• No results found

catena Poly[[tri μ2 benzoato dizinc(II)] μ2 hydr­­oxy]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly[[tri μ2 benzoato dizinc(II)] μ2 hydr­­oxy]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1340

Yanget al. [Zn

2(C7H5O2)3(OH)] doi:10.1107/S1600536805018404 Acta Cryst.(2005). E61, m1340–m1342 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena

-Poly[[tri-

l

2

-benzoato-dizinc(II)]-l

2

-hydroxy]

Shi-Yao Yang,a* La-Sheng Long,a Rong-Bin Huang,aLan-Sun Zhengaand Seik Weng Ngb

aDepartment of Chemistry and, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People’s Republic of China, andbDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: syyang@yanan.xmu.edu.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.007 A˚

Rfactor = 0.051

wRfactor = 0.129

Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the crystal structure of the title compound, [Zn2(C7H5O2)3 -(OH)], the two Zn atoms are bridged by the carboxyl groups of three benzoate anions. Adjacent dinuclear units are linked into a chain through the hydroxy groups to confer tetrahedral geometries on the metal atoms.

Comment

Zinc(II) benzoate and other arylcarboxylates adopt structures in which the anion binds in the bridging mode to confer tetrahedral coordination on the metal atom. The compound with the zinc dibenzoate formulation exists as polymeric [Zn2(-O2CC6H5)3(O2CC6H5)] (Guseinov et al., 1984), which features a dinuclear [Zn2(-O2CC6H5)3] unit having three

syn–syn carboxylate bridges. The fourth benzoate anion (which balances the +1 charge) links adjacent dinuclear units into a chain. The compound formulated as dizinc tetrakis(2-chlorobenzoate) (Clegg et al., 1990) adopts a similar chain motif. For this compound, the fourth 2-chlorobenzoate anion appears to be readily replaced by adventitious hydroxide ions present in the aqueous acetone medium used for recrystalli-zation. The resulting hydroxide, [Zn2(-O2CC6H4Cl)3 (OH)(-H2O)]H2O, is stabilized by extensive hydrogen bonding with the coordinated and uncoordinated water molecules (Nakacho et al., 1976). Three arylcarboxylate anions binding to two transition metal atoms is an unusual feature in the structural chemistry of transition metal carboxylates, as noted from a search for such compounds in the Cambridge Struc-tural Database (Version 5.25; Allen, 2002). Possibly, two metal atoms prefer to be bridged by four instead of three anions and the difficulty appears to be one of packing.

In the title compound, (I), Zn2+cations combined hydro-thermally with benzoate anions to generate the [Zn2( -O2CC6H5)3] unit, the charge of which is balanced by a hydroxide ion (Fig. 1). The geometry of both Zn atoms is tetrahedral. There is no interaction between the Zn atoms, as

(2)

they are >3.2 A˚ apart. The short hydroxide bridge links the cations into a chain (Fig. 2).

The dihydrated 4-diethylaminosulfonylbenzoate has a similar constitution of two Zn atoms, three carboxylate anions

and a hydroxide ion, but only two of the anions chelate to the two Zn atoms (Guseinovet al., 1987). The unusual structures of zinc arylcarboxylates are further illustrated by a terephthalate derivative, which also possesses a hydroxide bridge. However, the coordination number of Zn in [Zn4(OH)2(C8H4O4)3(DMSO)4]2H2O is raised, owing to coordination by the dimethylsulfoxide (DMSO) solvent (Wanget al., 2001).

Experimental

Zinc(II) nitrate hexahydrate (0.30 g, 1.0 mmol) and sodium benzoate (0.29 g, 2.0 mmol) were dissolved in water (15 ml). The solution was placed in a Teflon-lined stainless steel bomb, which was heated to 473 K for 100 h. The bomb was allowed to cool slowly to room temperature and colourless plate-shaped crystals of (I) were depos-ited from the solution. IR (KBr,, cm1): 3652, 3064, 1641 (s), 1610 (s), 1571 (s), 1531 (vs), 1420 (vs), 719.

Crystal data

[Zn2(C7H5O2)3(OH)] Mr= 511.08 Orthorhombic,Pbca a= 11.9182 (5) A˚

b= 16.5293 (7) A˚

c= 21.1391 (9) A˚

V= 4164.4 (3) A˚3 Z= 8

Dx= 1.630 Mg m

3

MoKradiation Cell parameters from 6055

reflections

= 2.3–26.5

= 2.34 mm1

T= 298 (2) K Plate, colourless 0.300.250.04 mm

Data collection

Bruker APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.540,Tmax= 0.912

34070 measured reflections

5015 independent reflections 3911 reflections withI> 2(I)

Rint= 0.047 max= 28.3 h=15!15

k=22!21

l=26!27

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.051 wR(F2) = 0.129 S= 1.05 5015 reflections 275 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0586P)2

+ 3.2192P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.59 e A˚

3

min=0.40 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Zn1—O1 1.944 (2)

Zn1—O3 1.941 (3)

Zn1—O5 1.948 (3)

Zn1—O7 1.907 (2)

Zn2—O2 1.945 (2)

Zn2—O4 1.948 (3)

Zn2—O6 1.941 (2)

Zn2—O7i

1.902 (2)

O1—Zn1—O3 113.6 (1)

O1—Zn1—O5 111.6 (1)

O1—Zn1—O7 110.4 (1)

O3—Zn1—O5 112.9 (1)

O3—Zn1—O7 108.4 (1)

O5—Zn1—O7 99.0 (1)

O2—Zn2—O4 115.1 (1)

O2—Zn2—O6 117.5 (1)

O2—Zn2—O7i

104.0 (1)

O4—Zn2—O6 105.8 (1)

O4—Zn2—O7i 109.8 (1) O6—Zn2—O7i 104.1 (1) Zn1—O7—Zn2ii 121.3 (1)

Symmetry codes: (i)xþ1 2;yþ

1

2;zþ1; (ii)x 1 2;yþ

1 2;zþ1.

metal-organic papers

Acta Cryst.(2005). E61, m1340–m1342 Yanget al. [Zn

[image:2.610.56.278.69.382.2]

2(C7H5O2)3(OH)]

m1341

Figure 1

A plot of the asymmetric unit of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code (i):1 2

+x,1

[image:2.610.47.296.447.654.2]

2y, 1z.]

Figure 2

(3)

The aromatic H atoms were positioned geometrically (C—H = 0.93 A˚ ) and refined as riding. The hydroxy H atom was refined with the restraint O—H = 0.85 (1) A˚ . For all H atoms, Uiso(H) = 1.2Ueq(C,O).

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 20471049, 20271044, 20273052 and 20021002), Xiamen University and the University of Malaya for supporting this work.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Bruker (2001).SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Clegg, W., Harbron, D. R., Hunt, P. A., Little, I. R. & Straughan, B. P. (1990).

Acta Cryst.C46, 750–753.

Guseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984).Koord. Khim.10, 117–122.

Guseinov, G. A., Usubaliev, B. T., Musaev, F. N., Amiraslanov, I. R., Mamedov, K. S. & Agamalieva, E. A. (1987).Zh. Neorg. Khim.32, 1865–1871. Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National

Laboratory, Tennessee, USA.

Nakacho, Y., Misawa, T., Fujiwara, T., Wakahara, A. & Tomita, K.-I. (1976).

Bull. Chem. Soc. Jpn,49, 595–599.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Wang, R., Hong, M., Liang, Y. & Cao, R. (2001).Acta Cryst.E57, m277–m279.

metal-organic papers

m1342

Yanget al. [Zn

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, m1340–m1342

supporting information

Acta Cryst. (2005). E61, m1340–m1342 [https://doi.org/10.1107/S1600536805018404]

catena

-Poly[[tri-

µ

2

-benzoato-dizinc(II)]-

µ

2

-hydroxy]

Shi-Yao Yang, La-Sheng Long, Rong-Bin Huang, Lan-Sun Zheng and Seik Weng Ng

catena-Poly[[tri-µ2-benzoato-dizinc(II)]-µ2-hydroxy]

Crystal data

[Zn2(C7H5O2)3(OH)]

Mr = 511.08

Orthorhombic, Pbca

Hall symbol: -P 2ac 2ab

a = 11.9182 (5) Å

b = 16.5293 (7) Å

c = 21.1391 (9) Å

V = 4164.4 (3) Å3

Z = 8

F(000) = 2064

Dx = 1.630 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 6055 reflections

θ = 2.3–26.5°

µ = 2.34 mm−1

T = 298 K

Plate, colourless 0.30 × 0.25 × 0.04 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.540, Tmax = 0.912

34070 measured reflections 5015 independent reflections 3911 reflections with I > 2σ(I)

Rint = 0.047

θmax = 28.3°, θmin = 1.9°

h = −15→15

k = −22→21

l = −26→27

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.051

wR(F2) = 0.129

S = 1.05

5015 reflections 275 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0586P)2 + 3.2192P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.59 e Å−3 Δρmin = −0.40 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Zn1 0.52193 (3) 0.20700 (3) 0.53727 (2) 0.0365 (1)

Zn2 0.74500 (3) 0.27152 (3) 0.46421 (2) 0.0369 (1)

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, m1340–m1342

O2 0.7765 (2) 0.2669 (2) 0.5544 (1) 0.042 (1)

O3 0.5538 (2) 0.1300 (2) 0.4704 (1) 0.052 (1)

O4 0.7135 (2) 0.1675 (2) 0.4247 (1) 0.049 (1)

O6 0.6263 (2) 0.3436 (2) 0.4364 (1) 0.054 (1)

O5 0.4921 (2) 0.3155 (2) 0.5056 (1) 0.047 (1)

O7 0.3775 (2) 0.1831 (2) 0.5712 (1) 0.041 (1)

C1 0.7287 (3) 0.2409 (2) 0.6025 (2) 0.032 (1)

C2 0.7874 (3) 0.2518 (2) 0.6644 (2) 0.033 (1)

C3 0.7335 (3) 0.2327 (2) 0.7205 (2) 0.044 (1)

C4 0.7853 (4) 0.2468 (3) 0.7773 (2) 0.059 (1)

C5 0.8913 (4) 0.2790 (3) 0.7788 (2) 0.062 (1)

C6 0.9452 (4) 0.2980 (3) 0.7242 (2) 0.061 (1)

C7 0.8941 (3) 0.2838 (2) 0.6665 (2) 0.048 (1)

C8 0.6289 (3) 0.1230 (2) 0.4293 (2) 0.041 (1)

C9 0.6148 (3) 0.0576 (2) 0.3815 (2) 0.043 (1)

C10 0.5171 (4) 0.0130 (3) 0.3794 (2) 0.058 (1)

C11 0.5008 (5) −0.0447 (3) 0.3328 (3) 0.079 (2)

C12 0.5827 (6) −0.0582 (3) 0.2890 (3) 0.086 (2)

C13 0.6809 (6) −0.0148 (3) 0.2911 (3) 0.088 (2)

C14 0.6962 (4) 0.0437 (3) 0.3371 (2) 0.062 (1)

C15 0.5322 (3) 0.3561 (2) 0.4617 (2) 0.041 (1)

C16 0.4641 (3) 0.4248 (2) 0.4368 (2) 0.045 (1)

C17 0.3645 (3) 0.4447 (3) 0.4664 (2) 0.064 (1)

C18 0.3009 (5) 0.5075 (3) 0.4433 (4) 0.094 (2)

C19 0.3338 (6) 0.5487 (3) 0.3919 (4) 0.104 (2)

C20 0.4318 (6) 0.5315 (3) 0.3623 (3) 0.096 (2)

C21 0.4995 (4) 0.4682 (3) 0.3854 (2) 0.071 (1)

H7O 0.373 (3) 0.141 (2) 0.594 (2) 0.06 (1)*

H3 0.6619 0.2104 0.7196 0.053*

H4 0.7486 0.2344 0.8149 0.071*

H5 0.9265 0.2879 0.8174 0.074*

H6 1.0167 0.3205 0.7256 0.074*

H7 0.9317 0.2960 0.6292 0.057*

H10 0.4616 0.0218 0.4095 0.070*

H11 0.4343 −0.0742 0.3315 0.095*

H12 0.5721 −0.0969 0.2576 0.104*

H13 0.7371 −0.0248 0.2617 0.105*

H14 0.7621 0.0738 0.3379 0.075*

H17 0.3407 0.4159 0.5017 0.077*

H18 0.2344 0.5215 0.4636 0.113*

H19 0.2885 0.5899 0.3763 0.125*

H20 0.4541 0.5611 0.3271 0.116*

H21 0.5674 0.4560 0.3659 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, m1340–m1342

Zn2 0.0246 (2) 0.0585 (3) 0.0276 (2) −0.0027 (2) 0.0006 (1) 0.0028 (2)

O1 0.029 (1) 0.070 (2) 0.038 (1) −0.007 (1) −0.008 (1) 0.012 (1)

O2 0.034 (1) 0.065 (2) 0.027 (1) −0.002 (1) −0.002 (1) 0.003 (1)

O3 0.044 (2) 0.064 (2) 0.049 (2) −0.004 (1) 0.007 (1) −0.009 (1)

O4 0.038 (1) 0.062 (2) 0.047 (2) −0.007 (1) 0.001 (1) −0.011 (1)

O6 0.036 (1) 0.078 (2) 0.050 (2) 0.011 (1) 0.003 (1) 0.019 (1)

O5 0.040 (1) 0.051 (1) 0.051 (2) 0.005 (1) 0.003 (1) 0.015 (1)

O7 0.022 (1) 0.064 (2) 0.038 (1) 0.000 (1) 0.001 (1) 0.017 (1)

C1 0.028 (2) 0.038 (2) 0.031 (2) 0.003 (1) −0.005 (1) 0.003 (1)

C2 0.034 (2) 0.038 (2) 0.028 (2) 0.005 (1) −0.003 (1) 0.002 (1)

C3 0.044 (2) 0.056 (2) 0.034 (2) 0.001 (2) 0.001 (2) 0.005 (2)

C4 0.074 (3) 0.076 (3) 0.028 (2) −0.001 (2) 0.001 (2) 0.006 (2)

C5 0.078 (3) 0.069 (3) 0.038 (2) −0.003 (2) −0.022 (2) 0.004 (2)

C6 0.054 (2) 0.078 (3) 0.052 (3) −0.015 (2) −0.022 (2) 0.005 (2)

C7 0.042 (2) 0.065 (2) 0.036 (2) −0.005 (2) −0.007 (2) 0.007 (2)

C8 0.033 (2) 0.055 (2) 0.035 (2) 0.007 (2) −0.009 (1) 0.004 (2)

C9 0.046 (2) 0.042 (2) 0.041 (2) 0.009 (2) −0.010 (2) 0.002 (2)

C10 0.067 (3) 0.053 (2) 0.054 (3) −0.005 (2) −0.013 (2) 0.006 (2)

C11 0.110 (4) 0.050 (3) 0.077 (4) −0.021 (3) −0.038 (3) 0.008 (2)

C12 0.140 (5) 0.057 (3) 0.063 (3) 0.005 (3) −0.023 (4) −0.013 (2)

C13 0.107 (5) 0.085 (4) 0.071 (3) 0.019 (3) 0.005 (3) −0.027 (3)

C14 0.058 (3) 0.067 (3) 0.061 (3) 0.006 (2) 0.003 (2) −0.015 (2)

C15 0.034 (2) 0.051 (2) 0.039 (2) 0.002 (2) −0.011 (1) 0.000 (2)

C16 0.040 (2) 0.043 (2) 0.051 (2) −0.004 (2) −0.015 (2) 0.001 (2)

C17 0.043 (2) 0.052 (2) 0.097 (4) 0.006 (2) −0.011 (2) 0.000 (2)

C18 0.067 (3) 0.066 (3) 0.149 (6) 0.026 (3) −0.029 (4) −0.007 (4)

C19 0.117 (5) 0.053 (3) 0.142 (6) 0.030 (3) −0.065 (5) −0.010 (4)

C20 0.144 (6) 0.062 (3) 0.082 (4) 0.000 (4) −0.035 (4) 0.024 (3)

C21 0.087 (3) 0.065 (3) 0.062 (3) 0.000 (2) −0.012 (2) 0.018 (2)

Geometric parameters (Å, º)

Zn1—O1 1.944 (2) C12—C13 1.373 (9)

Zn1—O3 1.941 (3) C13—C14 1.384 (6)

Zn1—O5 1.948 (3) C15—C16 1.492 (5)

Zn1—O7 1.907 (2) C16—C21 1.368 (6)

Zn2—O2 1.945 (2) C16—C17 1.382 (6)

Zn2—O4 1.948 (3) C17—C18 1.374 (7)

Zn2—O6 1.941 (2) C18—C19 1.342 (9)

Zn2—O7i 1.902 (2) C19—C20 1.355 (9)

O1—C1 1.253 (4) C20—C21 1.409 (7)

O2—C1 1.243 (4) O7—H7O 0.84 (1)

O3—C8 1.251 (4) C3—H3 0.93

O4—C8 1.253 (4) C4—H4 0.93

O6—C15 1.259 (4) C5—H5 0.93

O5—C15 1.241 (4) C6—H6 0.93

C1—C2 1.495 (4) C7—H7 0.93

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, m1340–m1342

C2—C3 1.385 (5) C11—H11 0.93

C3—C4 1.370 (5) C12—H12 0.93

C4—C5 1.371 (6) C13—H13 0.93

C5—C6 1.358 (6) C14—H14 0.93

C6—C7 1.383 (5) C17—H17 0.93

C8—C9 1.489 (5) C18—H18 0.93

C9—C14 1.369 (5) C19—H19 0.93

C9—C10 1.379 (5) C20—H20 0.93

C10—C11 1.384 (7) C21—H21 0.93

C11—C12 1.365 (8)

O1—Zn1—O3 113.6 (1) O5—C15—C16 117.8 (3)

O1—Zn1—O5 111.6 (1) O6—C15—C16 117.3 (3)

O1—Zn1—O7 110.4 (1) C21—C16—C17 120.1 (4)

O3—Zn1—O5 112.9 (1) C21—C16—C15 120.8 (4)

O3—Zn1—O7 108.4 (1) C17—C16—C15 119.2 (4)

O5—Zn1—O7 99.0 (1) C18—C17—C16 119.5 (5)

O2—Zn2—O4 115.1 (1) C19—C18—C17 120.7 (6)

O2—Zn2—O6 117.5 (1) C18—C19—C20 121.3 (5)

O2—Zn2—O7i 104.0 (1) C19—C20—C21 119.4 (6)

O4—Zn2—O6 105.8 (1) C16—C21—C20 119.1 (5)

O4—Zn2—O7i 109.8 (1) Zn2ii—O7—H7O 120 (3)

O6—Zn2—O7i 104.1 (1) Zn1—O7—H7O 116 (3)

C1—O1—Zn1 127.1 (2) C4—C3—H3 119.9

C1—O2—Zn2 136.6 (2) C2—C3—H3 119.9

C8—O3—Zn1 134.9 (3) C5—C4—H4 120.0

C8—O4—Zn2 129.7 (2) C3—C4—H4 120.0

C15—O6—Zn2 128.5 (2) C6—C5—H5 119.8

C15—O5—Zn1 133.2 (2) C4—C5—H5 119.8

Zn1—O7—Zn2ii 121.3 (1) C5—C6—H6 120.0

O2—C1—O1 125.8 (3) C7—C6—H6 120.0

O2—C1—C2 117.3 (3) C2—C7—H7 120.0

O1—C1—C2 116.8 (3) C6—C7—H7 120.0

C7—C2—C3 119.2 (3) C9—C10—H10 119.6

C7—C2—C1 120.5 (3) C11—C10—H10 119.6

C3—C2—C1 120.3 (3) C12—C11—H11 120.2

C4—C3—C2 120.2 (4) C10—C11—H11 120.2

C5—C4—C3 120.1 (4) C11—C12—H12 119.9

C6—C5—C4 120.4 (4) C13—C12—H12 119.9

C5—C6—C7 120.1 (4) C12—C13—H13 120.0

C2—C7—C6 120.0 (4) C14—C13—H13 120.0

O3—C8—O4 125.2 (3) C9—C14—H14 119.8

O3—C8—C9 117.2 (3) C13—C14—H14 119.8

O4—C8—C9 117.6 (3) C18—C17—H17 120.3

C14—C9—C10 119.1 (4) C16—C17—H17 120.3

C14—C9—C8 120.5 (4) C19—C18—H18 119.7

C10—C9—C8 120.4 (4) C17—C18—H18 119.7

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, m1340–m1342

C12—C11—C10 119.6 (5) C20—C19—H19 119.4

C11—C12—C13 120.2 (5) C19—C20—H20 120.3

C12—C13—C14 120.0 (5) C21—C20—H20 120.3

C9—C14—C13 120.3 (5) C16—C21—H21 120.4

O5—C15—O6 124.8 (3) C20—C21—H21 120.4

O7—Zn1—O1—C1 −160.0 (3) C1—C2—C7—C6 176.3 (4)

O3—Zn1—O1—C1 78.0 (3) C5—C6—C7—C2 1.2 (7)

O5—Zn1—O1—C1 −51.0 (3) Zn1—O3—C8—O4 5.1 (6)

O7i—Zn2—O2—C1 −175.8 (3) Zn1—O3—C8—C9 −173.6 (2)

O6—Zn2—O2—C1 69.9 (4) Zn2—O4—C8—O3 −14.0 (5)

O4—Zn2—O2—C1 −55.6 (4) Zn2—O4—C8—C9 164.7 (2)

O7—Zn1—O3—C8 171.4 (3) O3—C8—C9—C14 −176.7 (4)

O1—Zn1—O3—C8 −65.5 (4) O4—C8—C9—C14 4.5 (5)

O5—Zn1—O3—C8 62.8 (4) O3—C8—C9—C10 6.6 (5)

O7i—Zn2—O4—C8 −171.1 (3) O4—C8—C9—C10 −172.1 (3)

O6—Zn2—O4—C8 −59.4 (3) C14—C9—C10—C11 −0.4 (6)

O2—Zn2—O4—C8 72.0 (3) C8—C9—C10—C11 176.3 (4)

O7i—Zn2—O6—C15 −155.3 (3) C9—C10—C11—C12 0.7 (7)

O2—Zn2—O6—C15 −41.0 (4) C10—C11—C12—C13 0.1 (8)

O4—Zn2—O6—C15 89.0 (3) C11—C12—C13—C14 −1.1 (8)

O7—Zn1—O5—C15 −151.9 (3) C10—C9—C14—C13 −0.6 (7)

O3—Zn1—O5—C15 −37.4 (4) C8—C9—C14—C13 −177.3 (4)

O1—Zn1—O5—C15 91.9 (3) C12—C13—C14—C9 1.4 (8)

O3—Zn1—O7—Zn2ii −87.9 (2) Zn1—O5—C15—O6 −20.7 (6)

O1—Zn1—O7—Zn2ii 147.1 (2) Zn1—O5—C15—C16 159.2 (3)

O5—Zn1—O7—Zn2ii 30.0 (2) Zn2—O6—C15—O5 −10.2 (6)

Zn2—O2—C1—O1 −1.6 (6) Zn2—O6—C15—C16 170.0 (2)

Zn2—O2—C1—C2 −179.7 (2) O5—C15—C16—C21 −175.1 (4)

Zn1—O1—C1—O2 −13.5 (5) O6—C15—C16—C21 4.8 (5)

Zn1—O1—C1—C2 164.7 (2) O5—C15—C16—C17 5.3 (5)

O2—C1—C2—C7 −4.9 (5) O6—C15—C16—C17 −174.9 (4)

O1—C1—C2—C7 176.8 (3) C21—C16—C17—C18 0.9 (7)

O2—C1—C2—C3 172.5 (3) C15—C16—C17—C18 −179.4 (4)

O1—C1—C2—C3 −5.8 (5) C16—C17—C18—C19 0.9 (8)

C7—C2—C3—C4 0.9 (6) C17—C18—C19—C20 −2 (1)

C1—C2—C3—C4 −176.6 (4) C18—C19—C20—C21 1.1 (9)

C2—C3—C4—C5 −0.6 (6) C17—C16—C21—C20 −1.7 (7)

C3—C4—C5—C6 0.6 (7) C15—C16—C21—C20 178.6 (4)

C4—C5—C6—C7 −0.9 (7) C19—C20—C21—C16 0.8 (8)

C3—C2—C7—C6 −1.1 (6)

Figure

Figure 2

References

Related documents

Results The results in Table 7 show that, for words with seen characters, the lookup embed- dings correlate better with human judgments of similarity than the embeddings based

The independent variables include city size, GDP per capita, average education, industrial and ownership structure, firm’s characteristics and inter -sector wage

itly combines acoustic models, lexicon, and lan- guage models as encoder, attention, and decoder networks, which can be jointly trained as a single deep neural network.. Compared

children’s education to guarantee the positive outcomes sought by the program Apoyo Escolar. Moreover, they state that despite their accumulated experience for 13 years at Los

the impact of geographical neighbors’ political instability on a given country’s political

• We present Siamese CBOW, an efficient neural network architecture for obtaining high-quality word embeddings, directly optimized for sen- tence representations;.. • We evaluate

company which are return on equity, leverage ratio and average collection period .This is because. these three are the only relevant variables among

These soft tissue tumours such as deep benign fibrous histiocytoma, hemosiderotic fibrolipomatous tumour, spindle cell liposarcoma, spindle cells in myoepithelioma; demand