• No results found

4 [(2 Hy­droxy­benzyl­­idene)amino] 5 (2 thienylmeth­yl) 2H 1,2,4 triazol 3(4H) one

N/A
N/A
Protected

Academic year: 2020

Share "4 [(2 Hy­droxy­benzyl­­idene)amino] 5 (2 thienylmeth­yl) 2H 1,2,4 triazol 3(4H) one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2493–o2494 doi:10.1107/S1600536806018496 Yılmazet al. C

14H12N4O2S

o2493

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

4-[(2-Hydroxybenzylidene)amino]-5-(2-thienyl-methyl)-2

H

-1,2,4-triazol-3(4

H

)-one

Isıl Yılmaz,aN. Burcu Arslan,a Canan Kazak,aKemal Sancakb and Mustafa Erb*

aDepartment of Physics, Faculty of Arts and

Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, andbDepartment of Chemistry,

Faculty of Arts and Sciences, Karadeniz Technical University, Trabzon, Turkey

Correspondence e-mail: isil_ylmaz@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.007 A˚

Rfactor = 0.066

wRfactor = 0.185

Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 2 May 2006 Accepted 18 May 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, C14H12N4O2S, the triazole ring is nearly

coplanar with the phenol unit, the dihedral angle being 6.60 (3). The crystal structure involves an intermolecular N—

H O hydrogen bond and intramolecular O—H N and C— H O hydrogen bonds.

Comment

Triazole ring systems are typical planar six--electron partially aromatic systems and 1,2,4-triazole and its derivatives are used as starting materials for the synthesis of many heterocycles (Desenko, 1995). Di- or trisubstituted 1,2,4-triazole deriva-tives have also been reported to show antitubercular activities (I˙kizler et al., 1998). In a previous paper, we reported that some 1,2,4-triazol-5-one compounds have antimicrobial effects (Demirbaset al., 2004). The coordination chemistry of azoles acting as ligands for the production of organometallic compounds in the context of modelling biological systems has attracted much interest (I˙kizler & Sancak, 1992). In this paper, we report the crystal structure of the title compound, (I).

The title compound contains three rings, viz. the 1,2,4-triazole ring,A, the thiophene ring,B, and the phenol ring,C

(Fig. 1). The dihedral angles between ringsA/B,A/CandB/C

are 67.39 (15), 6.60 (3) and 64.76 (1), respectively. These values indicate that the triazole ring is nearly coplanar with the phenol group. The C8 O2 bond length (Table 1) is comparable with those of similar C O double bonds found in 1,2,4-triazole rings (Arslanet al., 2004; Ocak, Kahveci et al., 2003; Ocak, C¸ oruhet al., 2003).

In the crystal structure of (I), a strong intermolecular N— H O hydrogen bond and intramolecular O—H N and C— H O hydrogen bonds are observed (Table 2 and Fig. 2).

Experimental

(2)

(yield 0.23 g, 80.43%). Spectroscopic analysis: IR (, cm1): 3166

(N—H), 3045 (aromatic C—H), 1711 (C O), 1618 (C N), 1606 (C C);1H NMR: 4.26 (s, tyf-CH2), 7.82–7.87 (m, aromatic H),

7.34–7.40 (m, 3H), 6.91–6.97 (m, 4H), 9.95 (m, N CH), 11.95 (m, NH), 10.32 (s, OH); MS:M+300.92.

Crystal data

C14H12N4O2S Mr= 300.34

Triclinic,P1

a= 5.5879 (7) A˚

b= 9.2167 (12) A˚

c= 14.3000 (19) A˚ = 77.528 (10)

= 84.181 (11)

= 77.290 (10)

V= 700.36 (16) A˚3

Z= 2

Dx= 1.424 Mg m

3

MoKradiation = 0.24 mm1

T= 293 (2) K Plate, yellow

0.500.210.04 mm

Data collection

Stoe IPDS-2 diffractometer !scans

Absorption correction: integration (X-RED; Stoe & Cie, 2002)

Tmin= 0.932,Tmax= 0.993

10648 measured reflections 2752 independent reflections 1322 reflections withI> 2(I)

Rint= 0.176

max= 26.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.066 wR(F2) = 0.185

S= 0.87 2752 reflections 190 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0823P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.32 e A˚ 3

min=0.24 e A˚ 3

Extinction correction:SHELXL97

(Sheldrick, 1997)

Extinction coefficient: 0.025 (2)

Table 1

Selected geometric parameters (A˚ ,).

C5—O1 1.347 (5)

C8—O2 1.227 (5)

C9—N4 1.289 (4)

C9—N2 1.371 (5)

C11—S1 1.708 (4)

C14—S1 1.692 (6)

N1—N2 1.383 (4)

N3—N4 1.386 (5)

C9—N2—C8 108.7 (3) C14—S1—C11 91.6 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N3—H7 O2i 0.86 1.95 2.791 (4) 167

O1—H5 N1 0.82 1.92 2.639 (4) 146

C7—H6 O2 0.93 2.28 2.946 (5) 128

Symmetry code: (i)x;yþ1;zþ1.

The high value ofRintindicates that the overall quality of the data

may be poor due to the crystal quality. All H atoms were placed in calculated positions, with C—H = 0.93–0.97 A˚ , N—H = 0.86 A˚ and O—H = 0.82 A˚ , and refined using a riding model, with Uiso(H) =

1.2Ueq(C,N) or 1.5Ueq(O).

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement:

X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

References

Arslan, B., Kazak, C., Kahveci, B., Ag˘ar, E. & S¸as¸maz, S. (2004).Acta Cryst.

E60, o578–o579.

Demirbas, N., Karaoglu, S. A., Demirbas, A. & Sancak, K. (2004).Eur. J. Med. Chem.39, 793–804.

Desenko, S. M. (1995). Khim. Geterotsikl. Soedin. (Chem. Heterocycl. Compd.), pp. 2–24 (In Russian).

Farrugia, L. T. (1997).J. Appl. Cryst.30, 565. Farrugia, L. T. (1999).J. Appl. Cryst.32, 837–838.

I˙kizler, A. A., Demirbas, A., Cohansson, C. B., Celik, C., Serdar, M. & Yu¨ksek, H. (1998).Acta Pol. Pharm. Drug Res.55, 117–123.

I˙kizler, A. A. & Sancak, K. (1992).Monatsh. Chem.123, 257–263.

Ocak, N., C¸ oruh, U., Kahveci, B., S¸as¸maz, S., Ag˘ar, E., Va´zquez-Lo´pez, M. & Erdo¨nmez, A. (2003).Acta Cryst.E59, o750–o752.

Ocak, N., Kahveci, B., S¸as¸maz, S., Ag˘ar, E. & Erdo¨nmez, A. (2003).Acta Cryst.

E59, o1137–o1138.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

[image:2.610.45.297.70.195.2]

Stoe & Cie (2002).X-AREAandX-RED. Stoe & Cie, Darmstadt, Germany.

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

[image:2.610.316.563.71.218.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o2493–o2494

supporting information

Acta Cryst. (2006). E62, o2493–o2494 [https://doi.org/10.1107/S1600536806018496]

4-[(2-Hydroxybenzylidene)amino]-5-(2-thienylmethyl)-2

H

-1,2,4-triazol-3(4

H

)-one

Is

ı

l Y

ı

lmaz, N. Burcu Arslan, Canan Kazak, Kemal Sancak and Mustafa Er

4-[(2-Hydroxybenzylidene)amino]-5-(2-thienylmethyl)-2H-1,2,4-triazol-3(4H)-one

Crystal data

C14H12N4O2S

Mr = 300.34 Triclinic, P1 Hall symbol: -P 1 a = 5.5879 (7) Å b = 9.2167 (12) Å c = 14.3000 (19) Å α = 77.528 (10)° β = 84.181 (11)° γ = 77.29 (1)° V = 700.36 (16) Å3

Z = 2 F(000) = 312 Dx = 1.424 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5484 reflections θ = 2.3–27.8°

µ = 0.24 mm−1

T = 293 K Plate, yellow

0.50 × 0.21 × 0.04 mm

Data collection

Stoe IPDS-2 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 6.67 pixels mm-1

ω scans

Absorption correction: integration (X-RED; Stoe & Cie, 2002) Tmin = 0.932, Tmax = 0.993

10648 measured reflections 2752 independent reflections 1322 reflections with I > 2σ(I) Rint = 0.176

θmax = 26.0°, θmin = 2.3°

h = −6→6 k = −11→11 l = −17→17

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.066

wR(F2) = 0.185

S = 0.87 2752 reflections 190 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0823P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.32 e Å−3

Δρmin = −0.24 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 1997)

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o2493–o2494

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.095 (4) 0.082 (3) 0.070 (3) −0.043 (3) 0.006 (3) −0.030 (2) C2 0.100 (4) 0.074 (3) 0.088 (3) −0.046 (3) −0.008 (3) −0.024 (3) C3 0.088 (3) 0.064 (3) 0.097 (4) −0.046 (3) −0.024 (3) 0.003 (3) C4 0.063 (3) 0.074 (3) 0.075 (3) −0.036 (2) 0.004 (2) −0.007 (2) C5 0.058 (2) 0.055 (2) 0.051 (2) −0.024 (2) −0.0054 (18) −0.0054 (19) C6 0.058 (2) 0.056 (2) 0.052 (2) −0.025 (2) −0.0042 (18) −0.0100 (18) C7 0.062 (3) 0.063 (3) 0.051 (2) −0.031 (2) 0.0059 (18) −0.0134 (19) C8 0.048 (2) 0.059 (2) 0.046 (2) −0.0227 (19) 0.0065 (16) −0.0088 (18) C9 0.054 (2) 0.059 (2) 0.049 (2) −0.030 (2) 0.0080 (17) −0.0173 (18) C10 0.070 (3) 0.079 (3) 0.060 (2) −0.047 (2) 0.020 (2) −0.033 (2) C11 0.059 (2) 0.063 (3) 0.045 (2) −0.030 (2) 0.0068 (17) −0.0122 (18) C12 0.065 (3) 0.064 (3) 0.075 (3) −0.019 (2) −0.004 (2) −0.021 (2) C13 0.097 (4) 0.078 (4) 0.088 (3) −0.036 (3) 0.010 (3) −0.042 (3) C14 0.107 (4) 0.110 (4) 0.051 (2) −0.067 (4) 0.005 (3) −0.024 (3) N1 0.0506 (18) 0.0571 (19) 0.0512 (17) −0.0271 (16) 0.0066 (14) −0.0113 (15) N2 0.0516 (18) 0.0570 (19) 0.0453 (16) −0.0306 (15) 0.0074 (13) −0.0120 (14) N3 0.064 (2) 0.070 (2) 0.0550 (19) −0.0413 (18) 0.0192 (16) −0.0215 (16) N4 0.063 (2) 0.065 (2) 0.0537 (19) −0.0351 (17) 0.0182 (15) −0.0223 (16) O1 0.085 (2) 0.086 (2) 0.0676 (18) −0.0488 (18) 0.0242 (15) −0.0245 (16) O2 0.0654 (18) 0.0750 (19) 0.0505 (15) −0.0371 (15) 0.0157 (13) −0.0243 (14) S1 0.0685 (8) 0.0965 (10) 0.0682 (7) −0.0256 (7) −0.0036 (6) −0.0158 (6)

Geometric parameters (Å, º)

C1—C2 1.368 (6) C9—N2 1.371 (5) C1—C6 1.395 (6) C9—C10 1.480 (5) C1—H1 0.9300 C10—C11 1.509 (5) C2—C3 1.358 (7) C10—H8A 0.9700 C2—H2 0.9300 C10—H8B 0.9700 C3—C4 1.377 (7) C11—C12 1.347 (6) C3—H3 0.9300 C11—S1 1.708 (4) C4—C5 1.385 (5) C12—C13 1.419 (6) C4—H4 0.9300 C12—H9 0.9300 C5—O1 1.347 (5) C13—C14 1.329 (7) C5—C6 1.397 (5) C13—H10 0.9300 C6—C7 1.450 (5) C14—S1 1.692 (6) C7—N1 1.280 (5) C14—H11 0.9300 C7—H6 0.9300 N1—N2 1.383 (4) C8—O2 1.227 (5) N3—N4 1.386 (5) C8—N3 1.347 (5) N3—H7 0.8600 C8—N2 1.394 (5) O1—H5 0.8200 C9—N4 1.289 (4)

(6)

C6—C1—H1 119.2 C9—C10—H8B 108.5 C3—C2—C1 119.5 (5) C11—C10—H8B 108.5 C3—C2—H2 120.3 H8A—C10—H8B 107.5 C1—C2—H2 120.3 C12—C11—C10 127.0 (4) C2—C3—C4 121.0 (4) C12—C11—S1 111.3 (3) C2—C3—H3 119.5 C10—C11—S1 121.5 (3) C4—C3—H3 119.5 C11—C12—C13 112.1 (4) C3—C4—C5 120.2 (4) C11—C12—H9 123.9 C3—C4—H4 119.9 C13—C12—H9 123.9 C5—C4—H4 119.9 C14—C13—C12 112.6 (5) O1—C5—C4 117.9 (4) C14—C13—H10 123.7 O1—C5—C6 122.5 (3) C12—C13—H10 123.7 C4—C5—C6 119.6 (4) C13—C14—S1 112.4 (4) C1—C6—C5 118.2 (3) C13—C14—H11 123.8 C1—C6—C7 119.0 (4) S1—C14—H11 123.8 C5—C6—C7 122.8 (4) C7—N1—N2 120.2 (3) N1—C7—C6 120.7 (4) C9—N2—N1 120.8 (3) N1—C7—H6 119.7 C9—N2—C8 108.7 (3) C6—C7—H6 119.7 N1—N2—C8 130.5 (3) O2—C8—N3 129.5 (3) C8—N3—N4 113.8 (3) O2—C8—N2 128.5 (3) C8—N3—H7 123.1 N3—C8—N2 102.0 (3) N4—N3—H7 123.1 N4—C9—N2 111.3 (3) C9—N4—N3 104.3 (3) N4—C9—C10 127.1 (3) C5—O1—H5 109.5 N2—C9—C10 121.6 (3) C14—S1—C11 91.6 (3) C9—C10—C11 115.1 (3)

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o2493–o2494

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3—H7···O2i 0.86 1.95 2.791 (4) 167

O1—H5···N1 0.82 1.92 2.639 (4) 146 C7—H6···O2 0.93 2.28 2.946 (5) 128

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical