• No results found

Tris[2,5 bis­­(1H benzimidazol 2 yl)pyridinato κ2N1,N2]cobalt(III) dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "Tris[2,5 bis­­(1H benzimidazol 2 yl)pyridinato κ2N1,N2]cobalt(III) dihydrate"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2006). E62, m663–m665 doi:10.1107/S1600536806007082 Zhouet al. [Co(C

19H12N5)3]2H2O

m663

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris[2,5-bis(1

H

-benzimidazol-2-yl)pyridinato-j

2

N

1

,

N

2

]cobalt(III) dihydrate

Yan-Ling Zhou,aMing-Hua Zenga* and Seik Weng Ngb

a

Department of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People’s Republic of China, andbDepartment of

Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study T= 295 K

Mean(C–C) = 0.006 A˚ Rfactor = 0.058 wRfactor = 0.164

Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 20 February 2006 Accepted 27 February 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, [Co(C19H12N5)3]2H2O, three

mono-deprotonated 2,5-bis(benzimidazolyl)pyridine heterocycles

chelate to cobalt(III) through the N atom of one benzimida-zolyl arm of the heterocycle as well as through the pyridyl N atom to form a fairly regular six-coordinate, octahedral

geometry geometry for cobalt. A network of N—H N, N—

H O and O—H N hydrogen bonds involving the

non-coordinated water molecules results in a layered structure.

Comment

2,5-Bis(benzimidazolyl)pyridine (Hbbp), an N-heterocycle

having several Lewis basic sites, was first claimed in a patent (Chimetron S.a.r.l., 1967). No complexes with metals have been reported, unlike the more symmetrical 2,6-bis(benz-imidazolyl)pyridine isomer which affords a large number of metal complexes, as noted from a survey of the Cambridge Structural Database (Version 5.27 of December 2005; Allen, 2002).

In the title cobalt(III) derivative, (I) (Fig. 1), three

mono-deprotonated bbp anions chelate to the metal atom.

(2)

with the two non-coordinated water molecules (Table 2) to give a layer motif.

The oxidation of the cobalt(II) starting material to cobalt(III) may have occurred by reaction with dissolved O2at

elevated temperature and pressure (Gajdaet al., 1997).

Experimental

Cobalt(II) chloride hexahydrate (0.0595 g, 0.25 mmol) and 2,5-bis(1H-benzimidazolyl)pyridine (0.0384 g, 0.125 mmol) were dissolved in a mixture of ethanol (3 ml) and water (15 ml). The solution was placed in a 23-ml Teflon-lined stainless steel Parr bomb. The bomb was heated at 433 K for 120 h. The cooled mixture yielded red block-shaped crystals of (I) in about 30% yield. The crystals were washed with water and then dried in air.

Crystal data

[Co(C19H12N5)3]2H2O

Mr= 1025.97

Triclinic,P1

a= 12.1623 (8) A˚

b= 13.2460 (8) A˚

c= 17.485 (1) A˚

= 111.712 (1)

= 100.538 (1)

= 92.334 (1)

V= 2554.7 (3) A˚3

Z= 2

Dx= 1.334 Mg m

3

MoKradiation Cell parameters from 3578

reflections

= 2.3–24.5

= 0.40 mm1

T= 295 (2) K Block, red

0.280.180.08 mm

Data collection

Bruker SMART CCD diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

10874 independent reflections 6132 reflections withI> 2(I)

Rint= 0.040 max= 27.1

h=15!15

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.058

wR(F2) = 0.164

S= 0.99 10874 reflections 688 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0796P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.60 e A˚

3

min=0.76 e A˚

3

Table 1

Selected bond lengths (A˚ ).

Co1—N1 1.911 (3) Co1—N3 1.993 (3) Co1—N6 1.897 (3)

[image:2.610.46.294.76.308.2]

Co1—N8 1.975 (3) Co1—N11 1.911 (3) Co1—N13 1.966 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1w—H1w1 N5 0.84 (1) 1.97 (1) 2.785 (4) 165 (4) O1w—H1w2 N15 0.84 (1) 2.14 (2) 2.949 (4) 162 (4) O2w—H2w1 N4 0.85 (1) 2.00 (2) 2.819 (5) 163 (6) N2—H2n N9i

0.85 2.20 2.888 (4) 138 N10—H10n O1w 0.85 2.12 2.885 (4) 150 N14—H14n O2wii

0.85 1.97 2.818 (5) 176

Symmetry codes: (i)xþ1;y;z; (ii)x;y1;z.

The carbon and nitrogen-bound H atoms were placed in idealized locations (C–H = 0.93 A˚ and N—H = 0.85 A˚) and refined as riding. The water H atoms were located in a difference map and were refined with distance restraints of O—H = 0.85 (1) A˚ and H H = 1.39 (1) A˚ . The constraintUiso(H) = 1.2Ueq(carrier) was applied in all cases. A consideration of the hydrogen-bonding interactions leads to a formulation having two 2,5-bis(1H-benzimidazolyl)pyridine anions whose negative charge formally resides on the N atom of one deprotonated benzimidazolyl arm, and a 2,5-bis(1H -benzimidazol-yl)pyridine anion whose negative charge is formally delocalized over the imidazolyl ring. Neither of the N atoms of this ring is involved in coordination to cobalt (see scheme), but both are involved in hydrogen bonding as acceptors. The O1wwater molecule forms two hydrogen bonds, whereas the O2wwater molecule forms only one hydrogen bond. However, the O2wwater molecule is not a hydroxide anion, as this would raise the oxidation state of Co to 4+.

Data collection:SMART(Bruker, 2001); cell refinement:SAINT (Bruker, 2001); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

We thank the Natural Science Foundation of Guangxi Province (No. 0447019) and the University of Malaya (No. F0712/2005c) for supporting this study.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Bruker (2001).SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1

[image:2.610.311.566.281.358.2]
(3)

Gajda, T., Henry, B. & Delpuech, J.-J. (1997).Inorg. Chem.36, 1850–1859. Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National

Laboratory, Tennessee, USA.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

metal-organic papers

Acta Cryst.(2006). E62, m663–m665 Zhouet al. [Co(C

(4)

supporting information

Acta Cryst. (2006). E62, m663–m665 [https://doi.org/10.1107/S1600536806007082]

Tris[2,5-bis(1

H

-benzimidazol-2-yl)pyridinato-

κ

2

N

1

,

N

2

]cobalt(III) dihydrate

Yan-Ling Zhou, Ming-Hua Zeng and Seik Weng Ng

Tris[2,5-bis(1H-benzimidazol-2-yl)pyridinato-κ2N1,N2]cobalt(III) dihydrate

Crystal data

[Co(C19H12N5)3]·2H2O

Mr = 1025.97

Triclinic, P1 Hall symbol: -P 1

a = 12.1623 (8) Å

b = 13.2460 (8) Å

c = 17.485 (1) Å

α = 111.712 (1)°

β = 100.538 (1)°

γ = 92.334 (1)°

V = 2554.7 (3) Å3

Z = 2

F(000) = 1060

Dx = 1.334 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3578 reflections

θ = 2.3–24.5°

µ = 0.40 mm−1

T = 295 K Block, red

0.28 × 0.18 × 0.08 mm

Data collection

Bruker SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.897, Tmax = 0.969

17019 measured reflections 10874 independent reflections 6132 reflections with I > 2σ(I)

Rint = 0.040

θmax = 27.1°, θmin = 1.3°

h = −15→15

k = −14→16

l = −22→22

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.058

wR(F2) = 0.164

S = 0.99

10874 reflections 688 parameters 6 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0796P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

Δρmax = 0.60 e Å−3 Δρmin = −0.76 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, m663–m665

(6)
(7)

supporting information

sup-4

Acta Cryst. (2006). E62, m663–m665

H28 0.3213 0.8971 0.4336 0.044* H29 0.2311 0.8770 0.5332 0.046* H33 0.0173 0.8188 0.7357 0.060* H34 0.0413 0.8185 0.8692 0.075* H35 0.2151 0.8203 0.9455 0.080* H36 0.3744 0.8220 0.8922 0.069* H38 0.5035 0.7619 0.6212 0.032* H40 0.5192 0.6847 0.2841 0.046* H41 0.4441 0.5614 0.1492 0.054* H42 0.4238 0.3758 0.1173 0.052* H43 0.4779 0.3064 0.2196 0.043* H47 0.6486 0.4145 0.5412 0.038* H48 0.7261 0.4793 0.6841 0.037* H52 0.9756 0.6304 0.9841 0.079* H53 1.0079 0.7820 1.1090 0.103* H54 0.9286 0.9388 1.1173 0.101* H55 0.8220 0.9558 1.0005 0.080* H57 0.7467 0.7832 0.6875 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)
(9)

supporting information

sup-6

Acta Cryst. (2006). E62, m663–m665

C57 0.024 (2) 0.029 (2) 0.032 (2) 0.0052 (15) 0.0058 (15) 0.010 (2)

Geometric parameters (Å, º)

(10)

C9—C10 1.360 (5) C22—H22 0.93 C10—C11 1.392 (5) C23—H23 0.93 C11—C19 1.391 (5) C24—H24 0.93 C11—C12 1.468 (5) C28—H28 0.93 C13—C18 1.392 (6) C29—H29 0.93 C13—C14 1.405 (5) C33—H33 0.93 C14—C15 1.368 (7) C34—H34 0.93 C15—C16 1.379 (8) C35—H35 0.93 C16—C17 1.380 (7) C36—H36 0.93 C17—C18 1.392 (5) C38—H38 0.93 C20—C21 1.398 (5) C40—H40 0.93 C20—C25 1.412 (5) C41—H41 0.93 C21—C22 1.367 (5) C42—H42 0.93 C22—C23 1.396 (6) C43—H43 0.93 C23—C24 1.371 (5) C47—H47 0.93 C24—C25 1.394 (5) C48—H48 0.93 C26—C27 1.444 (5) C52—H52 0.93 C27—C28 1.378 (5) C53—H53 0.93 C28—C29 1.370 (5) C54—H54 0.93 C29—C30 1.381 (5) C55—H55 0.93 C30—C38 1.391 (5) C57—H57 0.93

(11)

supporting information

sup-8

Acta Cryst. (2006). E62, m663–m665

(12)

C16—C17—C18 116.7 (5) C29—C28—H28 120.1 N5—C18—C17 132.6 (4) C27—C28—H28 120.1 N5—C18—C13 106.4 (3) C28—C29—H29 120.4 C17—C18—C13 120.9 (4) C30—C29—H29 120.4 N3—C19—C11 122.5 (3) C34—C33—H33 121.7 N6—C20—C21 132.3 (3) C32—C33—H33 121.7 N6—C20—C25 106.6 (3) C33—C34—H34 119.0 C21—C20—C25 120.9 (3) C35—C34—H34 119.0 C22—C21—C20 117.0 (4) C36—C35—H35 119.1 C21—C22—C23 122.5 (4) C34—C35—H35 119.1 C24—C23—C22 121.0 (4) C35—C36—H36 121.1 C23—C24—C25 118.0 (4) C37—C36—H36 121.1 N7—C25—C24 128.9 (3) N8—C38—H38 118.7 N7—C25—C20 110.6 (3) C30—C38—H38 118.7 C24—C25—C20 120.4 (3) C41—C40—H40 121.1 N7—C26—N6 117.1 (3) C39—C40—H40 121.1 N7—C26—C27 126.7 (3) C40—C41—H41 119.1 N6—C26—C27 116.1 (3) C42—C41—H41 119.1 N8—C27—C28 121.2 (3) C43—C42—H42 119.3 N8—C27—C26 112.9 (3) C41—C42—H42 119.3 C28—C27—C26 125.9 (3) C42—C43—H43 121.2 C29—C28—C27 119.8 (3) C44—C43—H43 121.2 C28—C29—C30 119.3 (3) C48—C47—H47 120.3 C29—C30—C38 118.3 (3) C46—C47—H47 120.3 C29—C30—C31 121.6 (3) C47—C48—H48 120.3 C38—C30—C31 120.0 (3) C49—C48—H48 120.3 N10—C31—N9 113.2 (3) C53—C52—H52 121.7 N10—C31—C30 125.3 (3) C51—C52—H52 121.7 N9—C31—C30 121.4 (3) C52—C53—H53 119.2 N9—C32—C33 131.3 (4) C54—C53—H53 119.2 N9—C32—C37 106.3 (3) C55—C54—H54 118.8 C33—C32—C37 122.4 (4) C53—C54—H54 118.8 C34—C33—C32 116.6 (4) C54—C55—H55 121.6 C33—C34—C35 122.0 (4) C56—C55—H55 121.6 C36—C35—C34 121.9 (4) N13—C57—H57 118.6 C35—C36—C37 117.7 (4) C49—C57—H57 118.6 N10—C37—C36 131.4 (4)

(13)

supporting information

sup-10

Acta Cryst. (2006). E62, m663–m665

(14)
(15)

supporting information

sup-12

Acta Cryst. (2006). E62, m663–m665

C14—C13—C18—C17 0.3 (7) C50—N15—C56—C55 178.3 (5) C8—N3—C19—C11 2.5 (5) C50—N15—C56—C51 0.4 (4) Co1—N3—C19—C11 −177.3 (2) C54—C55—C56—N15 −177.6 (5) C10—C11—C19—N3 2.4 (5) C54—C55—C56—C51 0.1 (7) C12—C11—C19—N3 −175.4 (3) N14—C51—C56—N15 −1.2 (5) C26—N6—C20—C21 −174.4 (4) C52—C51—C56—N15 177.6 (4) Co1—N6—C20—C21 −7.2 (6) N14—C51—C56—C55 −179.3 (4) C26—N6—C20—C25 0.8 (3) C52—C51—C56—C55 −0.5 (7) Co1—N6—C20—C25 168.0 (3) C46—N13—C57—C49 −0.3 (5) N6—C20—C21—C22 174.8 (4) Co1—N13—C57—C49 −174.5 (2) C25—C20—C21—C22 0.2 (5) C48—C49—C57—N13 1.8 (5) C20—C21—C22—C23 1.4 (6) C50—C49—C57—N13 −178.6 (3) C21—C22—C23—C24 −1.3 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w1···N5 0.84 (1) 1.97 (1) 2.785 (4) 165 (4) O1w—H1w2···N15 0.84 (1) 2.14 (2) 2.949 (4) 162 (4) O2w—H2w1···N4 0.85 (1) 2.00 (2) 2.819 (5) 163 (6) N2—H2n···N9i 0.85 2.20 2.888 (4) 138 N10—H10n···O1w 0.85 2.12 2.885 (4) 150 N14—H14n···O2wii 0.85 1.97 2.818 (5) 176

Figure

Figure 1

References

Related documents

We consistently observed mosaic expression or down-regulation of STAT1 protein in wild-type mammary cancer evolving in the control group.. Transplantation experiments show

With the passage in 2009 of Bill 133, which amended both the Family Law Act (FLA) and the Pension Benefits Act (PBA), and the promulgation of new Regulations in 2011 under

Individual Net Disposable Income (“INDI”) under SSAG is the “food, clothing and housing” money available for each party individually, not including the

The distributor may seek to limit the producer’s right to terminate until distributor has recouped its advance (assuming it has given the producer an advance.) Another

  ParEEoning    Manager spreads namespace across Owners by assigning leases    Consistency   

Small sample bias properties of the system GMM estimator in dynamic panel data models. Analysis of Panel

Course code Title Cr Sem/Yr Grade Note BUSM 150 Introduction to Business 3.. BUSM 121 Principles of Marketing 3 Prerequisite:

Here we present the course of a patient presenting with chylothorax caused by a concomitantly diagnosed CLL who received conservative treatment in conjunction with