mixture was concentrated in vacuoto about 3 ml, and the precipi-tated crystals were collected by filtration and washed with methanol twice (20.8 ml) to give colourless crystals (1.41 g, yield 97%; m.p. 431–432 K), which were recrystallized from methanol.

Crystal data

C23H23NO3

Mr= 361.44

Triclinic,P1

a= 9.602 (4) A˚

b= 9.962 (5) A˚

c= 10.899 (5) A˚

= 100.775 (19)

= 109.714 (14)

= 93.722 (18)

V= 954.9 (7) A˚3

Z= 2

Dx= 1.257 Mg m

3

MoKradiation Cell parameters from 7862

reflections

= 3.1–27.6

= 0.08 mm1

T= 298 (1) K Chunk, colorless 0.300.240.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: none 9527 measured reflections 4346 independent reflections

3124 reflections withF2> 2(F2)

Rint= 0.023

max= 27.5

h=12!11

k=12!12

l=14!14

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.050

wR(F2) = 0.166

S= 1.00 4346 reflections 245 parameters

H-atom parameters constrained

w= 1/[0.0031Fo2+(Fo2)]/(4Fo2)

(/)max< 0.001

max= 0.29 e A˚

3

min=0.23 e A˚

3

Extinction correction: Larson (1970)

Extinction coefficient: 1.2 (4)102

Table 1

Selected bond lengths (A˚ ).

O31—C11 1.3624 (17)

O32—C20 1.235 (2)

O33—C20 1.350 (2)

O33—C21 1.429 (2)

N2—C1 1.4675 (16)

N2—C18 1.333 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O31—H301 O32i

0.93 1.80 2.7182 (15) 170

N2—H201 O31 0.89 2.25 2.8182 (17) 122 N2—H201 O32 0.89 2.11 2.7634 (13) 129

Symmetry code: (i)x;yþ1;zþ1.

The H atoms of the amino group and hydroxy groups were located in difference Fourier maps and included in the refinement based on the as-found N—H and O—H bond lengths, but their isotropic displacement paramenters were initially refined, then fixed in the final stage. All other H atoms were placed in calculated positions, with C—H = 0.93–0.97 A˚ , and included in the refinement in the riding model, withUiso(H) = 1.2Ueq(carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refine-ment:PROCESS-AUTO; data reduction:CrystalStructure(Rigaku/ MSC, 2004); program(s) used to solve structure:SHELXS97 (Shel-drick, 1997); program(s) used to refine structure: CRYSTALS (Betteridgeet al., 2003); molecular graphics:ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

[image:2.610.48.294.68.254.2]

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003).J. Appl. Cryst.36, 1487.

Figure 1

The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 40% probability level. H atoms

are drawn as spheres of arbitrary radius. Figure 2Partial packing digram for (I), showing the hydrogen-bonded (dashed

[image:2.610.314.562.73.265.2]
(3)

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Istvan, S. & Ferenc, F. (2004).Curr. Org. Synth.1, 155–165.

Larson, A. C. (1970).Crystallographic Computing,edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.

Pu, L. & Yu, H. B. (2001).Chem. Rev.101, 757–824.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.

Rigaku/MSC (2004).CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997).SHELX97. University of Go¨ttingen, Germany.

organic papers

o944

Li and Lin C

(4)

supporting information

Acta Cryst. (2006). E62, o942–o944 [https://doi.org/10.1107/S1600536806003771]

(

E

)-1-Ethoxycarbonyl-2-[(2-hydroxy-1-naphthyl)(phenyl)methyliminio]propan-1-ide

Jing-Hua Li and Chui-Pan Lin

(E)-1-Ethoxycarbonyl-3-[(2-hydroxynaphthalen-1-ylmethyl)phenyliminio]butan-2-ide

Crystal data

C23H23NO3

Mr = 361.44 Triclinic, P1 Hall symbol: -P 1

a = 9.602 (4) Å

b = 9.962 (5) Å

c = 10.899 (5) Å

α = 100.775 (19)°

β = 109.714 (14)°

γ = 93.722 (18)°

V = 954.9 (7) Å3

Z = 2

F(000) = 384.00

Dx = 1.257 Mg m−3

Mo radiation, λ = 0.71075 Å Cell parameters from 7862 reflections

θ = 3.1–27.6°

µ = 0.08 mm−1

T = 298 K Chunk, colorless 0.30 × 0.24 × 0.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10.00 pixels mm-1

ω scans

9527 measured reflections 4346 independent reflections

3124 reflections with F2 > 2σ(F2)

Rint = 0.023

θmax = 27.5°

h = −12→11

k = −12→12

l = −14→14

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.050

wR(F2) = 0.166

S = 1.00 4346 reflections 245 parameters

H-atom parameters constrained

w = 1/[0.0031Fo2 + σ(Fo2)]/(4Fo2)

(Δ/σ)max < 0.001

Δρmax = 0.29 e Å−3

Δρmin = −0.23 e Å−3

Extinction correction: Larson (1970) Extinction coefficient: 119 (38)

Special details

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R

-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o942–o944

O33 −0.06574 (13) 0.83611 (13) 0.24492 (12) 0.0661 (3) N2 0.24609 (12) 0.80909 (12) 0.61792 (12) 0.0398 (3) C1 0.36652 (12) 0.78535 (13) 0.73398 (13) 0.0355 (3) C2 0.42380 (13) 0.65073 (13) 0.69751 (12) 0.0341 (3) C3 0.57588 (13) 0.64680 (14) 0.70721 (13) 0.0376 (3) C4 0.68307 (16) 0.76502 (18) 0.74675 (17) 0.0483 (4)

C5 0.82626 (18) 0.7566 (2) 0.7505 (2) 0.0618 (5)

C6 0.87158 (18) 0.6273 (2) 0.7193 (2) 0.0624 (5)

C7 0.77362 (18) 0.5128 (2) 0.68143 (17) 0.0540 (4) C8 0.62282 (16) 0.51591 (17) 0.67392 (13) 0.0415 (3) C9 0.51910 (17) 0.39689 (16) 0.62937 (14) 0.0445 (4) C10 0.37352 (17) 0.40114 (14) 0.61832 (14) 0.0419 (3) C11 0.32730 (13) 0.53007 (14) 0.65342 (13) 0.0371 (3) C12 0.32249 (14) 0.79830 (14) 0.85641 (13) 0.0394 (3) C13 0.3810 (2) 0.7225 (2) 0.95251 (18) 0.0617 (5)

C14 0.3486 (3) 0.7423 (2) 1.0670 (2) 0.0842 (7)

C15 0.2541 (2) 0.8339 (3) 1.0872 (2) 0.0891 (7)

C16 0.1941 (2) 0.9058 (2) 0.9946 (2) 0.0810 (7)

C17 0.22885 (18) 0.8924 (2) 0.87835 (19) 0.0576 (4) C18 0.25072 (14) 0.90910 (13) 0.55280 (14) 0.0398 (3) C19 0.14278 (17) 0.91370 (16) 0.43419 (17) 0.0483 (4) C20 0.01721 (16) 0.81249 (16) 0.36429 (16) 0.0448 (4)

C21 −0.1872 (2) 0.7349 (2) 0.1551 (2) 0.0710 (5)

C22 −0.1341 (3) 0.6298 (3) 0.0722 (2) 0.0862 (9)

C23 0.3816 (2) 1.02309 (18) 0.6117 (2) 0.0619 (5)

H1 0.4492 0.8594 0.7561 0.040*

H4 0.6557 0.8513 0.7700 0.057*

H5 0.8939 0.8367 0.7754 0.071*

H6 0.9695 0.6222 0.7238 0.077*

H7 0.8046 0.4277 0.6605 0.068*

H9 0.5495 0.3118 0.6072 0.056*

H10 0.3060 0.3204 0.5881 0.050*

H13 0.4456 0.6602 0.9398 0.074*

H14 0.3889 0.6909 1.1303 0.100*

H15 0.2305 0.8456 1.1642 0.102*

H16 0.1308 0.9690 1.0086 0.091*

H17 0.1877 0.9439 0.8154 0.065*

H19 0.1530 0.9886 0.3967 0.057*

H201 0.1686 0.7417 0.5831 0.045*

H211 −0.2611 0.7793 0.0972 0.077*

H212 −0.2322 0.6899 0.2069 0.078*

H221 −0.2171 0.5780 −0.0032 0.103*

H222 −0.0842 0.5683 0.1252 0.103*

H223 −0.0657 0.6755 0.0413 0.103*

H231 0.3672 1.0912 0.5584 0.069*

H232 0.4716 0.9850 0.6140 0.069*

H233 0.3896 1.0653 0.7009 0.070*

(6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O31 0.0361 (5) 0.0358 (5) 0.0649 (7) −0.0002 (4) 0.0212 (4) 0.0090 (5) O32 0.0430 (5) 0.0488 (6) 0.0568 (6) −0.0030 (4) 0.0077 (4) 0.0186 (5) O33 0.0670 (7) 0.0640 (8) 0.0522 (7) 0.0004 (6) −0.0021 (5) 0.0239 (6) N2 0.0342 (5) 0.0343 (6) 0.0449 (6) 0.0019 (4) 0.0062 (4) 0.0103 (5) C1 0.0292 (5) 0.0329 (7) 0.0406 (7) 0.0035 (4) 0.0087 (5) 0.0060 (5) C2 0.0333 (6) 0.0351 (7) 0.0345 (6) 0.0054 (5) 0.0124 (5) 0.0088 (5) C3 0.0337 (6) 0.0448 (8) 0.0344 (6) 0.0100 (5) 0.0109 (5) 0.0100 (5) C4 0.0344 (7) 0.0505 (9) 0.0574 (9) 0.0036 (6) 0.0140 (6) 0.0107 (7) C5 0.0341 (7) 0.0743 (12) 0.0709 (11) 0.0044 (7) 0.0141 (7) 0.0112 (10) C6 0.0355 (7) 0.0910 (14) 0.0653 (11) 0.0192 (8) 0.0199 (7) 0.0212 (10) C7 0.0456 (8) 0.0725 (11) 0.0502 (9) 0.0282 (8) 0.0202 (7) 0.0159 (8) C8 0.0417 (7) 0.0529 (9) 0.0352 (7) 0.0173 (6) 0.0158 (5) 0.0149 (6) C9 0.0556 (8) 0.0406 (8) 0.0419 (7) 0.0207 (6) 0.0193 (6) 0.0118 (6) C10 0.0506 (7) 0.0341 (7) 0.0422 (7) 0.0069 (5) 0.0170 (6) 0.0100 (6) C11 0.0361 (6) 0.0385 (7) 0.0374 (7) 0.0081 (5) 0.0134 (5) 0.0085 (5) C12 0.0335 (6) 0.0385 (7) 0.0385 (7) 0.0003 (5) 0.0087 (5) −0.0002 (5) C13 0.0819 (12) 0.0619 (11) 0.0416 (8) 0.0179 (9) 0.0213 (8) 0.0112 (8) C14 0.1155 (18) 0.0905 (17) 0.0439 (10) 0.0058 (14) 0.0280 (11) 0.0119 (10) C15 0.0825 (14) 0.121 (2) 0.0510 (11) −0.0230 (14) 0.0360 (10) −0.0218 (13) C16 0.0513 (10) 0.1112 (18) 0.0654 (13) 0.0098 (10) 0.0239 (9) −0.0223 (12) C17 0.0433 (7) 0.0670 (11) 0.0545 (9) 0.0133 (7) 0.0151 (7) −0.0030 (8) C18 0.0429 (7) 0.0290 (6) 0.0470 (7) 0.0042 (5) 0.0158 (6) 0.0085 (5) C19 0.0537 (8) 0.0370 (8) 0.0521 (9) 0.0037 (6) 0.0132 (7) 0.0166 (6) C20 0.0456 (7) 0.0431 (8) 0.0464 (8) 0.0114 (6) 0.0135 (6) 0.0154 (6) C21 0.0590 (10) 0.0826 (14) 0.0533 (10) −0.0027 (9) −0.0020 (8) 0.0176 (10) C22 0.073 (2) 0.097 (2) 0.0683 (15) −0.0077 (16) 0.0071 (14) 0.0108 (14) C23 0.0607 (10) 0.0432 (9) 0.0690 (11) −0.0107 (7) 0.0073 (8) 0.0177 (8)

Geometric parameters (Å, º)

O31—C11 1.3624 (17) C18—C23 1.510 (2)

O32—C20 1.235 (2) C19—C20 1.4092 (19)

O33—C20 1.350 (2) C21—C22 1.483 (4)

O33—C21 1.429 (2) O31—H301 0.929

N2—C1 1.4675 (16) N2—H201 0.893

N2—C18 1.333 (2) C1—H1 0.980

C1—C2 1.5175 (19) C4—H4 0.930

C1—C12 1.516 (2) C5—H5 0.930

C2—C3 1.4318 (19) C6—H6 0.930

C2—C11 1.3687 (18) C7—H7 0.930

C3—C4 1.409 (2) C9—H9 0.930

C3—C8 1.430 (2) C10—H10 0.930

C4—C5 1.370 (2) C13—H13 0.930

C5—C6 1.405 (3) C14—H14 0.930

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o942–o944

C7—C8 1.425 (2) C16—H16 0.930

C8—C9 1.392 (2) C17—H17 0.930

C9—C10 1.366 (2) C19—H19 0.930

C10—C11 1.413 (2) C21—H211 0.970

C12—C13 1.392 (2) C21—H212 0.970

C12—C17 1.384 (2) C22—H221 0.960

C13—C14 1.368 (3) C22—H222 0.960

C14—C15 1.368 (4) C22—H223 0.960

C15—C16 1.340 (3) C23—H231 0.960

C16—C17 1.400 (3) C23—H232 0.960

C18—C19 1.368 (2) C23—H233 0.960

O31···O32i 2.7182 (15) H10···C20i 3.531

O31···C6ii 3.490 (2) H10···C21i 3.477

O32···O31i 2.7182 (15) H10···C23xi 3.131

O32···C7iii 3.564 (2) H10···H14x 3.482

O32···C10i 3.443 (2) H10···H19xi 3.487

O32···C11i 3.5056 (17) H10···H212i 2.579

O33···C17iv 3.473 (2) H10···H231xi 2.385

C3···C9iii 3.402 (2) H10···H233xi 3.063

C6···O31v 3.490 (2) H13···C21vii 3.452

C6···C10iii 3.584 (2) H13···H211vii 2.798

C7···O32iii 3.564 (2) H13···H212vii 3.409

C7···C10iii 3.390 (2) H13···H221vii 3.275

C7···C11iii 3.379 (2) H13···H221i 3.448

C8···C9iii 3.424 (2) H14···C8x 3.254

C8···C10iii 3.447 (2) H14···C9x 2.793

C9···C3iii 3.402 (2) H14···C10x 3.247

C9···C8iii 3.424 (2) H14···C23viii 3.590

C10···O32i 3.443 (2) H14···H9x 2.726

C10···C6iii 3.584 (2) H14···H10x 3.482

C10···C7iii 3.390 (2) H14···H211vii 3.571

C10···C8iii 3.447 (2) H14···H212vii 3.448

C11···O32i 3.5056 (17) H14···H221i 2.884

C11···C7iii 3.379 (2) H14···H231viii 3.596

C17···O33iv 3.473 (2) H14···H233viii 2.970

O31···H6ii 2.619 H15···O33xii 3.249

O31···H7iii 3.425 H15···C19xii 3.291

O31···H201 2.247 H15···C20xii 3.500

O31···H212i 3.008 H15···H4viii 3.010

O31···H222i 3.302 H15···H5viii 3.481

O31···H301i 3.383 H15···H9x 3.387

O32···H6iii 3.479 H15···H19xii 3.011

O32···H7iii 2.750 H15···H223xii 2.951

O32···H10i 2.802 H15···H232viii 3.172

O32···H201 2.110 H15···H233viii 3.425

O32···H301i 1.799 H16···O33iv 3.576

(8)

O33···H16iv 3.576 H16···C5ii 3.515

O33···H17iv 2.638 H16···C5viii 3.313

O33···H233iv 3.522 H16···C16xiii 3.426

O33···H301i 3.562 H16···H4viii 2.794

N2···H7iii 3.345 H16···H5ii 2.798

N2···H201 0.893 H16···H5viii 2.842

C1···H201 2.005 H16···H16xiii 2.580

C2···H9iii 3.501 H16···H211iv 3.290

C2···H201 2.651 H16···H223xii 3.516

C3···H9iii 3.342 H17···O33iv 2.638

C3···H221vii 3.337 H17···C21iv 3.155

C4···H16viii 3.295 H17···H5ii 2.810

C4···H221vii 3.491 H17···H6ii 3.490

C5···H10iii 3.387 H17···H19iv 3.502

C5···H16v 3.515 H17···H201 2.870

C5···H16viii 3.313 H17···H211iv 2.705

C5···H19ix 3.275 H19···C5ix 3.275

C5···H223vii 3.259 H19···H4ix 3.489

C6···H10iii 3.364 H19···H5ix 2.738

C6···H221vii 3.514 H19···H10xv 3.487

C6···H222iii 3.202 H19···H15vi 3.011

C6···H223vii 3.288 H19···H17iv 3.502

C6···H301v 3.484 H19···H201 3.452

C7···H10iii 3.528 H201···O31 2.247

C7···H221vii 3.346 H201···O32 2.110

C7···H222iii 3.271 H201···N2 0.893

C8···H14x 3.254 H201···C1 2.005

C8···H221vii 3.247 H201···C2 2.651

C9···H14x 2.793 H201···C11 2.754

C9···H231xi 3.128 H201···C12 2.769

C10···H14x 3.247 H201···C17 3.125

C10···H212i 2.919 H201···C18 1.930

C10···H231xi 3.026 H201···C19 2.541

C11···H7iii 3.343 H201···C20 2.593

C11···H201 2.754 H201···C23 3.262

C11···H212i 3.143 H201···H1 2.743

C12···H6ii 3.410 H201···H6ii 3.128

C12···H201 2.769 H201···H7iii 2.968

C13···H211vii 3.221 H201···H17 2.870

C13···H221i 3.513 H201···H19 3.452

C14···H9x 3.507 H201···H232 3.546

C14···H221i 3.212 H201···H233 3.503

C14···H233viii 3.108 H201···H301 3.020

C15···H4viii 3.150 H201···H301i 3.175

C15···H223xii 3.194 H211···C13xiv 3.221

C15···H232viii 3.493 H211···C16iv 3.549

C15···H233viii 3.377 H211···C17iv 3.217

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, o942–o944

C16···H5ii 2.995 H211···H14xiv 3.571

C16···H5viii 3.589 H211···H16iv 3.290

C16···H16xiii 3.426 H211···H17iv 2.705

C16···H211iv 3.549 H211···H233iv 3.093

C16···H223xii 3.507 H212···O31i 3.008

C17···H5ii 3.002 H212···C10i 2.919

C17···H6ii 3.300 H212···C11i 3.143

C17···H201 3.125 H212···H10i 2.579

C17···H211iv 3.217 H212···H13xiv 3.409

C18···H9iii 3.596 H212···H14xiv 3.448

C18···H201 1.930 H212···H233iv 3.135

C19···H7iii 3.486 H212···H301i 2.543

C19···H15vi 3.291 H221···C3xiv 3.337

C19···H201 2.541 H221···C4xiv 3.491

C20···H7iii 3.054 H221···C6xiv 3.514

C20···H10i 3.531 H221···C7xiv 3.346

C20···H15vi 3.500 H221···C8xiv 3.247

C20···H201 2.593 H221···C13i 3.513

C20···H301i 2.953 H221···C14i 3.212

C21···H13xiv 3.452 H221···H13xiv 3.275

C21···H17iv 3.155 H221···H13i 3.448

C21···H233iv 3.405 H221···H14i 2.884

C21···H301i 3.275 H222···O31i 3.302

C22···H301i 3.598 H222···C6iii 3.202

C23···H9xv 3.221 H222···C7iii 3.271

C23···H10xv 3.131 H222···H6iii 2.782

C23···H14viii 3.590 H222···H7iii 2.896

C23···H201 3.262 H222···H223xvi 3.439

C23···H232ix 3.213 H222···H301i 3.010

H1···H201 2.743 H223···C5xiv 3.259

H4···C15viii 3.150 H223···C6xiv 3.288

H4···C16viii 3.041 H223···C15vi 3.194

H4···H15viii 3.010 H223···C16vi 3.507

H4···H16viii 2.794 H223···H5xiv 3.492

H4···H19ix 3.489 H223···H6xiv 3.534

H5···C16v 2.995 H223···H15vi 2.951

H5···C16viii 3.589 H223···H16vi 3.516

H5···C17v 3.002 H223···H222xvi 3.439

H5···H15viii 3.481 H231···C9xv 3.128

H5···H16v 2.798 H231···C10xv 3.026

H5···H16viii 2.842 H231···H9xv 2.572

H5···H17v 2.810 H231···H10xv 2.385

H5···H19ix 2.738 H231···H14viii 3.596

H5···H223vii 3.492 H231···H232ix 2.844

H6···O31v 2.619 H232···C15viii 3.493

H6···O32iii 3.479 H232···C23ix 3.213

H6···C12v 3.410 H232···H9xv 3.313

(10)

H6···H17v 3.490 H232···H15viii 3.172

H6···H201v 3.128 H232···H201 3.546

H6···H222iii 2.782 H232···H231ix 2.844

H6···H223vii 3.534 H232···H232ix 2.781

H6···H301v 2.726 H233···O33iv 3.522

H6···H301iii 3.434 H233···C14viii 3.108

H7···O31iii 3.425 H233···C15viii 3.377

H7···O32iii 2.750 H233···C21iv 3.405

H7···N2iii 3.345 H233···H9xv 3.307

H7···C11iii 3.343 H233···H10xv 3.063

H7···C19iii 3.486 H233···H14viii 2.970

H7···C20iii 3.054 H233···H15viii 3.425

H7···H201iii 2.968 H233···H201 3.503

H7···H222iii 2.896 H233···H211iv 3.093

H7···H301v 3.299 H233···H212iv 3.135

H9···C2iii 3.501 H301···O31i 3.383

H9···C3iii 3.342 H301···O32i 1.799

H9···C14x 3.507 H301···O33i 3.562

H9···C18iii 3.596 H301···C6ii 3.484

H9···C23xi 3.221 H301···C20i 2.953

H9···H14x 2.726 H301···C21i 3.275

H9···H15x 3.387 H301···C22i 3.598

H9···H231xi 2.572 H301···H6ii 2.726

H9···H232xi 3.313 H301···H6iii 3.434

H9···H232iii 3.395 H301···H7ii 3.299

H9···H233xi 3.307 H301···H201 3.020

H10···O32i 2.802 H301···H201i 3.175

H10···C5iii 3.387 H301···H212i 2.543

H10···C6iii 3.364 H301···H222i 3.010

H10···C7iii 3.528 H301···H301i 3.270

C20—O33—C21 119.63 (15) C2—C1—H1 106.7

C1—N2—C18 126.54 (10) C12—C1—H1 106.3

N2—C1—C2 110.49 (10) C3—C4—H4 119.2

N2—C1—C12 112.19 (11) C5—C4—H4 119.0

C2—C1—C12 114.04 (12) C4—C5—H5 119.8

C1—C2—C3 121.71 (11) C6—C5—H5 120.1

C1—C2—C11 119.12 (12) C5—C6—H6 119.7

C3—C2—C11 119.17 (13) C7—C6—H6 120.4

C2—C3—C4 123.87 (13) C6—C7—H7 119.3

C2—C3—C8 118.64 (12) C8—C7—H7 118.5

C4—C3—C8 117.49 (13) C8—C9—H9 119.4

C3—C4—C5 121.84 (16) C10—C9—H9 118.8

C4—C5—C6 120.10 (17) C9—C10—H10 120.4

C5—C6—C7 119.93 (17) C11—C10—H10 120.6

C6—C7—C8 122.18 (18) C12—C13—H13 119.3

C3—C8—C7 118.41 (14) C14—C13—H13 120.0

(11)

supporting information

sup-8 Acta Cryst. (2006). E62, o942–o944

C7—C8—C9 122.14 (15) C15—C14—H14 119.9

C8—C9—C10 121.84 (14) C14—C15—H15 120.3

C9—C10—C11 118.95 (13) C16—C15—H15 120.0

O31—C11—C2 117.91 (13) C15—C16—H16 119.8

O31—C11—C10 120.10 (12) C17—C16—H16 118.6

C2—C11—C10 121.99 (13) C12—C17—H17 120.2

C1—C12—C13 121.32 (15) C16—C17—H17 120.8

C1—C12—C17 120.11 (15) C18—C19—H19 117.8

C13—C12—C17 118.48 (17) C20—C19—H19 117.6

C12—C13—C14 120.7 (2) O33—C21—H211 109.6

C13—C14—C15 120.5 (2) O33—C21—H212 108.7

C14—C15—C16 119.7 (2) C22—C21—H211 109.2

C15—C16—C17 121.6 (2) C22—C21—H212 109.0

C12—C17—C16 119.00 (19) H211—C21—H212 109.5

N2—C18—C19 123.32 (12) C21—C22—H221 110.1

N2—C18—C23 118.79 (12) C21—C22—H222 109.4

C19—C18—C23 117.89 (15) C21—C22—H223 108.9

C18—C19—C20 124.60 (16) H221—C22—H222 109.4

O32—C20—O33 121.65 (12) H221—C22—H223 109.5

O32—C20—C19 125.62 (14) H222—C22—H223 109.5

O33—C20—C19 112.73 (15) C18—C23—H231 110.0

O33—C21—C22 110.74 (18) C18—C23—H232 109.4

C11—O31—H301 110.8 C18—C23—H233 109.0

C1—N2—H201 114.1 H231—C23—H232 109.5

C18—N2—H201 118.8 H231—C23—H233 109.5

N2—C1—H1 106.5 H232—C23—H233 109.5

C20—O33—C21—C22 −85.7 (2) C4—C3—C8—C7 −0.6 (2)

C21—O33—C20—O32 −7.0 (2) C4—C3—C8—C9 −177.53 (15)

C21—O33—C20—C19 172.89 (16) C8—C3—C4—C5 1.5 (2)

C1—N2—C18—C19 170.30 (15) C3—C4—C5—C6 −2.4 (3)

C1—N2—C18—C23 −9.3 (2) C4—C5—C6—C7 2.4 (3)

C18—N2—C1—C2 −113.44 (16) C5—C6—C7—C8 −1.5 (3)

C18—N2—C1—C12 118.09 (16) C6—C7—C8—C3 0.6 (2)

N2—C1—C2—C3 119.32 (14) C6—C7—C8—C9 177.45 (18)

N2—C1—C2—C11 −60.26 (18) C3—C8—C9—C10 −1.0 (2)

N2—C1—C12—C13 149.65 (13) C7—C8—C9—C10 −177.85 (16)

N2—C1—C12—C17 −33.99 (16) C8—C9—C10—C11 −0.1 (2)

C2—C1—C12—C13 23.07 (16) C9—C10—C11—O31 179.47 (14)

C2—C1—C12—C17 −160.57 (11) C9—C10—C11—C2 0.3 (2)

C12—C1—C2—C3 −113.21 (14) C1—C12—C13—C14 175.34 (16)

C12—C1—C2—C11 67.20 (15) C1—C12—C17—C16 −177.75 (14)

C1—C2—C3—C4 −1.9 (2) C13—C12—C17—C16 −1.3 (2)

C1—C2—C3—C8 178.66 (13) C17—C12—C13—C14 −1.1 (2)

C1—C2—C11—O31 1.1 (2) C12—C13—C14—C15 2.2 (3)

C1—C2—C11—C10 −179.75 (14) C13—C14—C15—C16 −0.8 (3)

C3—C2—C11—O31 −178.53 (13) C14—C15—C16—C17 −1.7 (3)

(12)

C11—C2—C3—C4 177.66 (15) N2—C18—C19—C20 −2.2 (2)

C11—C2—C3—C8 −1.7 (2) C23—C18—C19—C20 177.45 (17)

C2—C3—C4—C5 −177.89 (17) C18—C19—C20—O32 4.8 (3)

C2—C3—C8—C7 178.89 (14) C18—C19—C20—O33 −175.09 (16)

C2—C3—C8—C9 1.9 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+2, −z+1; (v) x+1, y, z; (vi) x, y, z−1; (vii) x+1, y, z+1; (viii) −x+1, −y+2, −z+2; (ix) −x+1, −y+2, −z+1; (x) −x+1, −y+1, −z+2; (xi) x, y−1, z; (xii) x, y, z+1; (xiii) −x, −y+2, −z+2; (xiv) x−1, y, z−1; (xv) x, y+1, z; (xvi) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O31—H301···O32i 0.93 1.80 2.7182 (15) 170

N2—H201···O31 0.89 2.25 2.8182 (17) 122

N2—H201···O32 0.89 2.11 2.7634 (13) 129

Figure

Figure 2

References

Related documents

The government co ll ect s revenue f rom taxes on capital and labour income and value-added taxes on fina l demand , production taxes on intermediate inputs, and...

The main predictions look at the level of identification that charity street donation collectors have with their job role (e.g., no ID, uniform/t-shirt, ID badge, and

In view of the present satisfactory level of computerisation in commercial bank branches, it is proposed that, ‘‘payment of interest on savings bank accounts by scheduled

- Habitat for Humanity International – Provided computer support for the direct mail, telemarketing, major donor, matching gift, and special event fundraising programs -

No.3 IP Fixed Mobile All-IP based FMC Single Platform Box Module Site or Central Office One Cabinet One Site 9KW 3×3KW Smart modularized power management 2KW

It is the (education that will empower biology graduates for the application of biology knowledge and skills acquired in solving the problem of unemployment for oneself and others

 Transportation  activities  include  personnel  and   freight  movements  and  mobile  plant  activities..  Intertwined  with  these  BMPs  are  enforceable

— Sutural angle of elytra without small tooth; head, antennae, scutellum, legs, and venter (except abdominal sterna laterally) black; pronotum yellow with disc black from base to