• No results found

cis Ethyl 5 amino 1 [4 (4 chloro­phenyl) 5,5 di­methyl 2 oxo 1,3,2 dioxaphosphinan 1 yl] 3 (6 chloro 3 pyridylmethyl­amino) 1H pyrazole 4 carboxyl­ate

N/A
N/A
Protected

Academic year: 2020

Share "cis Ethyl 5 amino 1 [4 (4 chloro­phenyl) 5,5 di­methyl 2 oxo 1,3,2 dioxaphosphinan 1 yl] 3 (6 chloro 3 pyridylmethyl­amino) 1H pyrazole 4 carboxyl­ate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o3679–o3681 doi:10.1107/S1600536805032484 Luoet al. C

23H26Cl2N5O5P

o3679

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

cis

-Ethyl

5-amino-1-[4-(4-chlorophenyl)-5,5-dimethyl-

2-oxo-1,3,2-dioxaphosphinan-1-yl]-3-(6-chloro-3-pyridylmethylamino)-1

H

-pyrazole-4-carboxylate

Zai-Gang Luo,aDe-Qing Shia* and Xiang-Gao Mengb

a

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China, andbCollege of Chemistry, Central China

Normal University, Wuhan 430079, Hubei, People’s Republic of China

Correspondence e-mail: chshidq@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 292 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.046

wRfactor = 0.127

Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, C23H26Cl2N5O5P, the P atom adopts a

distorted tetrahedral configuration. The carboxyl fragment of the ethylcarboxylate group is almost coplanar with the pyrazole ring. The dihedral angle between the pyrazole and

pyridine rings is 82.7 (1). Intramolecular C—H O, C—

H N and N—H O hydrogen bonds contribute strongly to

the stability of the molecular configuration. C—H O

inter-molecular hydrogen bonds link inversion-related molecules

into a centrosymmetric R2

2

(10) dimer. In addition, C—H

hydrogen bonds are observed in the crystal structure.

Comment

Neonicotinioid insecticides as nicotinic acetylcholine receptor inhibitors have attracted increasing attention because of their safety, low toxicity and high activities (Shiokawaet al., 1986). It is found that most biologically active nicotinic compounds

contain the 3-aminomethylpyridine group (Yamamoto et al.,

[image:1.610.216.450.455.589.2]

1994). Pyrazole and phosphorus heterocyclic compounds appear to be very important owing to their biological activities (Tomcufciket al., 1985; Hirashimaet al., 1986). We report here the crystal structure of the title compound, (I), which was synthesized by introducing 1,3,2-dioxaphosphinane and 3-aminomethylpyridine molecules into pyrazole.

Fig. 1 shows the molecular structure of (I). The P atom is in a slightly distorted tetrahedral geometry. The deformation of the tetrahedron can be described by the different bond types,

viz. the P O double bond, P—O single bond and P—N single

bond, and associated angles (Table 1). The P1—O4

[1.5554 (15) A˚ ], P1—O5 [1.5584 (13) A˚ ] and P1 O3

[1.4581 (15) A˚ ] distances are shorter than those observed in a related structure [1.586 (2), 1.572 (2) and 1.468 (2) A˚ ; Liu et al., 2005], but the P1—N4 distance of 1.6604 (17) A˚ is longer than that observed [1.605 (3) A˚ ] in the above structure. The variation in the lengths may be a result of steric and electronic effects. The dioxaphosphinane ring adopts a chair

(2)

tion, with puckering parametersQ= 0.495 (2) A˚ ,= 25.6 (2) and’= 180.8 (5)(Cremer & Pople, 1975).

The C9—C8—C10—O1 [6.1 (3)] and C7—C8—C10—O2

[7.7 (3)] torsion angles indicate that the carboxyl fragment of

the ethylcarboxylate group is almost coplanar with the pyra-zole ring. This orientation results in an intramolecular N5—

H5B O1 hydrogen bond (Table 2), which forms a

pseudo-six-membered ring. The terminal carbon C12 is twisted substantially out of the plane of the pyrazole ring, the C12—

C11—O2—C10 torsion angle being 143.2 (2). The short

C11—C12 bond distance [1.474 (4) A˚ ] can probably be

attributed to unresolved disorder of the terminal methyl group, as indicated by the unusual displacement parameters for atoms C11 and C12 (Patelet al., 2003).

Intramolecular C—H O, C—H N and N—H O

hydrogen bonds (Table 2) contribute strongly to the stability of the molecular configuration. As a result of the hydrogen-bonding interactions, the benzene and pyridine rings lie on the same side of the pyrazole ring; the dihedral angle between the pyrazole and pyridine rings is 82.7 (1).

The crystal packing shows that the intermolecular C11— H11B O1i[symmetry code: (i) 1x, 2y, 1z] hydrogen bond between inversion-related molecules leads to the formation of a centrosymmetricR2

2(10) dimer (Bernsteinet al.,

1995) (Fig. 2). In addition, two C—H hydrogen bonds are

observed in the crystal structure of (I). It is known that methyl groups can function as hydrogen-bond donors towards

aromatic systems (Desiraju, 2002). The C6 and C11

methylene groups are involved in C—H interactions with

the C18—C23 benzene ring, with its centroid atCg1 (Table 2).

Experimental

A solution of 3-(6-chloro-3-pyridylmethylamino)-4-ethoxycarbonyl-5-aminopyrazole (4 mmol) in anhydrous CH3CN (20 ml) and NaOH

powder (5 mmol) were placed in a three-necked flask; after vigorous stirring for 5 min, a solution of 2-chloro-4-chlorophenyl-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (4.5 mmol) in anhydrous acetonitrile (5 ml) was added dropwise while the mixture was cooled in an ice-bath. After the addition was finished, the mixture was stirred at room temperature until the reaction finished (monitored by thin layer chromatography). The workup involved removal of the solvent followed by addition of water and extraction of the product mixture into chloroform; after phase separation, drying over Na2SO4,

filtra-tion and evaporafiltra-tion, the crude product was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate (1:1

v/v) as eluant, giving a white solid (yield 45%, m.p. 433 K). Single crystals of (I) were obtained from an absolute ethanol solution.

Crystal data

C23H26Cl2N5O5P Mr= 554.36

Monoclinic,P21=n a= 12.4196 (11) A˚

b= 12.1995 (11) A˚

c= 17.5992 (15) A˚

= 107.198 (2)

V= 2547.3 (4) A˚3 Z= 4

Dx= 1.446 Mg m

3

MoKradiation Cell parameters from 5782

reflections

= 2.4–22.9

= 0.36 mm1 T= 292 (2) K Block, colourless 0.300.200.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.899,Tmax= 0.938

21527 measured reflections

5812 independent reflections 3999 reflections withI> 2(I)

Rint= 0.031 max= 27.5 h=16!16

k=15!14

l=22!22

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.046 wR(F2) = 0.127

S= 1.02 5812 reflections 328 parameters

H-atom parameters constrained

w= 1/[2(Fo2) + (0.0617P)2

+ 0.368P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.30 e A˚

3

min=0.27 e A˚

3

Table 1

Selected bond angles ().

O3—P1—O4 116.88 (9)

O3—P1—O5 115.40 (9)

O4—P1—O5 105.50 (7)

O3—P1—N4 109.80 (9)

O4—P1—N4 103.86 (8)

O5—P1—N4 104.06 (8)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C11—H11B O1i

0.97 2.52 3.290 (3) 136

C16—H16A N3 0.96 2.54 3.486 (3) 167

N2—H2A O2 0.86 2.26 2.829 (2) 124

N5—H5A O3 0.86 2.17 2.834 (2) 134

N5—H5B O1 0.86 2.36 2.909 (2) 122

C6—H6A Cg1ii

0.97 2.80 3.680 (3) 152

C11—H11A Cg1iii

0.97 2.89 3.753 (3) 149

Symmetry codes: (i) xþ1;yþ2;zþ1; (ii) xþ3 2;y

1 2;zþ

1 2; (iii) x1

2;yþ 3 2;zþ

1

2.Cg1 is the centroid of the C18–C23 ring.

organic papers

o3680

Luoet al. C

[image:2.610.46.297.67.280.2]

23H26Cl2N5O5P Acta Cryst.(2005). E61, o3679–o3681

Figure 1

(3)

The H atoms were placed in calculated positions, with N—H = 0.86 A˚ and C—H = 0.93–0.98 A˚, and included in the final cycles of refinement using a riding-model approximation, withUiso(H) = 1.2–

1.5Ueq(carrier atom). A rotating group model was used for the methyl

groups.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

The authors are thankful to the Natural Science Foundation of China (grant No. 20302002) for financial support.

References

Bernstein, J., Raymond, E. D., Liat, S. & Ning-Leh, C. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000).SMART,SAINTandSADABS(Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Desiraju, G. R. (2002).Acc. Chem. Res.35, 565–573.

Hirashima, A., Ishaaya, I., Ueno, R., Ichiyama, Y., Wu, S. Y. & Eto, M. (1986).

Agric. Biol. Chem.50, 1831–1835.

Liu, Y., Wei, J., Shi, D. Q. & Wang, C. G. (2005).Chin. J. Struct. Chem.24, 196– 200.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Shiokawa, K., Tsubo, S. & Moriya, K. (1986). EP Patent 192 060. Tomcufcik, A. S., Meyer, M. E. & Tseng, S. S. (1985). US Patent 4 5621 89. Patel, U. H., Dave, C. G., Jotani, M. M. & Shah, H. C. (2003).Acta Cryst.C59,

o30–o32.

Yamamoto, I., Yabita, G., Tomizawa, M. & Hissasomi, A. (1994).J. Pestic. Sci.

19, 335–339.

organic papers

Acta Cryst.(2005). E61, o3679–o3681 Luoet al. C

[image:3.610.45.295.68.262.2]

23H26Cl2N5O5P

o3681

Figure 2

Part of the crystal structure of (I), showing the formation of anR2 2(10)

ring [centred at (1 2, 1,

1

2)]. Hydrogen bonds are shown as dashed lines.

Atoms labelled with the suffix ‘a’ are at the symmetry position (1x, 2

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o3679–o3681

supporting information

Acta Cryst. (2005). E61, o3679–o3681 [https://doi.org/10.1107/S1600536805032484]

cis

-Ethyl

5-amino-1-[4-(4-chlorophenyl)-5,5-dimethyl-2-oxo-1,3,2-dioxaphosphinan-1-yl]-3-(6-chloro-3-pyridylmethylamino)-1

H

-pyrazole-4-carboxylate

Zai-Gang Luo, De-Qing Shi and Xiang-Gao Meng

cis-Ethyl 5-amino-1-[4-chlorophenyl-3-(6-chloro-3-pyridylmethylamino)-5,5-dimethyl-2-oxo-

1,3,2-dioxaphosphinan-1-yl]pyrazole-4-carboxylate

Crystal data

C23H26Cl2N5O5P

Mr = 554.36 Monoclinic, P21/n

Hall symbol: -P 2yn

a = 12.4196 (11) Å

b = 12.1995 (11) Å

c = 17.5992 (15) Å

β = 107.198 (2)°

V = 2547.3 (4) Å3

Z = 4

F(000) = 1152

Dx = 1.446 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5782 reflections

θ = 2.4–22.9°

µ = 0.36 mm−1

T = 292 K Block, colourless 0.30 × 0.20 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.899, Tmax = 0.938

21527 measured reflections 5812 independent reflections 3999 reflections with I > 2σ(I)

Rint = 0.031

θmax = 27.5°, θmin = 1.8°

h = −16→16

k = −15→14

l = −22→22

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.046

wR(F2) = 0.127

S = 1.02 5812 reflections 328 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0617P)2 + 0.368P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.30 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o3679–o3681

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 1.06761 (18) 0.7043 (2) 0.36768 (13) 0.0610 (6)

C2 1.0501 (2) 0.5940 (2) 0.36607 (15) 0.0700 (7)

H2 1.0952 0.5461 0.3477 0.084*

C3 0.9637 (2) 0.5561 (2) 0.39242 (15) 0.0640 (6)

H3 0.9494 0.4813 0.3921 0.077*

C4 0.89754 (17) 0.62823 (17) 0.41939 (12) 0.0488 (5)

C5 0.92332 (19) 0.73703 (18) 0.41740 (14) 0.0572 (6)

H5 0.8794 0.7871 0.4349 0.069*

C6 0.80286 (19) 0.58806 (19) 0.44928 (14) 0.0592 (6)

H6A 0.7606 0.5333 0.4125 0.071*

H6B 0.8353 0.5521 0.5001 0.071*

C7 0.64604 (17) 0.71098 (18) 0.39535 (12) 0.0486 (5)

C8 0.55524 (16) 0.78234 (17) 0.39665 (12) 0.0468 (5)

C9 0.49503 (16) 0.79750 (17) 0.31806 (12) 0.0448 (5)

C10 0.52539 (18) 0.83047 (18) 0.46267 (12) 0.0505 (5)

C11 0.5914 (2) 0.8615 (2) 0.60365 (14) 0.0681 (7)

H11A 0.5578 0.8096 0.6317 0.082*

H11B 0.5428 0.9253 0.5902 0.082*

C12 0.7045 (2) 0.8938 (3) 0.65389 (16) 0.0940 (10)

H12A 0.7533 0.8311 0.6635 0.141*

H12B 0.6993 0.9218 0.7036 0.141*

H12C 0.7344 0.9494 0.6273 0.141*

C13 0.57560 (19) 0.56549 (18) 0.10016 (13) 0.0541 (5)

H13A 0.5292 0.5843 0.0470 0.065*

H13B 0.5781 0.4862 0.1042 0.065*

C14 0.69496 (17) 0.60818 (16) 0.11151 (12) 0.0473 (5)

C15 0.7319 (2) 0.56104 (19) 0.04167 (14) 0.0629 (6)

H15A 0.8064 0.5867 0.0453 0.094*

H15B 0.6803 0.5847 −0.0078 0.094*

H15C 0.7321 0.4824 0.0441 0.094*

C16 0.7752 (2) 0.57043 (19) 0.19067 (13) 0.0618 (6)

H16A 0.7512 0.6001 0.2335 0.093*

H16B 0.8500 0.5955 0.1951 0.093*

H16C 0.7748 0.4918 0.1932 0.093*

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o3679–o3681

H17 0.6377 0.7509 0.0508 0.052*

C18 0.79555 (15) 0.79676 (16) 0.11654 (11) 0.0418 (4)

C19 0.83358 (16) 0.82185 (17) 0.05196 (12) 0.0473 (5)

H19 0.7932 0.7973 0.0016 0.057*

C20 0.93045 (17) 0.88279 (18) 0.06135 (13) 0.0545 (5)

H20 0.9563 0.8981 0.0180 0.065*

C21 0.98784 (18) 0.92036 (18) 0.13579 (14) 0.0558 (5)

C22 0.95201 (18) 0.89758 (19) 0.20090 (13) 0.0576 (6)

H22 0.9921 0.9235 0.2510 0.069*

C23 0.85580 (17) 0.83580 (17) 0.19092 (12) 0.0506 (5)

H23 0.8310 0.8201 0.2347 0.061*

Cl1 1.17870 (6) 0.75548 (8) 0.33639 (5) 0.0925 (3)

Cl2 1.10930 (6) 0.99888 (7) 0.14842 (5) 0.0940 (3)

N1 1.00751 (17) 0.77686 (17) 0.39191 (12) 0.0650 (5)

N2 0.72573 (15) 0.67033 (16) 0.45914 (10) 0.0613 (5)

H2A 0.7301 0.6940 0.5060 0.074*

N3 0.64482 (14) 0.68384 (15) 0.32262 (10) 0.0544 (5)

N4 0.54844 (14) 0.73886 (14) 0.27325 (10) 0.0488 (4)

N5 0.40164 (15) 0.85715 (16) 0.28622 (11) 0.0614 (5)

H5A 0.3725 0.8598 0.2354 0.074*

H5B 0.3710 0.8926 0.3166 0.074*

O1 0.43998 (13) 0.88196 (14) 0.45657 (9) 0.0653 (4)

O2 0.60505 (13) 0.81176 (14) 0.53196 (9) 0.0617 (4)

O3 0.42205 (12) 0.79473 (13) 0.13597 (8) 0.0580 (4)

O4 0.52307 (12) 0.60854 (11) 0.15726 (8) 0.0530 (4)

O5 0.63461 (11) 0.77825 (11) 0.16207 (8) 0.0497 (4)

P1 0.52406 (4) 0.73340 (4) 0.17534 (3) 0.04469 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0508 (12) 0.0835 (18) 0.0415 (12) −0.0007 (12) 0.0025 (10) 0.0049 (12)

C2 0.0682 (15) 0.0751 (19) 0.0674 (16) 0.0164 (13) 0.0212 (13) −0.0038 (13)

C3 0.0717 (15) 0.0495 (13) 0.0692 (16) 0.0082 (11) 0.0186 (13) −0.0034 (11)

C4 0.0511 (11) 0.0483 (12) 0.0390 (11) 0.0047 (9) 0.0011 (9) −0.0006 (9)

C5 0.0610 (13) 0.0510 (13) 0.0583 (14) 0.0025 (10) 0.0157 (11) −0.0063 (10)

C6 0.0614 (13) 0.0585 (14) 0.0534 (13) 0.0084 (11) 0.0102 (11) 0.0089 (11)

C7 0.0506 (11) 0.0552 (13) 0.0407 (11) −0.0004 (9) 0.0146 (9) −0.0020 (9)

C8 0.0501 (11) 0.0498 (12) 0.0443 (12) −0.0037 (9) 0.0195 (9) −0.0036 (9)

C9 0.0444 (10) 0.0480 (11) 0.0460 (12) −0.0028 (8) 0.0194 (9) −0.0020 (9)

C10 0.0546 (12) 0.0552 (13) 0.0455 (12) −0.0064 (10) 0.0207 (10) −0.0039 (10)

C11 0.0865 (17) 0.0770 (17) 0.0486 (13) −0.0065 (13) 0.0321 (13) −0.0148 (12)

C12 0.0842 (19) 0.117 (3) 0.0666 (18) 0.0274 (18) 0.0002 (15) −0.0261 (17)

C13 0.0707 (14) 0.0477 (12) 0.0495 (12) −0.0098 (10) 0.0263 (11) −0.0098 (10)

C14 0.0580 (11) 0.0440 (11) 0.0437 (11) −0.0035 (9) 0.0207 (9) −0.0045 (9)

C15 0.0785 (15) 0.0565 (14) 0.0634 (15) −0.0039 (12) 0.0359 (13) −0.0130 (11)

C16 0.0717 (14) 0.0563 (14) 0.0586 (14) 0.0116 (11) 0.0211 (12) 0.0089 (11)

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o3679–o3681

C18 0.0456 (10) 0.0415 (10) 0.0370 (10) −0.0013 (8) 0.0104 (8) −0.0005 (8)

C19 0.0515 (11) 0.0519 (12) 0.0375 (11) −0.0026 (9) 0.0116 (9) −0.0003 (9)

C20 0.0584 (12) 0.0583 (14) 0.0509 (13) −0.0045 (10) 0.0225 (10) 0.0066 (10)

C21 0.0507 (11) 0.0537 (13) 0.0602 (14) −0.0107 (10) 0.0119 (10) −0.0010 (11)

C22 0.0586 (12) 0.0621 (14) 0.0455 (12) −0.0106 (11) 0.0050 (10) −0.0080 (10)

C23 0.0574 (12) 0.0568 (13) 0.0373 (11) −0.0044 (10) 0.0135 (9) −0.0015 (9)

Cl1 0.0674 (4) 0.1371 (7) 0.0742 (5) −0.0092 (4) 0.0225 (4) 0.0198 (4)

Cl2 0.0732 (4) 0.1061 (6) 0.0955 (6) −0.0431 (4) 0.0139 (4) 0.0043 (4)

N1 0.0675 (12) 0.0611 (13) 0.0630 (13) −0.0060 (10) 0.0144 (10) −0.0007 (10)

N2 0.0621 (11) 0.0792 (14) 0.0407 (10) 0.0140 (10) 0.0124 (9) −0.0003 (9)

N3 0.0540 (10) 0.0688 (12) 0.0398 (10) 0.0146 (9) 0.0129 (8) −0.0011 (9)

N4 0.0471 (9) 0.0597 (11) 0.0403 (10) 0.0094 (8) 0.0139 (8) −0.0007 (8)

N5 0.0563 (10) 0.0764 (13) 0.0537 (11) 0.0176 (9) 0.0199 (9) −0.0027 (9)

O1 0.0626 (9) 0.0806 (11) 0.0590 (10) 0.0092 (8) 0.0276 (8) −0.0092 (8)

O2 0.0672 (10) 0.0770 (11) 0.0430 (8) 0.0044 (8) 0.0195 (7) −0.0097 (8)

O3 0.0535 (8) 0.0704 (10) 0.0477 (9) 0.0055 (7) 0.0115 (7) 0.0060 (7)

O4 0.0595 (8) 0.0501 (9) 0.0543 (9) −0.0115 (7) 0.0243 (7) −0.0067 (7)

O5 0.0551 (8) 0.0454 (8) 0.0550 (9) −0.0061 (6) 0.0260 (7) −0.0091 (6)

P1 0.0456 (3) 0.0502 (3) 0.0390 (3) −0.0027 (2) 0.0136 (2) −0.0012 (2)

Geometric parameters (Å, º)

C1—N1 1.308 (3) C13—H13B 0.97

C1—C2 1.362 (4) C14—C16 1.525 (3)

C1—Cl1 1.745 (2) C14—C17 1.534 (3)

C2—C3 1.370 (3) C14—C15 1.545 (3)

C2—H2 0.93 C15—H15A 0.96

C3—C4 1.380 (3) C15—H15B 0.96

C3—H3 0.93 C15—H15C 0.96

C4—C5 1.368 (3) C16—H16A 0.96

C4—C6 1.505 (3) C16—H16B 0.96

C5—N1 1.345 (3) C16—H16C 0.96

C5—H5 0.93 C17—O5 1.468 (2)

C6—N2 1.433 (3) C17—C18 1.513 (3)

C6—H6A 0.97 C17—H17 0.98

C6—H6B 0.97 C18—C23 1.386 (3)

C7—N3 1.318 (3) C18—C19 1.388 (3)

C7—N2 1.352 (3) C19—C20 1.382 (3)

C7—C8 1.430 (3) C19—H19 0.93

C8—C9 1.377 (3) C20—C21 1.372 (3)

C8—C10 1.445 (3) C20—H20 0.93

C9—N5 1.343 (3) C21—C22 1.375 (3)

C9—N4 1.372 (2) C21—Cl2 1.745 (2)

C10—O1 1.210 (2) C22—C23 1.379 (3)

C10—O2 1.343 (3) C22—H22 0.93

C11—O2 1.454 (3) C23—H23 0.93

C11—C12 1.474 (4) N2—H2A 0.86

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, o3679–o3681

C11—H11B 0.97 N4—P1 1.6604 (17)

C12—H12A 0.96 N5—H5A 0.86

C12—H12B 0.96 N5—H5B 0.86

C12—H12C 0.96 O3—P1 1.4581 (15)

C13—O4 1.449 (2) O4—P1 1.5554 (15)

C13—C14 1.528 (3) O5—P1 1.5584 (13)

C13—H13A 0.97

N1—C1—C2 124.9 (2) C14—C15—H15A 109.5

N1—C1—Cl1 116.2 (2) C14—C15—H15B 109.5

C2—C1—Cl1 118.9 (2) H15A—C15—H15B 109.5

C1—C2—C3 117.5 (2) C14—C15—H15C 109.5

C1—C2—H2 121.2 H15A—C15—H15C 109.5

C3—C2—H2 121.2 H15B—C15—H15C 109.5

C2—C3—C4 120.5 (2) C14—C16—H16A 109.5

C2—C3—H3 119.8 C14—C16—H16B 109.5

C4—C3—H3 119.8 H16A—C16—H16B 109.5

C5—C4—C3 116.2 (2) C14—C16—H16C 109.5

C5—C4—C6 122.5 (2) H16A—C16—H16C 109.5

C3—C4—C6 121.2 (2) H16B—C16—H16C 109.5

N1—C5—C4 124.8 (2) O5—C17—C18 105.56 (14)

N1—C5—H5 117.6 O5—C17—C14 110.06 (15)

C4—C5—H5 117.6 C18—C17—C14 117.65 (17)

N2—C6—C4 115.70 (19) O5—C17—H17 107.7

N2—C6—H6A 108.4 C18—C17—H17 107.7

C4—C6—H6A 108.4 C14—C17—H17 107.7

N2—C6—H6B 108.4 C23—C18—C19 118.57 (18)

C4—C6—H6B 108.4 C23—C18—C17 121.41 (17)

H6A—C6—H6B 107.4 C19—C18—C17 119.93 (17)

N3—C7—N2 120.63 (19) C20—C19—C18 121.05 (19)

N3—C7—C8 112.69 (18) C20—C19—H19 119.5

N2—C7—C8 126.65 (19) C18—C19—H19 119.5

C9—C8—C7 105.22 (17) C21—C20—C19 118.8 (2)

C9—C8—C10 124.14 (19) C21—C20—H20 120.6

C7—C8—C10 130.6 (2) C19—C20—H20 120.6

N5—C9—N4 123.18 (18) C20—C21—C22 121.6 (2)

N5—C9—C8 129.60 (18) C20—C21—Cl2 119.38 (18)

N4—C9—C8 107.22 (17) C22—C21—Cl2 119.05 (17)

O1—C10—O2 124.04 (19) C21—C22—C23 119.08 (19)

O1—C10—C8 124.5 (2) C21—C22—H22 120.5

O2—C10—C8 111.46 (18) C23—C22—H22 120.5

O2—C11—C12 107.3 (2) C22—C23—C18 120.89 (19)

O2—C11—H11A 110.3 C22—C23—H23 119.6

C12—C11—H11A 110.3 C18—C23—H23 119.6

O2—C11—H11B 110.3 C1—N1—C5 116.0 (2)

C12—C11—H11B 110.3 C7—N2—C6 120.51 (18)

H11A—C11—H11B 108.5 C7—N2—H2A 119.7

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, o3679–o3681

C11—C12—H12B 109.5 C7—N3—N4 103.93 (16)

H12A—C12—H12B 109.5 C9—N4—N3 110.94 (16)

C11—C12—H12C 109.5 C9—N4—P1 130.28 (14)

H12A—C12—H12C 109.5 N3—N4—P1 118.51 (12)

H12B—C12—H12C 109.5 C9—N5—H5A 120.0

O4—C13—C14 113.85 (16) C9—N5—H5B 120.0

O4—C13—H13A 108.8 H5A—N5—H5B 120.0

C14—C13—H13A 108.8 C10—O2—C11 118.25 (18)

O4—C13—H13B 108.8 C13—O4—P1 121.26 (12)

C14—C13—H13B 108.8 C17—O5—P1 124.35 (12)

H13A—C13—H13B 107.7 O3—P1—O4 116.88 (9)

C16—C14—C13 111.29 (17) O3—P1—O5 115.40 (9)

C16—C14—C17 112.75 (17) O4—P1—O5 105.50 (7)

C13—C14—C17 107.01 (17) O3—P1—N4 109.80 (9)

C16—C14—C15 110.30 (18) O4—P1—N4 103.86 (8)

C13—C14—C15 105.92 (17) O5—P1—N4 104.06 (8)

C17—C14—C15 109.29 (16)

N1—C1—C2—C3 −0.6 (4) C19—C20—C21—Cl2 −179.19 (16)

Cl1—C1—C2—C3 178.77 (18) C20—C21—C22—C23 −0.2 (3)

C1—C2—C3—C4 0.0 (4) Cl2—C21—C22—C23 179.80 (17)

C2—C3—C4—C5 0.4 (3) C21—C22—C23—C18 0.1 (3)

C2—C3—C4—C6 −179.4 (2) C19—C18—C23—C22 −0.5 (3)

C3—C4—C5—N1 −0.5 (3) C17—C18—C23—C22 −177.12 (19)

C6—C4—C5—N1 179.4 (2) C2—C1—N1—C5 0.6 (3)

C5—C4—C6—N2 13.2 (3) Cl1—C1—N1—C5 −178.79 (16)

C3—C4—C6—N2 −166.9 (2) C4—C5—N1—C1 0.0 (3)

N3—C7—C8—C9 0.6 (2) N3—C7—N2—C6 −6.7 (3)

N2—C7—C8—C9 −177.8 (2) C8—C7—N2—C6 171.6 (2)

N3—C7—C8—C10 179.7 (2) C4—C6—N2—C7 77.0 (3)

N2—C7—C8—C10 1.2 (4) N2—C7—N3—N4 178.07 (19)

C7—C8—C9—N5 179.8 (2) C8—C7—N3—N4 −0.5 (2)

C10—C8—C9—N5 0.7 (3) N5—C9—N4—N3 179.95 (19)

C7—C8—C9—N4 −0.5 (2) C8—C9—N4—N3 0.2 (2)

C10—C8—C9—N4 −179.62 (18) N5—C9—N4—P1 6.1 (3)

C9—C8—C10—O1 6.1 (3) C8—C9—N4—P1 −173.61 (15)

C7—C8—C10—O1 −172.8 (2) C7—N3—N4—C9 0.1 (2)

C9—C8—C10—O2 −173.37 (18) C7—N3—N4—P1 174.80 (14)

C7—C8—C10—O2 7.7 (3) O1—C10—O2—C11 −3.7 (3)

O4—C13—C14—C16 64.7 (2) C8—C10—O2—C11 175.73 (18)

O4—C13—C14—C17 −58.9 (2) C12—C11—O2—C10 −143.2 (2)

O4—C13—C14—C15 −175.43 (17) C14—C13—O4—P1 48.4 (2)

C16—C14—C17—O5 −66.1 (2) C18—C17—O5—P1 −175.99 (12)

C13—C14—C17—O5 56.6 (2) C14—C17—O5—P1 −48.1 (2)

C15—C14—C17—O5 170.85 (16) C13—O4—P1—O3 99.66 (16)

C16—C14—C17—C18 54.8 (2) C13—O4—P1—O5 −30.10 (17)

C13—C14—C17—C18 177.50 (16) C13—O4—P1—N4 −139.25 (15)

(10)

supporting information

sup-7 Acta Cryst. (2005). E61, o3679–o3681

O5—C17—C18—C23 31.9 (2) C17—O5—P1—O4 31.34 (16)

C14—C17—C18—C23 −91.3 (2) C17—O5—P1—N4 140.35 (15)

O5—C17—C18—C19 −144.65 (18) C9—N4—P1—O3 −6.5 (2)

C14—C17—C18—C19 92.1 (2) N3—N4—P1—O3 −179.92 (14)

C23—C18—C19—C20 1.1 (3) C9—N4—P1—O4 −132.18 (18)

C17—C18—C19—C20 177.80 (18) N3—N4—P1—O4 54.36 (16)

C18—C19—C20—C21 −1.3 (3) C9—N4—P1—O5 117.61 (19)

C19—C20—C21—C22 0.9 (3) N3—N4—P1—O5 −55.86 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C11—H11B···O1i 0.97 2.52 3.290 (3) 136

C16—H16A···N3 0.96 2.54 3.486 (3) 167

N2—H2A···O2 0.86 2.26 2.829 (2) 124

N5—H5A···O3 0.86 2.17 2.834 (2) 134

N5—H5B···O1 0.86 2.36 2.909 (2) 122

C6—H6A···Cg1ii 0.97 2.80 3.680 (3) 152

C11—H11A···Cg1iii 0.97 2.89 3.753 (3) 149

Figure

Fig. 1 shows the molecular structure of (I). The P atom is in
Figure 1
Figure 2

References

Related documents

How- ever, most NER tools are designed to capture flat mention structure over coarse entity type schemas, reflecting the available annotated datasets.. Focusing on flat

We call the poem generated by the generation module in one pass the draft, since the user may revise it for several times to collaboratively cre- ate a satisfying poem together with

Our analysis provides some idea about the distinct compartmentalization of the Indian credit market with respect to the disbursement of loan from various credit

In effect, we hypothesized that the unproductive expenditures depend on real, financial and demand variables which we captured in the movement of the economy- wide

We recast their tasks so that they only require a sentence embedding as input (two of their tasks also require word embeddings, polluting sentence- level evaluation), we extend

Based on the lag length, it could be suggested that the changes in world oil price and output of trade industries have immediate effect on currency appreciation,

In his most recent blog, Aaker still uses the same definition for brand equity but identifies only three elements or assets as the major dimensions of brand

Aim: The purpose of this study was to evaluate and compare the total time duration and comfort equation of three different appliances used to manage the